男性与女性在乳腺癌中的对比
Comparison of Men and Women in Breast Cancer
摘要: 据最新数据表明女性乳腺癌成为全球发病率第二的癌症,严重威胁女性群体的身心健康,并成为其主要死亡原因。但是乳腺癌并不是女性的专属,男性也会患有乳腺癌,由于男性乳腺癌(male breast cancer, MBC)发病率显著低于女性乳腺癌(female breast cancer, FBC),大多数乳腺癌研究仅包括女性患者,虽然对MBC的生物学、临床表现、遗传学和治疗正在不断发展,但由于这种疾病的罕见性,与FBC相比仍然存在很大的知识差距。MBC与FBC在多个方面相似,例如高雌激素水平和家族癌症史等,所以通常将MBC与FBC相提并论。然而,近年来越来越多的研究表明MBC与FBC之间存在显著差异,应将MBC视为一种与FBC不同的疾病。本文就男性和女性在乳腺癌中不同的流行病学特征、危险因素、肿瘤特征和预后方面的研究进展综述如下。
Abstract: According to the latest data, female breast cancer has become the second most common cancer in the world, seriously threatening the physical and mental health of the female community and becoming the main cause of death. However, breast cancer is not exclusive to women, and men can also suffer from breast cancer. Because the incidence of male breast cancer (MBC) is significantly lower than that of female breast cancer (FBC), most breast cancers study only includes female patients. Although the biology, clinical manifestations, genetics and treatment of MBC are constantly developing, there is still a large knowledge gap compared with FBC due to the rarity of this disease. MBC and FBC are similar in many aspects, such as high estrogen levels and family cancer history, so MBC is usually compared with FBC. However, more and more studies in recent years have shown that there are significant differences between MBC and FBC, and MBC should be regarded as a different disease from FBC. This article summarizes the research progress of different epidemiological characteristics, risk factors, tumor characteristics and prognosis of men and women in breast cancer as follows.
文章引用:王龚露. 男性与女性在乳腺癌中的对比[J]. 临床医学进展, 2024, 14(7): 579-587. https://doi.org/10.12677/acm.2024.1472054

1. 引言

乳腺癌(Breast Cancer, BC)作为一种全球性的公共卫生问题,长期以来对女性健康造成了重大影响。据世界卫生组织国际癌症研究机构(International Agency for Research on Cancer, IARC)发布数据显示,2024年,女性乳腺癌为全球发病率第二的癌症,占全球癌症的11.6%,占全球女性癌症病例的约25%和癌症死亡人数的16.67% [1],乳腺癌的发病率不断攀升,成为女性中最常见的恶性肿瘤。然而,在乳腺癌的研究领域里,男性乳腺癌(Male Breast Cancer, MBC)只有约0.5%~1%的乳腺癌病例,因其发病率低而被忽视,导致了对于MBC的临床试验和研究相对匮乏[2]

随着医学研究的深入,人们发现MBC虽然在某些生物学特点和临床表现上与女性乳腺癌(Female Breast Cancer, FBC)相似,但两者之间仍存在着显著的差异。例如,MBC患者往往具有较高的雌激素受体(Estrogen Receptor, ER)阳性率和较晚的发病年龄。这些特点使得MBC与绝经后女性乳腺癌有一定的相似性,但不应忽视两者的差异[3]。更为重要的是,现有的大量乳腺癌研究和临床试验主要侧重于女性患者,导致对MBC的认识和治疗策略大多基于对女性乳腺癌的研究成果,这对于MBC患者的治疗和预后可能并不合适。

本文将详细探讨MBC与FBC在流行病学特征、危险因素、肿瘤生物特征和预后等方面的差异。我们将通过对比分析,阐释为什么MBC应当作为一种独立的疾病来研究。此外,本文还将总结目前关于MBC的研究进展,包括流行病学趋势、遗传学研究、危险因素评估以及治疗策略等。为了提升对MBC诊断、治疗和预后的理解,我们需要对现有的研究成果进行整合和分析。通过探讨MBC的流行病学趋势、遗传风险因素以及疾病的生物学特性,我们可以为MBC患者提供更为精准和有效的医疗服务。

