|
[1]
|
An, S.J., Kim, T.J. and Yoon, B. (2017) Epidemiology, Risk Factors, and Clinical Features of Intracerebral Hemorrhage: An Update. Journal of Stroke, 19, 3-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国脑出血诊治指南(2019) [J]. 中华神经科杂志, 2019, 52(12): 994-1005.
|
|
[3]
|
Hostettler, I.C., Seiffge, D.J. and Werring, D.J. (2019) Intracerebral Hemorrhage: An Update on Diagnosis and Treatment. Expert Review of Neurotherapeutics, 19, 679-694. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hilkens, N.A., van Asch, C.J.J., Werring, D.J., Wilson, D., Rinkel, G.J.E., Algra, A., et al. (2018) Predicting the Presence of Macrovascular Causes in Non-Traumatic Intracerebral Haemorrhage: The DIAGRAM Prediction Score. Journal of Neurology, Neurosurgery & Psychiatry, 89, 674-679. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
O'Donnell, M.J., Chin, S.L., Rangarajan, S., Xavier, D., Liu, L., Zhang, H., et al. (2016) Global and Regional Effects of Potentially Modifiable Risk Factors Associated with Acute Stroke in 32 Countries (INTERSTROKE): A Case-Control Study. The Lancet, 388, 761-775. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
邓妙峰, 简志聪, 钱卫添. 自发性脑出血患者血肿扩大的相关影响因素分析[J]. 现代医学与健康研究电子杂志, 2024, 8(4): 113-116.
|
|
[7]
|
张谦, 冀瑞俊, 赵萌, 等. 中国脑血管病临床管理指南(第2版) (节选)——第5章脑出血临床管理[J]. 中国卒中杂志, 2023, 18(9): 1014-1023.
|
|
[8]
|
Chen, S., Li, L., Peng, C., Bian, C., Ocak, P.E., Zhang, J.H., et al. (2022) Targeting Oxidative Stress and Inflammatory Response for Blood-Brain Barrier Protection in Intracerebral Hemorrhage. Antioxidants & Redox Signaling, 37, 115-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Keep, R.F., Hua, Y. and Xi, G. (2012) Intracerebral Haemorrhage: Mechanisms of Injury and Therapeutic Targets. The Lancet Neurology, 11, 720-731. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Jain, A., Malhotra, A. and Payabvash, S. (2021) Imaging of Spontaneous Intracerebral Hemorrhage. Neuroimaging Clinics of North America, 31, 193-203. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Goldstein, L.B. (2005) Is This Patient Having a Stroke? JAMA, 293, 2391-2402. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Al-Kawaz, M.N., Hanley, D.F. and Ziai, W. (2020) Advances in Therapeutic Approaches for Spontaneous Intracerebral Hemorrhage. Neurotherapeutics, 17, 1757-1767. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yip, S.S.F. and Aerts, H.J.W.L. (2016) Applications and Limitations of Radiomics. Physics in Medicine and Biology, 61, R150-R166. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lohmann, P., Franceschi, E., Vollmuth, P., Dhermain, F., Weller, M., Preusser, M., et al. (2022) Radiomics in Neuro-Oncological Clinical Trials. The Lancet Digital Health, 4, e841-e849. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lohmann, P., Bousabarah, K., Hoevels, M. and Treuer, H. (2020) Radiomics in Radiation Oncology-Basics, Methods, and Limitations. Strahlentherapie und Onkologie, 196, 848-855. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
De Jong, J.S., Van Diest, P.J. and Baak, J.P. (1995) Heterogeneity and Reproducibility of Microvessel Counts in Breast Cancer. Laboratory Investigation, 73, 922-926.
|
|
[17]
|
Yang, J., Cai, H., Liu, N., Huang, J., Pan, Y., Zhang, B., et al. (2024) Application of Radiomics in Ischemic Stroke. Journal of International Medical Research, 52, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Rogers, W., Thulasi Seetha, S., Refaee, T.A.G., Lieverse, R.I.Y., Granzier, R.W.Y., Ibrahim, A., et al. (2020) Radiomics: From Qualitative to Quantitative Imaging. The British Journal of Radiology, 93. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Singh, G., Manjila, S., Sakla, N., True, A., Wardeh, A.H., Beig, N., et al. (2021) Radiomics and Radiogenomics in Gliomas: A Contemporary Update. British Journal of Cancer, 125, 641-657. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Brunasso, L., Ferini, G., Bonosi, L., Costanzo, R., Musso, S., Benigno, U.E., et al. (2022) A Spotlight on the Role of Radiomics and Machine-Learning Applications in the Management of Intracranial Meningiomas: A New Perspective in Neuro-Oncology: A Review. Life, 12, Article 586. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Skogen, K., Schulz, A., Dormagen, J.B., Ganeshan, B., Helseth, E. and Server, A. (2016) Diagnostic Performance of Texture Analysis on MRI in Grading Cerebral Gliomas. European Journal of Radiology, 85, 824-829. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Lambin, P., Leijenaar, R.T.H., Deist, T.M., Peerlings, J., de Jong, E.E.C., van Timmeren, J., et al. (2017) Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nature Reviews Clinical Oncology, 14, 749-762. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Unnithan, A.K.A., Das, J.M. and Mehta, P. (2024) Hemorrhagic Stroke. StatPearls Publishing, Treasure Island.
