[1]
|
Davey Smith, G. and Ebrahim, S. (2003) “Mendelian Randomization”: Can Genetic Epidemiology Contribute to Understanding Environmental Determinants of Disease? International Journal of Epidemiology, 32, 1-22. https://doi.org/10.1093/ije/dyg070
|
[2]
|
Adam, D. (2019) The Gene-Based Hack That Is Revolutionizing Epidemiology. Nature, 576, 196-199. https://doi.org/10.1038/d41586-019-03754-3
|
[3]
|
Frérot, M., Lefebvre, A., Aho, S., Callier, P., Astruc, K. and Aho Glélé, L.S. (2018) What Is Epidemiology? Changing Definitions of Epidemiology 1978-2017. PLOS ONE, 13, e0208442. https://doi.org/10.1371/journal.pone.0208442
|
[4]
|
Vandenbroucke, J.P. (2004) When Are Observational Studies as Credible as Randomised Trials? The Lancet, 363, 1728-1731. https://doi.org/10.1016/s0140-6736(04)16261-2
|
[5]
|
Meldrum, M.L. (2000) A Brief History of the Randomized Controlled Trial. From Oranges and Lemons to the Gold Standard. Hematology/Oncology Clinics of North America, 14, 745-760. https://doi.org/10.1016/s0889-8588(05)70309-9
|
[6]
|
Martens, E.P., Pestman, W.R., de Boer, A., Belitser, S.V. and Klungel, O.H. (2006) Instrumental Variables: Application and Limitations. Epidemiology, 17, 260-267. https://doi.org/10.1097/01.ede.0000215160.88317.cb
|
[7]
|
Davey Smith, G. and Hemani, G. (2014) Mendelian Randomization: Genetic Anchors for Causal Inference in Epidemiological Studies. Human Molecular Genetics, 23, R89-R98. https://doi.org/10.1093/hmg/ddu328
|
[8]
|
Lawlor, D.A., Harbord, R.M., Sterne, J.A.C., Timpson, N. and Davey Smith, G. (2008) Mendelian Randomization: Using Genes as Instruments for Making Causal Inferences in Epidemiology. Statistics in Medicine, 27, 1133-1163. https://doi.org/10.1002/sim.3034
|
[9]
|
Cheng, Q., Yang, Y., Shi, X., Yeung, K., Yang, C., Peng, H., et al. (2020) MR-LDP: A Two-Sample Mendelian Randomization for GWAS Summary Statistics Accounting for Linkage Disequilibrium and Horizontal Pleiotropy. NAR Genomics and Bioinformatics, 2, lqaa028. https://doi.org/10.1093/nargab/lqaa028
|
[10]
|
Hemani, G., Zheng, J., Elsworth, B., Wade, K.H., Haberland, V., Baird, D., et al. (2018) The MR-Base Platform Supports Systematic Causal Inference across the Human Phenome. eLife, 7, e34408. https://doi.org/10.7554/elife.34408
|
[11]
|
Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. International Journal of Epidemiology, 44, 512-525. https://doi.org/10.1093/ije/dyv080
|
[12]
|
Bowden, J., Davey Smith, G., Haycock, P.C. and Burgess, S. (2016) Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genetic Epidemiology, 40, 304-314. https://doi.org/10.1002/gepi.21965
|
[13]
|
Dudbridge, F. (2020) Polygenic Mendelian Randomization. Cold Spring Harbor Perspectives in Medicine, 11, a039586. https://doi.org/10.1101/cshperspect.a039586
|
[14]
|
徐艺耘, 刘振球, 樊虹, 等. MR-Egger回归在孟德尔随机化分析中的应用[J]. 复旦学报(医学版), 2021, 48(6): 804-809.
