[1]
|
Rao, A., Agrawal, A., Borthakur, G., Battula, V.L. and Maiti, A. (2024) Gamma Delta T Cells in Acute Myeloid Leukemia: Biology and Emerging Therapeutic Strategies. Journal for ImmunoTherapy of Cancer, 12, e007981. https://doi.org/10.1136/jitc-2023-007981
|
[2]
|
Guo, J., Chowdhury, R.R., Mallajosyula, V., Xie, J., Dubey, M., Liu, Y., et al. (2024) γδ T Cell Antigen Receptor Polyspecificity Enables T Cell Responses to a Broad Range of Immune Challenges. Proceedings of the National Academy of Sciences, 121, e2315592121. https://doi.org/10.1073/pnas.2315592121
|
[3]
|
Gao, Z., Bai, Y., Lin, A., Jiang, A., Zhou, C., Cheng, Q., et al. (2023) Gamma Delta T-Cell-Based Immune Checkpoint Therapy: Attractive Candidate for Antitumor Treatment. Molecular Cancer, 22, Article No. 31. https://doi.org/10.1186/s12943-023-01722-0
|
[4]
|
Ribot, J.C., Lopes, N. and Silva-Santos, B. (2020) γδ T Cells in Tissue Physiology and Surveillance. Nature Reviews Immunology, 21, 221-232. https://doi.org/10.1038/s41577-020-00452-4
|
[5]
|
Bank, I. (2020) The Role of Gamma Delta T Cells in Autoimmune Rheumatic Diseases. Cells, 9, Article No. 462. https://doi.org/10.3390/cells9020462
|
[6]
|
Lim, S.A., Su, W., Chapman, N.M. and Chi, H. (2022) Lipid Metabolism in T Cell Signaling and Function. Nature Chemical Biology, 18, 470-481. https://doi.org/10.1038/s41589-022-01017-3
|
[7]
|
van der Windt, G.J.W., O’Sullivan, D., Everts, B., Huang, S.C., Buck, M.D., Curtis, J.D., et al. (2013) CD8 Memory T Cells Have a Bioenergetic Advantage That Underlies Their Rapid Recall Ability. Proceedings of the National Academy of Sciences, 110, 14336-14341. https://doi.org/10.1073/pnas.1221740110
|
[8]
|
Veldhoen, M., Blankenhaus, B., Konjar, Š. and Ferreira, C. (2018) Metabolic Wiring of Murine T Cell and Intraepithelial Lymphocyte Maintenance and Activation. European Journal of Immunology, 48, 1430-1440. https://doi.org/10.1002/eji.201646745
|
[9]
|
Webb, L.M., Sengupta, S., Edell, C., Piedra-Quintero, Z.L., Amici, S.A., Miranda, J.N., et al. (2020) Protein Arginine Methyltransferase 5 Promotes Cholesterol Biosynthesis-Mediated Th17 Responses and Autoimmunity. Journal of Clinical Investigation, 130, 1683-1698. https://doi.org/10.1172/jci131254
|
[10]
|
Ramos, G.P., Bamidele, A.O., Klatt, E.E., Sagstetter, M.R., Kurdi, A.T., Hamdan, F.H., et al. (2023) G9a Modulates Lipid Metabolism in CD4 T Cells to Regulate Intestinal Inflammation. Gastroenterology, 164, 256-271.e10. https://doi.org/10.1053/j.gastro.2022.10.011
|
[11]
|
Shin, J., O’Brien, T.F., Grayson, J.M. and Zhong, X. (2012) Differential Regulation of Primary and Memory CD8 T Cell Immune Responses by Diacylglycerol Kinases. The Journal of Immunology, 188, 2111-2117. https://doi.org/10.4049/jimmunol.1102265
|
[12]
|
Wang, F., Beck-García, K., Zorzin, C., Schamel, W.W.A. and Davis, M.M. (2016) Inhibition of T Cell Receptor Signaling by Cholesterol Sulfate, a Naturally Occurring Derivative of Membrane Cholesterol. Nature Immunology, 17, 844-850. https://doi.org/10.1038/ni.3462
|
[13]
|
Berod, L., Friedrich, C., Nandan, A., Freitag, J., Hagemann, S., Harmrolfs, K., et al. (2014) De Novo Fatty Acid Synthesis Controls the Fate between Regulatory T and T Helper 17 Cells. Nature Medicine, 20, 1327-1333. https://doi.org/10.1038/nm.3704
|
[14]
|
Kidani, Y., Elsaesser, H., Hock, M.B., Vergnes, L., Williams, K.J., Argus, J.P., et al. (2013) Sterol Regulatory Element-Binding Proteins Are Essential for the Metabolic Programming of Effector T Cells and Adaptive Immunity. Nature Immunology, 14, 489-499. https://doi.org/10.1038/ni.2570
