|
[1]
|
Marchesini, G., Brizi, M., Bianchi, G., et al. (2001) Nonalcoholic Fatty Liver Disease: A Feature of the Metabolic Syndrome. Diabetes, 50, 1844-1850. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Buyco, D.G., Martin, J., Jeon, S., et al. (2021) Experimental Models of Metabolic and Alcoholic Fatty Liver Disease. World Journal of Gastroenterology, 27, 1-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
朱子薇, 张健, 王倩, 等. 卟啉代谢途径高价值产物及其微生物合成研究进展[J]. 中国科学: 生命科学, 2020, 50(12): 1405-1417.
|
|
[4]
|
张璎, 郭蕊, 苗向霞, 等. 卟啉代谢与慢性肝病相关研究进展[J]. 世界最新医学信息文摘, 2019, 19(99): 127-128+130.
|
|
[5]
|
郭蕊, 张璎, 段一超, 等. 卟啉代谢在慢性乙型肝炎中的作用[J]. 世界最新医学信息文摘, 2019, 19(99): 151-153.
|
|
[6]
|
黄莘, 丁涛, 黄非, 等. 改造大肠杆菌卟啉代谢途径对重组过氧化物酶活性的影响[J]. 微生物学报, 2018, 58(9): 1605-1613.
|
|
[7]
|
Stewart, S., Jones, D. and Day, C.P. (2001) Alcoholic Liver Disease: New Insights into Mechanisms and Preventative Strategies. Trends in Molecular Medicine, 7, 408-413. [Google Scholar] [CrossRef]
|
|
[8]
|
Baburina, Y., Odinokova, I. and Krestinina, O. (2020) The Effects of PK11195 and Protoporphyrin IX Can Modulate Chronic Alcohol Intoxication in Rat Liver Mitochondria under the Opening of the Mitochondrial Permeability Transition Pore. Cells, 9, Article 1774. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lieber, C.S. (2004) Alcoholic Fatty Liver: Its Pathogenesis and Mechanism of Progression to Inflammation and Fibrosis. Alcohol, 34, 9-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Mello, T., Ceni, E., Surrenti, C., et al. (2008) Alcohol Induced Hepatic Fibrosis: Role of Acetaldehyde. Molecular Aspects of Medicine, 29, 17-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Lívero, F.A. and Acco, A. (2016) Molecular Basis of Alcoholic Fatty Liver Disease: From Incidence to Treatment: Alcoholic Fatty Liver Disease: A Review. Hepatology Research, 46, 111-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zakhari, S. (2006) Overview: How Is Alcohol Metabolized by the Body? Alcohol Research & Health, 29, 245-254.
|
|
[13]
|
Liu, J. (2014) Ethanol and Liver: Recent Insights into the Mechanisms of Ethanol-Induced Fatty Liver. World Journal of Gastroenterology, 20, Article 14672-14685. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Nagata, K., Suzuki, H. and Sakaguchi, S. (2007) Common Pathogenic Mechanism in Development Progression of Liver Injury Caused by Non-Alcoholic or Alcoholic Steatohepatitis. The Journal of Toxicological Sciences, 32, 453-468. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Bailey, S.M., Mantena, S.K., Millender-Swain, T., et al. (2009) Ethanol and Tobacco Smoke Increase Hepatic Steatosis and Hypoxia in the Hypercholesterolemic ApoE-/- Mouse: Implications for a “Multihit” Hypothesis of Fatty Liver Disease. Free Radical Biology and Medicine, 46, 928-938. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Albano, E. (2002) Free Radical Mechanisms in Immune Reactions Associated with Alcoholic Liver Disease. Free Radical Biology and Medicine, 32, 110-114. [Google Scholar] [CrossRef]
|
|
[17]
|
Kim, S.J., Park, J.G. and Lee, S.M. (2012) Protective Effect of Heme Oxygenase-1 Induction Against Hepatic Injury in Alcoholic Steatotic Liver Exposed to Cold Ischemia/Reperfusion. Life Sciences, 90, 169-176. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lu, Y., Zhuge, J., Wang, X., et al. (2008) Cytochrome P450 2E1 Contributes to Ethanol-Induced Fatty Liver in Mice. Hepatology, 47, 1483-1494. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Bjarnason, I., Ward, K. and Peters, T. (1984) The Leaky Gut of Alcoholism: Possible Route of Entry for Toxic Compounds. The Lancet, 323, 179-182. [Google Scholar] [CrossRef]
|
|
[20]
|
Szabo, G. (2015) Gut-Liver Axis in Alcoholic Liver Disease. Gastroenterology, 148, 30-36. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Bataller, R., Rombouts, K., Altamirano, J., et al. (2011) Fibrosis in Alcoholic and Nonalcoholic Steatohepatitis. Best Practice & Research Clinical Gastroenterology, 25, 231-244. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Thurman, R.G. II. (1998) Alcoholic Liver Injury Involves Activation of Kupffer Cells by Endotoxin. American Journal of Physiology-Gastrointestinal and Liver Physiology, 275, G605-G611. [Google Scholar] [CrossRef]
|
|
[23]
|
Karkucinska-Wieckowska, A., Simoes, I.C.M., Kalinowski, P., et al. (2022) Mitochondria, Oxidative Stress and Nonalcoholic Fatty Liver Disease: A Complex Relationship. European Journal of Clinical Investigation, 52, e13622. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Shen, K., Singh, A.D., Modaresi, Esfeh, J., et al. (2022) Therapies for Non-Alcoholic Fatty Liver Disease: A 2022 Update. World Journal of Hepatology, 14, 1718-1729. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wang, X. J. and Malhi, H. (2018) Nonalcoholic Fatty Liver Disease. Annals of Internal Medicine, 169, ITC65-ITC80. [Google Scholar] [CrossRef]