2. 流行病学特征

2.1. 全球发病率及死亡率

在全球范围内,乳腺癌的发病病例从1990年的876,990例增加到2019年的2,002,350例,年度变化百分比发病率平均每年增加0.33%,总增幅为1.28倍。虽然乳腺癌的发病患者显着增加,但是标准化发病率并没有显著增加,表明全球人口增加可能是乳腺癌发病率上升的关键因素之一。2019年全球BC的死亡病例高于1990年,虽然年度变化百分比死亡率平均每年下降0.56%,但是乳腺癌死亡导致的全球疾病负担在未来一段时间内仍将很严重[4]

绝大多数癌症类型的男性发病率高于女性,但是乳腺癌属于少数部分,在男性中的终身发病率约为1/1000,在女性中,大约是1/8 [2]。女性的患者数量和年发病数都高于男性,但是男性年度变化百分比发病率平均每年增加0.91%,高于女性的0.36% [4]。在最近几年中,FBC死亡率在统计学上呈下降趋势,MBC死亡率在统计学上无明显改善[5],FBC死亡率下降可能是因为更好、更有针对性的治疗以及通过乳房X线筛查的早期发现[6]。MBC患者比FBC患者总死亡率高出19%,性别与死亡率之间的因ER表达而异,在所有分期中,ER阳性MBC患者的死亡率都高于FBC患者,与FBC患者相比,III期ER阴性MBC患者在诊断后的前3年内死亡风险较低,之后的死亡风险相似,ER阴性II期或IV期MBC患者的3年死亡率高于FBC患者[7]

2.2. 国家及地区差异

全球范围内,乳腺癌在不同的地区存在着差异。1990年年龄标准化率发病率和死亡率最高的国家集中在高收入国家,而2019年年龄标准化率发病率和死亡率最高的前2个国家并不是高收入国家,如黎巴嫩和所罗门群岛发病率最高以及巴基斯坦和所罗门群岛的死亡人数最多[4]

发达国家的FBC发病率远高于发展中国家,与长期存在较高的危险因素有关,如生育率持续下降、激素绝经期治疗或口服避孕药的使用比例高、母乳喂养时间缩短和体重增加,低收入国家的FBC死亡率高于高收入国家,这可能得益于乳腺X线摄影筛查的早期发现和治疗的改善,许多不发达国家或发展中国家的医疗基础设施薄弱,导致获得乳房X光检查的机会有限[8]

MBC是一种罕见的癌症,在世界范围内没有明显的聚集性。在1990年至2017年期间,近2/3的国家的MBC发病率有所增加,这些国家主要位于亚洲和北非。而在欧洲和北美,大多数国家的MBC发病率降低或保持稳定[9]

2.3. 种族差异

虽然大多数癌症类型没有观察到种族差异,但是乳腺癌有明显的种族差异[10]。目前尚无相关研究阐明种族差异的原因,需要进一步的研究。黑种人患MBC的风险高于白种人,在2007~2016年美国MBC患者中,黑人男性在远期被诊断出的病例比例(12.2%)高于西班牙裔男性(7.1%)、白人男性(8.1%)和其他种族/族裔群体(10.2%),黑人男性的5年生存率也相对最低[11],与白人种族相比,黑人种族的死亡风险增加了20% [12]。据美国研究数据表明,与MBC不同,白人女性的FBC发病率最高,黑人女性的FBC死亡率最高,比白人女性高出40%,50岁以下的成年女性甚至高出两倍,黑人女性有更大的可能性患晚期乳腺癌和高级别乳腺肿瘤,黑人女性在每种分子亚型和疾病阶段(I期除外)的5年相对生存率也是所有种族/族裔群体中最低的[6]

2.4. 年龄差异

50~69岁年龄组的乳腺癌发病率在三个年龄组(15~49岁,50~69岁和70+岁)中最高[13],3个年龄组FBC发病率均呈上升趋势,在15~49岁女性中发现增幅最大,男性在该组中也发现的最大增幅[9]。男性和女性的总体乳腺癌发病率随着年龄的增长而逐渐增加,男性初次诊断为乳腺癌的平均年龄相对较高,平均为67岁,而女性的平均诊断年龄为62岁[14]

3. 危险因素

3.1. 遗传危险因素

FBC与MBC的危险因素中均有家族史,一级亲属中有1人患有乳腺癌,女性患乳腺癌的风险增加2倍[15],男性患乳腺癌的风险增加1倍[16]