|
[15]
|
Burgess, S., Davey Smith, G., Davies, N.M., Dudbridge, F., Gill, D., Glymour, M.M., et al. (2019) Guidelines for Performing Mendelian Randomization Investigations. Wellcome Open Research, 4, 186. https://doi.org/10.12688/wellcomeopenres.15555.1
|
[16]
|
Chen, L.G., Tubbs, J.D., Liu, Z., Thach, T. and Sham, P.C. (2024) Mendelian Randomization: Causal Inference Leveraging Genetic Data. Psychological Medicine, 54, 1461-1474. https://doi.org/10.1017/s0033291724000321
|
[17]
|
Burgess, S., Davies, N.M. and Thompson, S.G. (2016) Bias Due to Participant Overlap in Two-Sample Mendelian Randomization. Genetic Epidemiology, 40, 597-608. https://doi.org/10.1002/gepi.21998
|
[18]
|
Zheng, J., Baird, D., Borges, M., Bowden, J., Hemani, G., Haycock, P., et al. (2017) Recent Developments in Mendelian Randomization Studies. Current Epidemiology Reports, 4, 330-345. https://doi.org/10.1007/s40471-017-0128-6
|
[19]
|
Sanderson, E. (2020) Multivariable Mendelian Randomization and Mediation. Cold Spring Harbor Perspectives in Medicine, 11, a038984. https://doi.org/10.1101/cshperspect.a038984
|
[20]
|
Sun, D., Gao, W., Hu, H. and Zhou, S. (2022) Why 90% of Clinical Drug Development Fails and How to Improve It? Acta Pharmaceutica Sinica B, 12, 3049-3062. https://doi.org/10.1016/j.apsb.2022.02.002
|
[21]
|
Dowden, H. and Munro, J. (2019) Trends in Clinical Success Rates and Therapeutic Focus. Nature Reviews Drug Discovery, 18, 495-496. https://doi.org/10.1038/d41573-019-00074-z
|
[22]
|
Burgess, S., Mason, A.M., Grant, A.J., Slob, E.A.W., Gkatzionis, A., Zuber, V., et al. (2023) Using Genetic Association Data to Guide Drug Discovery and Development: Review of Methods and Applications. The American Journal of Human Genetics, 110, 195-214. https://doi.org/10.1016/j.ajhg.2022.12.017
|
[23]
|
Mishra, A., Malik, R., Hachiya, T., Jürgenson, T., Namba, S., Posner, D.C., et al. (2022) Stroke Genetics Informs Drug Discovery and Risk Prediction across Ancestries. Nature, 611, 115-123. https://doi.org/10.1038/s41586-022-05165-3
|
[24]
|
Hindy, G., Engström, G., Larsson, S.C., Traylor, M., Markus, H.S., Melander, O., et al. (2018) Role of Blood Lipids in the Development of Ischemic Stroke and Its Subtypes: A Mendelian Randomization Study. Stroke, 49, 820-827. https://doi.org/10.1161/strokeaha.117.019653
|
[25]
|
Karam, J.G., Loney-Hutchinson, L. and McFarlane, S.I. (2008) High-Dose Atorvastatin after Stroke or Transient Ischemic Attack: The Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) Investigators. Journal of the CardioMetabolic Syndrome, 3, 68-69. https://doi.org/10.1111/j.1559-4572.2008.07967.x
|
[26]
|
Georgakis, M.K., Gill, D., Webb, A.J.S., Evangelou, E., Elliott, P., Sudlow, C.L.M., et al. (2020) Genetically Determined Blood Pressure, Antihypertensive Drug Classes, and Risk of Stroke Subtypes. Neurology, 95, e353-e361. https://doi.org/10.1212/wnl.0000000000009814
|
[27]
|
Whelton, P.K., Carey, R.M., Aronow, W.S., et al. (2017) ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension (Dallas, Tex.: 1979), 71, e13-e115.