|
|
[26]
|
Bruschi, F.V., Tardelli, M., Einwallner, E., et al. (2020) PNPLA3 I148M Up-Regulates Hedgehog and Yap Signaling in Human Hepatic Stellate Cells. International Journal of Molecular Sciences, 21, Article 8711. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Fujii, J., Homma, T., Kobayashi, S., et al. (2018) Mutual Interaction Between Oxidative Stress and Endoplasmic Reticulum Stress in the Pathogenesis of Diseases Specifically Focusing on Non-Alcoholic Fatty Liver Disease. World Journal of Biological Chemistry, 9, 1-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Mcclung, J.A., Levy, L., Garcia, V., et al. (2022) Heme-Oxygenase and Lipid Mediators in Obesity and Associated Cardiometabolic Diseases: Therapeutic Implications. Pharmacology & Therapeutics, 231, Article 107975. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Lebeaupin, C., Vallée, D., Hazari, Y., et al. (2018) Endoplasmic Reticulum Stress Signaling and the Pathogenesis of Non-Alcoholic Fatty Liver Disease. Journal of Hepatology, 69, 927-947. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Pfefferlé, M., Ingoglia, G., Schaer, C.A., et al. (2020) Hemolysis Transforms Liver Macrophages into Antiinflammatory Erythrophagocytes. Journal of Clinical Investigation, 130, 5576-5590. [Google Scholar] [CrossRef]
|
|
[31]
|
Tseng, S.H., Chang, T.Y., Shih, C.K., et al. (2018) Effect of Endoplasmic Reticular Stress on Free Hemoglobin Metabolism and Liver Injury. International Journal of Molecular Sciences, 19, Article 1977. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
García-Ruiz, I., Rodríguez-Juan, C., Díaz-Sanjuan, T., et al. (2006) Uric Acid and Anti-TNF Antibody Improve Mitochondrial Dysfunction in Ob/Ob Mice. Hepatology, 44, 581-591. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Lee, K.C., Wu, P.S. and Lin, H.C. (2023) Pathogenesis and Treatment of Non-Alcoholic Steatohepatitis and Its Fibrosis. Clinical and Molecular Hepatology, 29, 77-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Nikam, A., Patankar, J.V., Somlapura, M., et al. (2018) The PPARα Agonist Fenofibrate Prevents Formation of Protein Aggregates (Mallory-Denk Bodies) in a Murine Model of Steatohepatitis-Like Hepatotoxicity. Scientific Reports, 8, Article No. 12964. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Abu-Halaka, D., Gover, O., Rauchbach, E., et al. (2021) Whole Body Metabolism Is Improved by Hemin Added to High Fat Diet While Counteracted by Nitrite: A Mouse Model of Processed Meat Consumption. Food & Function, 12, 8326-8339. [Google Scholar] [CrossRef]
|
|
[36]
|
Di Ciaula, A., Passarella, S., Shanmugam, H., et al. (2021) Nonalcoholic Fatty Liver Disease (NAFLD). Mitochondria as Players and Targets of Therapies? International Journal of Molecular Sciences, 22, Article 5375. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Cotter, T.G. and Rinella, M. (2020) Nonalcoholic Fatty Liver Disease 2020: The State of the Disease. Gastroenterology, 158, 1851-1864. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Fang, Y.L., Chen, H., Wang, C.L., et al. (2018) Pathogenesis of Non-Alcoholic Fatty Liver Disease in Children and Adolescence: From “Two Hit Theory” to “Multiple Hit Model”. World Journal of Gastroenterology, 24, 2974-2983. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Anstee, Q., Daly, A. and Day, C. (2011) Genetics of Alcoholic and Nonalcoholic Fatty Liver Disease. Seminars in Liver Disease, 31, 128-146. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Song, B.J., Abdelmegeed, M.A., Henderson, L.E., et al. (2013) Increased Nitroxidative Stress Promotes Mitochondrial Dysfunction in Alcoholic and Nonalcoholic Fatty Liver Disease. Oxidative Medicine and Cellular Longevity, 2013, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
陈丽娜, 王育新, 许艳, 等. 肝功障碍及胃癌患者体内血卟啉特征光谱的研究[J]. 中国医学物理学杂志, 1995(4): 203-205.
|
|
[42]
|
刘桪, 李少华, 高善玲, 等. 慢性肝病患者血卟啉变化初探[J]. 哈尔滨医科大学学报, 1992(2): 99-101.
|
|
[43]
|
Ma, X., Hua, J., Mohamood, A.R., et al. (2007) A High-Fat Diet and Regulatory T Cells Influence Susceptibility to Endotoxin-Induced Liver Injury. Hepatology, 46, 1519-1529. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Drummond, G.S., Baum, J., Greenberg, M., et al. (2019) HO-1 Overexpression and Underexpression: Clinical Implications. Archives of Biochemistry and Biophysics, 673, 108073. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Chatterjee, S., Mukherjee, S., Sankara, Sivaprasad, L.V.J., et al. (2021) Transporter Activity Changes in Nonalcoholic Steatohepatitis: Assessment with Plasma Coproporphyrin I and III. Journal of Pharmacology and Experimental Therapeutics, 376, 29-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Suzuki, A. and Diehl, A.M. (2017) Nonalcoholic Steatohepatitis. Annual Review of Medicine, 68, 85-98. [Google Scholar] [CrossRef] [PubMed]
|