[1]
|
梅斯医学. 盘点2016脑卒中重要指南共识回顾[J]. 心脑血管病防治, 2017, 17(1): 1-2.
|
[2]
|
刘丽萍, 周宏宇, 段婉莹, 等. 中国脑血管病临床管理指南(第2版) (节选)——第4章 缺血性脑血管病临床管理推荐意见[J]. 中国卒中杂志, 2023, 18(8): 910-933.
|
[3]
|
Samartsev, I.N. and Zhivolupov, S.A. (2022) New Prospects for Drug Treatment of Chronic Cerebral Ischemia from the Standpoint of Neuroinflammation. Clinical Pharmacology and Therapy, 34, 4-8. https://doi.org/10.32756/0869-5490-2022-3-4-8
|
[4]
|
Lim, K.-H. and Staudt, L.M. (2013) Toll-Like Receptor Signaling. Cold Spring Harbor Perspectives in Biology, 5, a011247. https://doi.org/10.1101/cshperspect.a011247
|
[5]
|
Jackson Hoffman, B.A., Pumford, E.A., Enueme, A.I., Fetah, K.L., Friedl, O.M. and Kasko, A.M. (2023) Engineered Macromolecular Toll-Like Receptor Agents and Assemblies. Trends in Biotechnology, 41, 1139-1154. https://doi.org/10.1016/j.tibtech.2023.03.008
|
[6]
|
Jeon, D., Hill, E. and McNeel, D.G. (2023) Toll-Like Receptor Agonists as Cancer Vaccine Adjuvants. Human Vaccines & Immunotherapeutics, 20, Article 2297453. https://doi.org/10.1080/21645515.2023.2297453
|
[7]
|
Rock, F.L., Hardiman, G., Timans, J.C., Kastelein, R.A. and Bazan, J.F. (1998) A Family of Human Receptors Structurally Related to Drosophila Toll. Proceedings of the National Academy of Sciences, 95, 588-593. https://doi.org/10.1073/pnas.95.2.588
|
[8]
|
Fitzgerald, K.A. and Kagan, J.C. (2020) Toll-Like Receptors and the Control of Immunity. Cell, 180, 1044-1066. https://doi.org/10.1016/j.cell.2020.02.041
|
[9]
|
李依峣, 鲁元, 王旭, 等. Toll样受体家族在神经炎症性疾病中的作用机制研究进展[J]. 中国新药杂志, 2022, 31(16): 1602-1607.
|
[10]
|
Sun, H., Li, Y., Zhang, P., Xing, H., Zhao, S., Song, Y., et al. (2022) Targeting Toll-Like Receptor 7/8 for Immunotherapy: Recent Advances and Prospectives. Biomarker Research, 10, Article No. 89. https://doi.org/10.1186/s40364-022-00436-7
|
[11]
|
Lua, J., Ekanayake, K., Fangman, M. and Doré, S. (2021) Potential Role of Soluble Toll-Like Receptors 2 and 4 as Therapeutic Agents in Stroke and Brain Hemorrhage. International Journal of Molecular Sciences, 22, Article 9977. https://doi.org/10.3390/ijms22189977
|
[12]
|
Hadi, N.R., Shaker, S.R. and Alharis, N.R. (2021) Emerging Role of Toll-Like Receptors in Atherosclerosis. In: Hadi, N.R., Shaker, S.R. and Alharis, N.R., Eds., Important Aspects of Toll-Like Receptors: Signaling Pathways in Diseases, B P International, London, 75-93. https://doi.org/10.9734/bpi/mono/978-93-91882-59-4/CH4
|
[13]
|
王美娥, 刘龙江, 路永刚. Toll样受体对急性缺血性脑卒中临床疗效和预后的预测价值[J]. 中西医结合心脑血管病杂志, 2021, 19(5): 731-736.