|
[28]
|
Chignon, A., Bon-Baret, V., Boulanger, M., Li, Z., Argaud, D., Bossé, Y., et al. (2020) Single-Cell Expression and Mendelian Randomization Analyses Identify Blood Genes Associated with Lifespan and Chronic Diseases. Communications Biology, 3, Article No. 206. https://doi.org/10.1038/s42003-020-0937-x
|
[29]
|
Robins, C., Liu, Y., Fan, W., Duong, D.M., Meigs, J., Harerimana, N.V., et al. (2021) Genetic Control of the Human Brain Proteome. The American Journal of Human Genetics, 108, 400-410. https://doi.org/10.1016/j.ajhg.2021.01.012
|
[30]
|
Gill, D., Georgakis, M.K., Laffan, M., Sabater-Lleal, M., Malik, R., Tzoulaki, I., et al. (2018) Genetically Determined FXI (Factor XI) Levels and Risk of Stroke. Stroke, 49, 2761-2763. https://doi.org/10.1161/strokeaha.118.022792
|
[31]
|
Daghlas, I. and Gill, D. (2023) Leveraging Genetic Predictors of Factor XI Levels to Anticipate Results from Clinical Trials. European Journal of Neurology, 30, 2112-2116. https://doi.org/10.1111/ene.15820
|
[32]
|
Georgi, B., Mielke, J., Chaffin, M., Khera, A.V., Gelis, L., Mundl, H., et al. (2019) Leveraging Human Genetics to Estimate Clinical Risk Reductions Achievable by Inhibiting Factor XI. Stroke, 50, 3004-3012. https://doi.org/10.1161/strokeaha.119.026545
|
[33]
|
Georgakis, M.K. and Gill, D. (2021) Mendelian Randomization Studies in Stroke: Exploration of Risk Factors and Drug Targets with Human Genetic Data. Stroke, 52, 2992-3003. https://doi.org/10.1161/strokeaha.120.032617
|
[34]
|
Wingo, A.P., Liu, Y., Gerasimov, E.S., Gockley, J., Logsdon, B.A., Duong, D.M., et al. (2021) Integrating Human Brain Proteomes with Genome-Wide Association Data Implicates New Proteins in Alzheimer’s Disease Pathogenesis. Nature Genetics, 53, 143-146. https://doi.org/10.1038/s41588-020-00773-z
|
[35]
|
Kia, D.A., Noyce, A.J., White, J., Speed, D., Nicolas, A., Burgess, S., et al. (2018) Mendelian Randomization Study Shows No Causal Relationship between Circulating Urate Levels and Parkinson’s Disease. Annals of Neurology, 84, 191-199. https://doi.org/10.1002/ana.25294
|
[36]
|
Larsson, S.C., Singleton, A.B., Nalls, M.A. and Richards, J.B. (2017) No Clear Support for a Role for Vitamin D in Parkinson’s Disease: A Mendelian Randomization Study. Movement Disorders, 32, 1249-1252. https://doi.org/10.1002/mds.27069
|
[37]
|
Yang, C., Farias, F.H.G., Ibanez, L., Suhy, A., Sadler, B., Fernandez, M.V., et al. (2021) Genomic Atlas of the Proteome from Brain, CSF and Plasma Prioritizes Proteins Implicated in Neurological Disorders. Nature Neuroscience, 24, 1302-1312. https://doi.org/10.1038/s41593-021-00886-6
|
[38]
|
Jacobs, B.M., Noyce, A.J., Giovannoni, G. and Dobson, R. (2020) BMI and Low Vitamin D Are Causal Factors for Multiple Sclerosis. Neurology Neuroimmunology & Neuroinflammation, 7, e662. https://doi.org/10.1212/nxi.0000000000000662
|
[39]
|
International Multiple Sclerosis Genetics Consortium, Multiplems Consortium (2023) Locus for Severity Implicates CNS Resilience in Progression of Multiple Sclerosis. Nature, 619, 323-331.