FBC的遗传因素与MBC相似,但不完全相同。BRCA1和BRCA2基因中的遗传性高外显致病变异是乳腺癌遗传最主要危险因素,BRCA1主要参与FBC,BRCA2主要参与MBC [17]。在FBC中,BRCA1和BRCA2携带者的终生风险约为50%,PALB2致病变异使FBC的风险增加约7倍且终生风险约为32%,此外FBC常见的易感基因还有CHEK2、ATM、RAD51C、RAD51D、CDH1等[18]。在MBC中,BRCA1携带者的终生风险为0.4%,BRCA2携带者为3.8% [19],PALB2致病变异与MBC的风险增加约7倍相关,ATM致病变异与MBC的风险增加约5倍相关,此外MBC常见的易感基因还有CHEK2、FANCM、RAD50、BARD1、ABRAXAS1、BRIP1等[20]

3.2. 激素危险因素

无论是内源性还是外源性雌激素都与FBC的风险有关。内源性雌激素通常由绝经前妇女的卵巢产生,卵巢切除术可以降低携带 BRCA1和BRCA2致病变异的女性乳腺癌的风险[21],外源性雌激素的主要来源是口服避孕药和激素替代疗法[22]。而应用雌激素疗法、外源性激素(例如变性)、肝脏疾病、睾丸异常(睾丸切除、隐睾、睾丸炎和睾丸恶性肿瘤)、肥胖及糖尿病等因素导致雌激素水平升高,从而增加MBC的发病风险[23] [24]。研究发现,患有克兰费尔特综合征的男性的血浆雌二醇水平平均高于正常男性的两倍,这种差异使得MBC的发病风险程度大大增大。相对风险较大的可能原因是,克兰费尔特综合征男性的雌二醇与睾酮比值比核型正常男性高数倍,或者与核型正常男性相比,克兰费尔特综合征男性睾酮向雌二醇的外周转化率增加。另一种可能性是,两条X染色体本身的存在可能会增加克兰费尔特综合征男性患乳腺癌的遗传风险[25]

3.3. 行为和环境风险因素

饮食模式已被确定为FBC重要的危险因素,但是对MBC并不显著。饮食中较高的蛋白质比例降低了FBC的风险,较高的糖摄入量则增加了风险[26]。加工肉类与FBC风险呈正相关,蔬菜、水果和健康饮食模式与风险呈负相关[27]

BMI升高与患FBC风险取决于绝经状态,在绝经后妇女中呈正相关,与绝经前妇女的呈负相关[28]。BMI和腹部肥胖的增加都是MBC的危险因素,这可能与体重增加导致雌激素水平升高有关[29]

职业暴露于某些职业污染物(包括柴油机尾气沥青烟雾)的女性的女儿患乳腺癌的风险增加[30]。暴露于较高的镉[31]、一氧化氮[32]、空气污染物[33]、烟草[34]会增加患FBC的风险。接触石棉、二氧化硅粉尘等职业暴露会增加患MBC的风险[35]

3.4. 生殖因素

女性绝经年龄每延迟1年,患乳腺癌的风险增加 3%。月经初潮每延迟1年或每增加一次分娩,患乳腺癌的风险分别降低5%和10%。每母乳喂养12个月乳腺癌风险降低4.3%~4.5% [36]。24岁之前足月妊娠的女性患BC的长期风险较低,35岁后首次分娩的女性风险增加,可能与孕期乳腺上皮细胞驱动基因中的突变数量随着怀孕时年龄的增加而增加有关[37]。与未产妇相比,经产妇在分娩后20多年内患乳腺癌的风险增加,5年左右达到峰值[38]。总之,月经初潮年龄早、绝经年龄晚、初次怀孕年龄晚、怀孕次数少和较少的母乳喂养等生殖因素都会增加女性患乳腺癌的风险。

一项涉及2405名男性患者和52,013名对照受试者的研究表明,青春期开始的相对年龄与男性乳腺癌风险之间没有明显关系,未育的男性乳腺癌风险提高,而育多胎男性的风险降低[23]

3.5. 乳房因素

乳腺密度是已知的FBC独立危险因素,乳腺密度最低(<25%)的女性患乳腺癌的累积风险为6.2%,乳腺密度最高(>75%)的女性患乳腺癌的风险为14.7% [39]