|
[14]
|
Li, L., Acioglu, C., Heary, R.F. and Elkabes, S. (2021) Role of Astroglial Toll-Like Receptors (TLRs) in Central Nervous System Infections, Injury and Neurodegenerative Diseases. Brain, Behavior, and Immunity, 91, 740-755. https://doi.org/10.1016/j.bbi.2020.10.007
|
[15]
|
Alsbrook, D.L., Di Napoli, M., Bhatia, K., Biller, J., Andalib, S., Hinduja, A., et al. (2023) Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke. Current Neurology and Neuroscience Reports, 23, 407-431. https://doi.org/10.1007/s11910-023-01282-2
|
[16]
|
Wang, Y., Ge, P. and Zhu, Y. (2013) TLR2 and TLR4 in the Brain Injury Caused by Cerebral Ischemia and Reperfusion. Mediators of Inflammation, 2013, Article 124614. https://doi.org/10.1155/2013/124614
|
[17]
|
Lim, H.J., Jang, H., Kim, M.H., Lee, S., Lee, S.W., Lee, S., et al. (2019) Oleanolic Acid Acetate Exerts Anti-Inflammatory Activity via IKKα/β Suppression in TLR3-Mediated NF-κB Activation. Molecules, 24, Article 4002. https://doi.org/10.3390/molecules24214002
|
[18]
|
Zahr, N.M., Zhao, Q., Goodcase, R. and Pfefferbaum, A. (2022) Systemic Administration of the TLR7/8 Agonist Resiquimod (R848) to Mice Is Associated with Transient, in vivo-Detectable Brain Swelling. Biology, 11, Article 274. https://doi.org/10.3390/biology11020274
|
[19]
|
李一荃. TRIM31通过降解TLR9抑制自噬加重脑缺血损伤[D]: [硕士学位论文]. 济南: 山东大学, 2023.
|
[20]
|
Xu, X., Long, J., Jin, K., Chen, L., Lu, X. and Fan, X. (2021) Danshen-Chuanxiongqin Injection Attenuates Cerebral Ischemic Stroke by Inhibiting Neuroinflammation via the TLR2/ TLR4-MyD88-NF-κB Pathway in tMCAO Mice. Chinese Journal of Natural Medicines, 19, 772-783. https://doi.org/10.1016/s1875-5364(21)60083-3
|
[21]
|
Gadagkar, S.G., Lalancette-Hébert, M., Thammisetty, S.S., Vexler, Z.S. and Kriz, J. (2023) CD36 Neutralisation Blunts TLR2-IRF7 but Not IRF3 Pathway in Neonatal Mouse Brain and Immature Human Microglia Following Innate Immune Challenge. Scientific Reports, 13, Article No. 2304. https://doi.org/10.1038/s41598-023-29423-0
|
[22]
|
Al-Mamoori, A.J., Abdulameer Almustafa, H.M.S. and Alsaffar, Y. (2022) Overexpressed Toll-Like Receptor 2 and the Influence on the Severity of Acute Ischemic Stroke. Archives of Razi Institute, 77, 2379-2384. https://doi.org/10.22092/ARI.2022.358615.2265
|
[23]
|
Josić Dominović, P., Dobrivojević Radmilović, M., Srakočić, S., Mišerić, I., Škokić, S. and Gajović, S. (2024) Validation and Application of Caged Z-DEVD-Aminoluciferin Bioluminescence for Assessment of Apoptosis of Wild Type and TLR2-Deficient Mice After Ischemic Stroke. Journal of Photochemistry and Photobiology B: Biology, 253, Article 112871. https://doi.org/10.1016/j.jphotobiol.2024.112871
|
[24]
|
Mekhemar, M., Tölle, J., Dörfer, C.E., et al. (2022) Toll-Like Receptor 3. In: Haider, K.H., Eds., Handbook of Stem Cell Therapy, Springer, Singapore, 1279-1302. https://doi.org/10.1007/978-981-19-2655-6_25
|
[25]
|
Jeong, S., Jeon, R., Choi, Y.K., Jung, J.E., Liang, A., Xing, C., et al. (2015) Activation of Microglial Toll-Like Receptor 3 Promotes Neuronal Survival against Cerebral Ischemia. Journal of Neurochemistry, 136, 851-858. https://doi.org/10.1111/jnc.13441
|
[26]
|
李邦林, 贾汉伟, 李靖, 等. 缺血性脑卒中患者单个核细胞TLR3、IRF-3、IFN-γmRNA表达及临床意义[J]. 分子诊断与治疗杂志, 2020, 12(2): 207-211.
|
[27]
|
胡海霞, 钟兴华, 林心君, 等. 栝楼桂枝汤调控TLR3通路对小胶质细胞活化诱导的神经细胞损伤的保护作用研究[J]. 中国医院药学杂志, 2024, 44(4): 398-403.