|
[40]
|
Vandebergh, M., Becelaere, S., Dubois, B. and Goris, A. (2022) Body Mass Index, Interleukin-6 Signaling and Multiple Sclerosis: A Mendelian Randomization Study. Frontiers in Immunology, 13, Article ID: 834644. https://doi.org/10.3389/fimmu.2022.834644
|
[41]
|
Vgontzas, A. and Pavlović, J.M. (2018) Sleep Disorders and Migraine: Review of Literature and Potential Pathophysiology Mechanisms. Headache: The Journal of Head and Face Pain, 58, 1030-1039. https://doi.org/10.1111/head.13358
|
[42]
|
Daghlas, I., Vgontzas, A., Guo, Y., Chasman, D.I. and Saxena, R. (2020) Habitual Sleep Disturbances and Migraine: A Mendelian Randomization Study. Annals of Clinical and Translational Neurology, 7, 2370-2380. https://doi.org/10.1002/acn3.51228
|
[43]
|
Guo, Y., Rist, P.M., Sabater-Lleal, M., de Vries, P., Smith, N., Ridker, P.M., et al. (2021) Association between Hemostatic Profile and Migraine: A Mendelian Randomization Analysis. Neurology, 96, e2481-e2487. https://doi.org/10.1212/wnl.0000000000011931
|
[44]
|
Zhou, H., Shen, J., Fang, W., Liu, J., Zhang, Y., Huang, Y., et al. (2019) Mendelian Randomization Study Showed No Causality between Metformin Use and Lung Cancer Risk. International Journal of Epidemiology, 49, 1406-1407. https://doi.org/10.1093/ije/dyz218
|
[45]
|
Gill, D., Efstathiadou, A., Cawood, K., Tzoulaki, I. and Dehghan, A. (2019) Education Protects against Coronary Heart Disease and Stroke Independently of Cognitive Function: Evidence from Mendelian Randomization. International Journal of Epidemiology, 48, 1468-1477. https://doi.org/10.1093/ije/dyz200
|
[46]
|
Mitchell, R.E., Hartley, A.E., Walker, V.M., Gkatzionis, A., Yarmolinsky, J., Bell, J.A., et al. (2023) Strategies to Investigate and Mitigate Collider Bias in Genetic and Mendelian Randomisation Studies of Disease Progression. PLOS Genetics, 19, e1010596. https://doi.org/10.1371/journal.pgen.1010596
|
[47]
|
Söderholm, M., Pedersen, A., Lorentzen, E., Stanne, T.M., Bevan, S., Olsson, M., et al. (2019) Genome-Wide Association Meta-Analysis of Functional Outcome after Ischemic Stroke. Neurology, 92, e1271-e1283. https://doi.org/10.1212/wnl.0000000000007138
|
[48]
|
Gill, D., James, N.E., Monori, G., Lorentzen, E., Fernandez-Cadenas, I., Lemmens, R., et al. (2019) Genetically Determined Risk of Depression and Functional Outcome after Ischemic Stroke. Stroke, 50, 2219-2222. https://doi.org/10.1161/strokeaha.119.026089
|
[49]
|
Brion, M.A., Shakhbazov, K. and Visscher, P.M. (2012) Calculating Statistical Power in Mendelian Randomization Studies. International Journal of Epidemiology, 42, 1497-1501. https://doi.org/10.1093/ije/dyt179
|
[50]
|
Gill, D., Georgakis, M.K., Walker, V.M., Schmidt, A.F., Gkatzionis, A., Freitag, D.F., et al. (2021) Mendelian Randomization for Studying the Effects of Perturbing Drug Targets. Wellcome Open Research, 6, 16. https://doi.org/10.12688/wellcomeopenres.16544.1
|
[51]
|
GTEx Consortium (2020) The GTEx Consortium Atlas of Genetic Regulatory Effects across Human Tissues. Science (New York, N.Y.), 369, 1318-1330.
|
[52]
|
Smith, S.M., Douaud, G., Chen, W., Hanayik, T., Alfaro-Almagro, F., Sharp, K., et al. (2021) An Expanded Set of Genome-Wide Association Studies of Brain Imaging Phenotypes in UK Biobank. Nature Neuroscience, 24, 737-745. https://doi.org/10.1038/s41593-021-00826-4
|
[53]
|
Bandres-Ciga, S., Saez-Atienzar, S., Kim, J.J., Makarious, M.B., Faghri, F., Diez-Fairen, M., et al. (2020) Large-Scale Pathway Specific Polygenic Risk and Transcriptomic Community Network Analysis Identifies Novel Functional Pathways in Parkinson Disease. Acta Neuropathologica, 140, 341-358. https://doi.org/10.1007/s00401-020-02181-3
|