一项涉及9087名女性的研究在15年的随访期间评估了不同类型的良性乳腺疾病相关的相对风险。非增殖性疾病(NP)、非典型增生性疾病(PDWA)和非典型增生(AH)的RR分别为1.27、1.88和4.24 [40]。非典型增生分为非典型性导管增生(ADH)和非典型小叶增生(ALH)。一项对19名男性ADH患者进行6年的随访,该研究中没有男性患上乳腺癌,这表明可能男性的ADH不会造成与女性ADH相同的风险[41]

4. 肿瘤特征

4.1. 病理学特征

4.1.1. 分子生物学特征

大多数乳腺癌是由激素驱动,其中ER基因组在驱动肿瘤细胞增殖的转录程序中起主要作用,除ER基因组外,其他类固醇激素受体也在乳腺癌中表达,包括雄激素受体、黄体酮受体(PR)和糖皮质激素受体。与FBC患者相比,MBC患者更可能表达激素受体阳性。国外一项针对2010年初至2014年回顾性队列研究显示,97.42%的MBC患者和82.72%的FBC患者为ER阳性,MBC患者比FBC患者更多的表达PR阳性,分别为91.63%和72.46%,与FBC患者相比,MBC患者的HER-2过表达百分比较低[42]

4.1.2. 组织病理学特征

大多数MBC患者肿瘤为浸润性导管癌,约占80%,其次是导管原位癌,约占5%,可能由于与浸润性癌共存的比率非常高,因此很少出现纯形式的导管原位癌,乳头状癌在男性中比在女性中更常见,约占2.5%~5% [43],最常见的组织学为2级,通常为腔内A表型,类似于绝经后FBC [44]。同MBC患者一样,FBC患者最常见的组织学肿瘤类型是浸润性导管癌,约占70%~75%,其次为小叶癌约占12%~15%,还有其他18种罕见亚型,占所有乳腺肿瘤的0.5%至5% [45]

4.2. 位置特征

在目前的研究中,MBC和FBC患者之间的肿瘤位置有所不同。在FBC患者中,肿瘤主要位于外上象限,占39.16%,其他部位较为少见,在MBC患者中,中央位置占主导地位,占54.05%。外上象限仅占15.58%,远低于中央位置。MBC与FBC患者位置差异可能时因为男性与女性乳房解剖结构的不同,女性乳房的上外象限含有更大比例的上皮乳房组织,而男性则是中央部分的上皮乳房组织体积较大[42]

4.3. 表现

MBC患者最常表现为单侧无痛性肿块,溢液和乳头回缩较少见[46]。FBC患者大多数表现为无痛性肿块,少数有不同程度的隐痛或刺痛,肿块多为单发,质硬,边缘不规则,表面欠光滑,可有乳头回缩、溢液、橘皮改变和酒窝症。与FBC患者相比,MBC患者的肿瘤体积更大、淋巴结百分比更高和器官转移更多,TNM分期更晚[42]。Xie等人在2010年至2015年对MBC的SEER数据分析中观察到,单一器官转移中MBC的肝转移发生率较FBC低,在多器官转移方面,MBC的骨和肝转移较低,但骨和肺转移高于FBC [47]

4.4. 微生物特征

MBC和FBC患者在非病理组织和肿瘤组织中都表现出不同的乳房微生物群组成。与FBC相比,MBC患者的非病理性乳腺组织表现出更加多样化和多样化的微生物群落。在FBC患者中,肿瘤和非病理性邻近微生物群具有相似的组成,而在MBC患者中,与非病理性相邻的微生物群相比,肿瘤组织显示出微生物多样性降低和不同的微生物组成。细菌多样性和丰富度的降低通常与恶性肿瘤有关,可能表明,在女性中,整个乳房组织都有致癌的倾向,而在男性中,与癌症相关的生态失调更为明显[48]

5. 预后

关于MBC与FBC的生存结局存在争议,多数研究认为MBC的预后比FBC差,可能由于大多数MBC确诊时分期较晚、年龄偏大、病理特征及治疗有关[42] [49] [50]。国外一项大型的回顾性队列研究显示,MBC的总OS、3年OS和5年OS分别为45.8%、86.4%和77.6%,FBC的总OS、3年OS和5年OS分别为60.4%、91.7%、86.4%均高于MBC [7]。FBC患者的总中位生存期为13.2年,MBC患者为11.4年[51]