|
[28]
|
Yang, W., Li, T., Wan, Q., Zhang, X., Sun, L., Zhang, Y., et al. (2022) Molecular Hydrogen Mediates Neurorestorative Effects after Stroke in Diabetic Rats: The TLR4/NF-κB Inflammatory Pathway. Journal of Neuroimmune Pharmacology, 18, 90-99. https://doi.org/10.1007/s11481-022-10051-w
|
[29]
|
Feng, W., Liu, G. and Qin, J. (2021) Ginkgo Biloba Damo Injection Combined with Troxerutin Regulates the TLR4/NF-κB Pathway and Promotes the Recovery of Patients with Acute Cerebral Infarction. American Journal of Translational Research, 13, 3344-3350.
|
[30]
|
Durán-Laforet, V., Peña-Martínez, C., García-Culebras, A., Cuartero, M.I., Lo, E.H., Moro, M.Á., et al. (2021) Role of TLR4 in Neutrophil Dynamics and Functions: Contribution to Stroke Pathophysiology. Frontiers in Immunology, 12, Article 757872. https://doi.org/10.3389/fimmu.2021.757872
|
[31]
|
Nazarinia, D., Dolatshahi, M., Faezi, M., Nasseri Maleki, S. and Aboutaleb, N. (2021) TLR4/NF-κB and JAK2/STAT3 Signaling Pathways: Cellular Signaling Pathways Targeted by Cell-Conditioned Medium Therapy in Protection against Ischemic Stroke. Journal of Chemical Neuroanatomy, 113, Article 101938. https://doi.org/10.1016/j.jchemneu.2021.101938
|
[32]
|
Zhu, K., Zhu, X., Sun, S., Yang, W., Liu, S., Tang, Z., et al. (2021) Inhibition of TLR4 Prevents Hippocampal Hypoxic-Ischemic Injury by Regulating Ferroptosis in Neonatal Rats. Experimental Neurology, 345, Article 113828. https://doi.org/10.1016/j.expneurol.2021.113828
|
[33]
|
Zhou, M., Zhang, T., Zhang, X., Zhang, M., Gao, S., Zhang, T., et al. (2022) Effect of Tetrahedral Framework Nucleic Acids on Neurological Recovery via Ameliorating Apoptosis and Regulating the Activation and Polarization of Astrocytes in Ischemic Stroke. ACS Applied Materials & Interfaces, 14, 37478-37492. https://doi.org/10.1021/acsami.2c10364
|
[34]
|
Hernández-Jiménez, M., Abad-Santos, F., Cotgreave, I., Gallego, J., Jilma, B., Flores, A., et al. (2023) APRIL: A Double-Blind, Placebo-Controlled, Randomized, Phase Ib/IIa Clinical Study of ApTOLL for the Treatment of Acute Ischemic Stroke. Frontiers in Neurology, 14, Article 1127585. https://doi.org/10.3389/fneur.2023.1127585
|
[35]
|
Tajalli-Nezhad, S., Mohammadi, S., Atlasi, M.A., Kheiran, M., Moghadam, S.E., Naderian, H., et al. (2023) Calcitriol Modulate Post-Ischemic TLR Signaling Pathway in Ischemic Stroke Patients. Journal of Neuroimmunology, 375, Article 578013. https://doi.org/10.1016/j.jneuroim.2022.578013
|
[36]
|
Wang, N., Guo, W., Liu, T., Chen, X. and Lin, M. (2023) Toll-Like Receptors (TLR2 and TLR4) Antagonist Mitigates the Onset of Cerebral Small Vessel Disease through PI3K/Akt/GSK3β Pathway in Stroke-Prone Renovascular Hypertensive Rats. Biotechnology and Genetic Engineering Reviews, 1-21. https://doi.org/10.1080/02648725.2023.2184961
|
[37]
|
Qin, H., Chen, Y., Wang, Z., Li, N., Sun, Q., Lin, Y., et al. (2023) Biosynthesized Gold Nanoparticles That Activate Toll-Like Receptors and Elicit Localized Light-Converting Hyperthermia for Pleiotropic Tumor Immunoregulation. Nature Communications, 14, Article No. 5178. https://doi.org/10.1038/s41467-023-40851-4
|
[38]
|
Bamigbola, I.E. and Ali, S. (2022) Paradoxical Immune Response in Leishmaniasis: The Role of Toll-Like Receptors in Disease Progression. Parasite Immunology, 44, e12910. https://doi.org/10.1111/pim.12910
|