|
[15]
|
Lopes, N., McIntyre, C., Martin, S., Raverdeau, M., Sumaria, N., Kohlgruber, A.C., et al. (2021) Distinct Metabolic Programs Established in the Thymus Control Effector Functions of γδ T Cell Subsets in Tumor Microenvironments. Nature Immunology, 22, 179-192. https://doi.org/10.1038/s41590-020-00848-3
|
[16]
|
Cheng, H., Wu, R., Gebre, A.K., Hanna, R.N., Smith, D.J., Parks, J.S., et al. (2013) Increased Cholesterol Content in Gammadelta (γδ) T Lymphocytes Differentially Regulates Their Activation. PLOS ONE, 8, e63746. https://doi.org/10.1371/journal.pone.0063746
|
[17]
|
Nakamizo, S., Honda, T., Adachi, A., Nagatake, T., Kunisawa, J., Kitoh, A., et al. (2017) High Fat Diet Exacerbates Murine Psoriatic Dermatitis by Increasing the Number of Il-17-Producing γδ T Cells. Scientific Reports, 7, Article No. 14076. https://doi.org/10.1038/s41598-017-14292-1
|
[18]
|
Torres‐Hernandez, A., Wang, W., Nikiforov, Y., Tejada, K., Torres, L., Kalabin, A., et al. (2019) γδ T Cells Promote Steatohepatitis by Orchestrating Innate and Adaptive Immune Programming. Hepatology, 71, 477-494. https://doi.org/10.1002/hep.30952
|
[19]
|
Kobayashi, S., Phung, H.T., Kagawa, Y., Miyazaki, H., Takahashi, Y., Asao, A., et al. (2020) Fatty Acid‐Binding Protein 3 Controls Contact Hypersensitivity through Regulating Skin Dermal Vγ4+ γ/δ T Cell in a Murine Model. Allergy, 76, 1776-1788. https://doi.org/10.1111/all.14630
|
[20]
|
Konjar, Š., Frising, U.C., Ferreira, C., Hinterleitner, R., Mayassi, T., Zhang, Q., et al. (2018) Mitochondria Maintain Controlled Activation State of Epithelial-Resident T Lymphocytes. Science Immunology, 3, eaan2543. https://doi.org/10.1126/sciimmunol.aan2543
|
[21]
|
Jaeger, N., Gamini, R., Cella, M., Schettini, J.L., Bugatti, M., Zhao, S., et al. (2021) Single-Cell Analyses of Crohn’s Disease Tissues Reveal Intestinal Intraepithelial T Cells Heterogeneity and Altered Subset Distributions. Nature Communications, 12, Article No. 1921. https://doi.org/10.1038/s41467-021-22164-6
|
[22]
|
Lockhart, A., Mucida, D. and Bilate, A.M. (2024) Intraepithelial Lymphocytes of the Intestine. Annual Review of Immunology, 42, 289-316. https://doi.org/10.1146/annurev-immunol-090222-100246
|
[23]
|
Fahrer, A.M., Konigshofer, Y., Kerr, E.M., Ghandour, G., Mack, D.H., Davis, M.M., et al. (2001) Attributes of γδ Intraepithelial Lymphocytes as Suggested by Their Transcriptional Profile. Proceedings of the National Academy of Sciences, 98, 10261-10266. https://doi.org/10.1073/pnas.171320798
|
[24]
|
Goldberg, E.L., Shchukina, I., Asher, J.L., Sidorov, S., Artyomov, M.N. and Dixit, V.D. (2020) Ketogenesis Activates Metabolically Protective γδ T Cells in Visceral Adipose Tissue. Nature Metabolism, 2, 50-61. https://doi.org/10.1038/s42255-019-0160-6
|
[25]
|
Jiang, Z., He, J., Zhang, B., Wang, L., Long, C., Zhao, B., et al. (2024) A Potential “Anti-Warburg Effect” in Circulating Tumor Cell-Mediated Metastatic Progression? Aging and Disease. https://doi.org/10.14336/ad.2023.1227
|
[26]
|
Warburg, O. (1956) On the Origin of Cancer Cells. Science, 123, 309-314. https://doi.org/10.1126/science.123.3191.309
|
[27]
|
Ward, P.S. and Thompson, C.B. (2012) Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not Anticipate. Cancer Cell, 21, 297-308. https://doi.org/10.1016/j.ccr.2012.02.014
|
[28]
|