MBC的区域淋巴转移率远高于FBC,无论是MBC还是FBC,HR−/HER2+亚型的区域淋巴转移率都是最高的,其中MBC中为55.56%,FBC为36.8%,其次是HR+/HER2+亚型。HR−/HER−亚型在MBC中区域淋巴转移率最低,为32.43%,而在FBC中为HR+/HER2−亚型,为26.00%。MBC的远处转移发生率也高于FBC,在MBC中,HR−/HER2−亚型的远处转移率最高,为21.26%,但在FBC中,HR−/HER2+亚型的远处转移率最高,为7.67%,在MBC或FBC中,HR+/HER2−亚型的远处转移率均为最低。除MBC患者的单肝转移率较低外,MBC患者的单部位转移率和双部位转移率均高于FBC患者。MBC的肝转移发生率低于FBC,可能由于HER2+在MBC中更有可能呈阴性有关[52]

有MBC病史的患者罹患第二位同侧或对侧乳腺癌的风险增加,50岁以下确诊的男性随后发生对侧乳腺癌的风险最高[53]。一项纳入16251例FBC的韩国研究表明,非常年轻患者(≤35岁)患对侧乳腺癌的风险大于35岁以上患者,非常年轻患者患对侧乳腺癌的10年累积风险为7.1%,35岁以上患者为2.9% [54]

一项荟萃分析发现MBC患者患第二原发性结直肠癌、胰腺癌和甲状腺癌的风险更高[55]。与一般人群相比,FBC患者患任何癌症的风险高出 70%,除对侧乳腺癌外,腹膜恶性肿瘤、软组织和急性髓系白血病/骨髓增生异常综合征风险最高[56]

6. 总结与展望

近年来,全球乳腺癌的发病率和死亡率均呈上升趋势,其中乳腺癌在全球女性中的发病率位居第二。MBC虽然只占所有乳腺癌病例的0.5%至1%,但其发病率近年来也显示出上升趋势。尽管MBC较为罕见,但这并不意味着对MBC的关注和研究应当减少。事实上,正是因为MBC的研究较少,才更加需要通过科学研究来填补这一领域的知识空白。

乳腺癌的发病原因复杂,涉及多种可改变的因素如年龄、不良饮食习惯和激素暴露,以及不可改变的因素,例如遗传因素。其中,遗传和雌激素暴露是主要的高发因素。MBC与FBC均与家族史有关,但MBC更常见于BRCA2基因变异,且MBC患者较FBC患者更可能表达激素受体阳性,尤其是雌激素受体(ER)和孕激素受体(PR)。此外,MBC患者的肿瘤通常位于乳房中央,而FBC患者的肿瘤多位于外上象限。

尽管MBC的病理特征和生物标志物与FBC存在差异,但由于其罕见性,关于MBC的临床试验和研究相对较少。这导致MBC的治疗策略大多基于FBC的数据。然而,越来越多的研究表明,MBC在流行病学特征、危险因素、肿瘤特征和预后方面与FBC明显不同,这强调了将MBC视为一种独立疾病的必要性。

未来的研究需要深入探索MBC的基因组学和病理生理特征,以改进治疗策略并更好地管理这一代表性不足的患者群体。例如,针对MBC中高发的BRCA2变异,PARP抑制剂可能是一个有效的治疗选项;针对MBC中高达96.9%的雄激素受体(AR)阳性率,AR靶向药物可能具有潜在的治疗价值。此外,有必要向公众普及关于MBC的知识,提高对这种罕见疾病的认识,从而帮助实现MBC的早发现、早诊断和早治疗,最终提高患者的生存率。