|
|
[24]
|
Chilamkurthy, S., Ghosh, R., Tanamala, S., Biviji, M., Campeau, N.G., Venugopal, V.K., et al. (2018) Deep Learning Algorithms for Detection of Critical Findings in Head CT Scans: A Retrospective Study. The Lancet, 392, 2388-2396. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Xie, H., Dong, F., Zhang, R., Yu, X., Xu, P., Tang, Y., et al. (2023) Building Nonenhanced CT Based Radiomics Model in Discriminating Arteriovenous Malformation Related Hematomas from Hypertensive Intracerebral Hematomas. Frontiers in Neuroscience, 17, Article 1284560. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Lyu, J., Xu, Z., Sun, H., Zhai, F. and Qu, X. (2023) Machine Learning-Based CT Radiomics Model to Discriminate the Primary and Secondary Intracranial Hemorrhage. Scientific Reports, 13, Article No. 3709. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wang, Q.T. and Tuhrim, S. (2012) Etiologies of Intracerebral Hematomas. Current Atherosclerosis Reports, 14, 314-321. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Choi, Y.S., Rim, T.H., Ahn, S.S. and Lee, S.-K. (2015) Discrimination of Tumorous Intracerebral Hemorrhage from Benign Causes Using CT Densitometry. American Journal of Neuroradiology, 36, 886-892. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Alshumrani, G., Al abo nasser, B., Alzawani, A., Alsabaani, A., Shehata, S. and Alhazzani, A. (2021) The Role of Computed Tomography Angiogram in Intracranial Hemorrhage. Do the Benefits Justify the Known Risks in Everyday Practice? Clinical Neurology and Neurosurgery, 200, Article 106379. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Fukuda, K., Majumdar, M., Masoud, H., Nguyen, T., Honarmand, A., Shaibani, A., et al. (2016) Multicenter Assessment of Morbidity Associated with Cerebral Arteriovenous Malformation Hemorrhages. Journal of NeuroInterventional Surgery, 9, 664-668. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhang, Y., Zhang, B., Liang, F., Liang, S., Zhang, Y., Yan, P., et al. (2018) Radiomics Features on Non-Contrast-Enhanced CT Scan Can Precisely Classify AVM-Related Hematomas from Other Spontaneous Intraparenchymal Hematoma Types. European Radiology, 29, 2157-2165. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhan, C., Chen, Q., Zhang, M., Xiang, Y., Chen, J., Zhu, D., et al. (2021) Radiomics for Intracerebral Hemorrhage: Are All Small Hematomas Benign? The British Journal of Radiology, 94. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Xu, X., Zhang, J., Yang, K., Wang, Q., Chen, X. and Xu, B. (2021) Prognostic Prediction of Hypertensive Intracerebral Hemorrhage Using CT Radiomics and Machine Learning. Brain and Behavior, 11, e02085. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhou, Z., Zhou, H., Song, Z., Chen, Y., Guo, D. and Cai, J. (2021) Location-Specific Radiomics Score: Novel Imaging Marker for Predicting Poor Outcome of Deep and Lobar Spontaneous Intracerebral Hemorrhage. Frontiers in Neuroscience, 15, Article 766228. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Pei, L., Fang, T., Xu, L. and Ni, C. (2024) A Radiomics Model Based on CT Images Combined with Multiple Machine Learning Models to Predict the Prognosis of Spontaneous Intracerebral Hemorrhage. World Neurosurgery, 181, e856-e866. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Dowlatshahi, D., Demchuk, A.M., Flaherty, M.L., Ali, M., Lyden, P.L. and Smith, E.E. (2011) Defining Hematoma Expansion in Intracerebral Hemorrhage. Neurology, 76, 1238-1244. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Law, Z.K., Ali, A., Krishnan, K., Bischoff, A., Appleton, J.P., Scutt, P., et al. (2020) Noncontrast Computed Tomography Signs as Predictors of Hematoma Expansion, Clinical Outcome, and Response to Tranexamic Acid in Acute Intracerebral Hemorrhage. Stroke, 51, 121-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Song, Z., Guo, D., Tang, Z., Liu, H., Li, X., Luo, S., et al. (2021) Noncontrast Computed Tomography-Based Radiomics Analysis in Discriminating Early Hematoma Expansion after Spontaneous Intracerebral Hemorrhage. Korean Journal of Radiology, 22, 415-424. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Pszczolkowski, S., Manzano-Patrón, J.P., Law, Z.K., Krishnan, K., Ali, A., Bath, P.M., et al. (2021) Quantitative CT Radiomics-Based Models for Prediction of Haematoma Expansion and Poor Functional Outcome in Primary Intracerebral Haemorrhage. European Radiology, 31, 7945-7959. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Chen, Q., Fu, C., Qiu, X., He, J., Zhao, T., Zhang, Q., et al. (2024) Machine-Learning-Based Performance Comparison of Two-Dimensional (2D) and Three-Dimensional (3D) CT Radiomics Features for Intracerebral Haemorrhage Expansion. Clinical Radiology, 79, e26-e33. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Yao, X., Liao, L., Han, Y., Wei, T., Wu, H., Wang, Y., et al. (2019) Computerized Tomography Radiomics Features Analysis for Evaluation of Perihematomal Edema in Basal Ganglia Hemorrhage. Journal of Craniofacial Surgery, 30, e768-e771. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Qi, X., Hu, G., Sun, H., Chen, Z. and Yang, C. (2022) Machine Learning-Based Perihematomal Tissue Features to Predict Clinical Outcome after Spontaneous Intracerebral Hemorrhage. Journal of Stroke and Cerebrovascular Diseases, 31, Article 106475. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Fornacon-Wood, I., Mistry, H., Ackermann, C.J., Blackhall, F., McPartlin, A., Faivre-Finn, C., et al. (2020) Reliability and Prognostic Value of Radiomic Features Are Highly Dependent on Choice of Feature Extraction Platform. European Radiology, 30, 6241-6250. [Google Scholar] [CrossRef] [PubMed]
|