Cai, Y., Xue, F., Qin, H., Chen, X., Liu, N., Fleming, C., et al. (2019) Differential Roles of the Mtor-Stat3 Signaling in Dermal γδ T Cell Effector Function in Skin Inflammation. Cell Reports, 27, 3034-3048.e5. https://doi.org/10.1016/j.celrep.2019.05.019
|
[29]
|
Yamasaki, H., Shimoji, H., Ohshiro, Y. and Sakihama, Y. (2001) Inhibitory Effects of Nitric Oxide on Oxidative Phosphorylation in Plant Mitochondria. Nitric Oxide, 5, 261-270. https://doi.org/10.1006/niox.2001.0353
|
[30]
|
Konjar, Š., Ferreira, C., Carvalho, F.S., Figueiredo-Campos, P., Fanczal, J., Ribeiro, S., et al. (2022) Intestinal Tissue-Resident T Cell Activation Depends on Metabolite Availability. Proceedings of the National Academy of Sciences, 119, e2202144119. https://doi.org/10.1073/pnas.2202144119
|
[31]
|
Xu, Y., Li, M., Lin, M., Cui, D. and Xie, J. (2024) Glutaminolysis of CD4+ T Cells: A Potential Therapeutic Target in Viral Diseases. Journal of Inflammation Research, 17, 603-616. https://doi.org/10.2147/jir.s443482
|
[32]
|
Zhu, L., Zhu, X. and Wu, Y. (2022) Effects of Glucose Metabolism, Lipid Metabolism, and Glutamine Metabolism on Tumor Microenvironment and Clinical Implications. Biomolecules, 12, Article No. 580. https://doi.org/10.3390/biom12040580
|
[33]
|
Wang, A., Luan, H.H. and Medzhitov, R. (2019) An Evolutionary Perspective on Immunometabolism. Science, 363, eaar3932. https://doi.org/10.1126/science.aar3932
|
[34]
|
Kim, H. (2011) Glutamine as an Immunonutrient. Yonsei Medical Journal, 52, 892-897. https://doi.org/10.3349/ymj.2011.52.6.892
|
[35]
|
Cruzat, V.F., Krause, M. and Newsholme, P. (2014) Amino Acid Supplementation and Impact on Immune Function in the Context of Exercise. Journal of the International Society of Sports Nutrition, 11, Article No. 61. https://doi.org/10.1186/s12970-014-0061-8
|
[36]
|
Li, G., Liu, L., Yin, Z., Ye, Z. and Shen, N. (2021) Glutamine Metabolism Is Essential for the Production of IL-17A in γδ T Cells and Skin Inflammation. Tissue and Cell, 71, Article ID: 101569. https://doi.org/10.1016/j.tice.2021.101569
|
[37]
|
He, W., Hu, Y., Chen, D., Li, Y., Ye, D., Zhao, Q., et al. (2022) Hepatocellular Carcinoma‐Infiltrating γδ T Cells Are Functionally Defected and Allogenic Vδ2+ γδ T Cell Can Be a Promising Complement. Clinical and Translational Medicine, 12, e800. https://doi.org/10.1002/ctm2.800
|
[38]
|
Upadhyay, S., Khan, S. and Hassan, M.I. (2024) Exploring the Diverse Role of Pyruvate Kinase M2 in Cancer: Navigating Beyond Glycolysis and the Warburg Effect. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1879, Article ID: 189089. https://doi.org/10.1016/j.bbcan.2024.189089
|
[39]
|
Ganapathy-Kanniappan, S. and Geschwind, J.H. (2013) Tumor Glycolysis as a Target for Cancer Therapy: Progress and Prospects. Molecular Cancer, 12, Article No. 152. https://doi.org/10.1186/1476-4598-12-152
|
[40]
|
Alegre, M., Frauwirth, K.A. and Thompson, C.B. (2001) T-Cell Regulation by CD28 and CTLA-4. Nature Reviews Immunology, 1, 220-228. https://doi.org/10.1038/35105024
|
[41]
|
Previte, D.M., O’Connor, E.C., Novak, E.A., Martins, C.P., Mollen, K.P. and Piganelli, J.D. (2017) Reactive Oxygen Species Are Required for Driving Efficient and Sustained Aerobic Glycolysis during CD4+ T Cell Activation. PLOS ONE, 12, e0175549. https://doi.org/10.1371/journal.pone.0175549
|
[42]
|
Chen, X., Cai, Y., Hu, X., Ding, C., He, L., Zhang, X., et al. (2022) Differential Metabolic Requirement Governed by Transcription Factor C-Maf Dictates Innate γδT17 Effector Functionality in Mice and Humans. Science Advances, 8, eabm9120. https://doi.org/10.1126/sciadv.abm9120
|