参考文献

[1] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[2] Mukherjee, A.G., Gopalakrishnan, A.V., Jayaraj, R., Renu, K., Dey, A., Vellingiri, B., et al. (2023) The Incidence of Male Breast Cancer: From Fiction to Reality—Correspondence. International Journal of Surgery, 109, 2855-2858.
https://doi.org/10.1097/js9.0000000000000512
[3] Anderson, W.F., Jatoi, I., Tse, J. and Rosenberg, P.S. (2010) Male Breast Cancer: A Population-Based Comparison with Female Breast Cancer. Journal of Clinical Oncology, 28, 232-239.
https://doi.org/10.1200/jco.2009.23.8162
[4] Xu, Y., Gong, M., Wang, Y., Yang, Y., Liu, S. and Zeng, Q. (2023) Global Trends and Forecasts of Breast Cancer Incidence and Deaths. Scientific Data, 10, Article No. 334.
https://doi.org/10.1038/s41597-023-02253-5
[5] Leone, J.P., Freedman, R.A., Leone, J., Tolaney, S.M., Vallejo, C.T., Leone, B.A., et al. (2022) Survival in Male Breast Cancer over the Past 3 Decades. JNCI: Journal of the National Cancer Institute, 115, 421-428.
https://doi.org/10.1093/jnci/djac241
[6] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., et al. (2022) Breast Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 524-541.
https://doi.org/10.3322/caac.21754
[7] Wang, F., Shu, X., Meszoely, I., Pal, T., Mayer, I.A., Yu, Z., et al. (2019) Overall Mortality after Diagnosis of Breast Cancer in Men vs Women. JAMA Oncology, 5, 1589-1596.
https://doi.org/10.1001/jamaoncol.2019.2803
[8] Lei, S., Zheng, R., Zhang, S., Wang, S., Chen, R., Sun, K., et al. (2021) Global Patterns of Breast Cancer Incidence and Mortality: A Population‐Based Cancer Registry Data Analysis from 2000 to 2020. Cancer Communications, 41, 1183-1194.
https://doi.org/10.1002/cac2.12207
[9] Chen, Z., Xu, L., Shi, W., Zeng, F., Zhuo, R., Hao, X., et al. (2020) Trends of Female and Male Breast Cancer Incidence at the Global, Regional, and National Levels, 1990-2017. Breast Cancer Research and Treatment, 180, 481-490.
https://doi.org/10.1007/s10549-020-05561-1
[10] Grabinski, V.F. and Brawley, O.W. (2022) Disparities in Breast Cancer. Obstetrics and Gynecology Clinics of North America, 49, 149-165.
https://doi.org/10.1016/j.ogc.2021.11.010
[11] Ellington, T.D., Henley, S.J., Wilson, R.J. and Miller, J.W. (2020) Breast Cancer Survival among Males by Race, Ethnicity, Age, Geographic Region, and Stage—United States, 2007-2016. MMWR. Morbidity and Mortality Weekly Report, 69, 1481-1484.
https://doi.org/10.15585/mmwr.mm6941a2
[12] Sarmiento, S., McColl, M., Musavi, L., Gani, F., Canner, J.K., Jacobs, L., et al. (2020) Male Breast Cancer: A Closer Look at Patient and Tumor Characteristics and Factors That Affect Survival Using the National Cancer Database. Breast Cancer Research and Treatment, 180, 471-479.
https://doi.org/10.1007/s10549-020-05556-y
[13] Li, N., Deng, Y., Zhou, L., Tian, T., Yang, S., Wu, Y., et al. (2019) Global Burden of Breast Cancer and Attributable Risk Factors in 195 Countries and Territories, from 1990 to 2017: Results from the Global Burden of Disease Study 2017. Journal of Hematology & Oncology, 12, Article No. 140.
https://doi.org/10.1186/s13045-019-0828-0
[14] Giordano, S.H. (2018) Breast Cancer in Men. New England Journal of Medicine, 378, 2311-2320.
https://doi.org/10.1056/nejmra1707939
[15] Wang, H., MacInnis, R.J. and Li, S. (2023) Family History and Breast Cancer Risk for Asian Women: A Systematic Review and Meta-Analysis. BMC Medicine, 21, Article No. 239.
https://doi.org/10.1186/s12916-023-02950-3
[16] Brinton, L.A., Richesson, D.A., Gierach, G.L., Lacey, J.V., Park, Y., Hollenbeck, A.R., et al. (2008) Prospective Evaluation of Risk Factors for Male Breast Cancer. JNCI Journal of the National Cancer Institute, 100, 1477-1481.
https://doi.org/10.1093/jnci/djn329
[17] Valentini, V., Bucalo, A., Conti, G., Celli, L., Porzio, V., Capalbo, C., et al. (2024) Gender-Specific Genetic Predisposition to Breast Cancer: BRCA Genes and Beyond. Cancers, 16, Article No. 579.
https://doi.org/10.3390/cancers16030579
[18] Hu, C., Hart, S.N., Gnanaolivu, R., Huang, H., Lee, K.Y., Na, J., et al. (2021) A Population-Based Study of Genes Previously Implicated in Breast Cancer. New England Journal of Medicine, 384, 440-451.
https://doi.org/10.1056/nejmoa2005936
[19] Li, S., Silvestri, V., Leslie, G., Rebbeck, T.R., Neuhausen, S.L., Hopper, J.L., et al. (2022) Cancer Risks Associated with brca1 and brca2 Pathogenic Variants. Journal of Clinical Oncology, 40, 1529-1541.
https://doi.org/10.1200/jco.21.02112
[20] Bucalo, A., Conti, G., Valentini, V., Capalbo, C., Bruselles, A., Tartaglia, M., et al. (2023) Male Breast Cancer Risk Associated with Pathogenic Variants in Genes Other than BRCA1/2: An Italian Case-Control Study. European Journal of Cancer, 188, 183-191.
https://doi.org/10.1016/j.ejca.2023.04.022
[21] Choi, Y., Terry, M.B., Daly, M.B., MacInnis, R.J., Hopper, J.L., Colonna, S., et al. (2021) Association of Risk-Reducing Salpingo-Oophorectomy with Breast Cancer Risk in Women with brca1 and brca2 Pathogenic Variants. JAMA Oncology, 7, 585-592.
https://doi.org/10.1001/jamaoncol.2020.7995
[22] Sun, Y., Zhao, Z., Yang, Z., Xu, F., Lu, H., Zhu, Z., et al. (2017) Risk Factors and Preventions of Breast Cancer. International Journal of Biological Sciences, 13, 1387-1397.
https://doi.org/10.7150/ijbs.21635
[23] Brinton, L.A., Cook, M.B., McCormack, V., Johnson, K.C., Olsson, H., Casagrande, J.T., et al. (2014) Anthropometric and Hormonal Risk Factors for Male Breast Cancer: Male Breast Cancer Pooling Project Results. JNCI Journal of the National Cancer Institute, 106, djt465.
https://doi.org/10.1093/jnci/djt465
[24] Fox, S., Speirs, V. and Shaaban, A.M. (2021) Male Breast Cancer: An Update. Virchows Archiv, 480, 85-93.
https://doi.org/10.1007/s00428-021-03190-7
[25] Swerdlow, A.J., Schoemaker, M.J., Higgins, C.D., Wright, A.F. and Jacobs, P.A. (2005) Cancer Incidence and Mortality in Men with Klinefelter Syndrome: A Cohort Study. JNCI: Journal of the National Cancer Institute, 97, 1204-1210.
https://doi.org/10.1093/jnci/dji240
[26] Zaman, M., de Vale, M.L., Coultas, C., Goff, L., Mernagh-iles, A., L’Esperance, V., et al. (2023) Factors Affecting the Delivery of Community-Based Salon Interventions to Prevent Cardiovascular Disease and Breast Cancer among Ethnically Diverse Women in South London: A Concept-Mapping Approach. The Lancet, 402, S96.
https://doi.org/10.1016/s0140-6736(23)02148-7
[27] Zhu, P., Zhang, Y., Chen, Q., Qiu, W., Chen, M., Xue, L., et al. (2023) The Interaction of Diet, Alcohol, Genetic Predisposition, and the Risk of Breast Cancer: A Cohort Study from the UK Biobank. European Journal of Nutrition, 63, 343-356.
https://doi.org/10.1007/s00394-023-03269-8
[28] Campbell, N.J., Barton, C., Cutress, R.I. and Copson, E.R. (2022) Impact of Obesity, Lifestyle Factors and Health Interventions on Breast Cancer Survivors. Proceedings of the Nutrition Society, 82, 47-57.
https://doi.org/10.1017/s0029665122002816
[29] Swerdlow, A.J., Bruce, C., Cooke, R., Coulson, P., Schoemaker, M.J. and Jones, M.E. (2022) Risk of Breast Cancer in Men in Relation to Weight Change: A National Case‐Control Study in England and Wales. International Journal of Cancer, 150, 1804-1811.
https://doi.org/10.1002/ijc.33938
[30] Pedersen, J.E. and Hansen, J. (2023) Parental Occupational Exposure to Chemicals and Risk of Breast Cancer in Female Offspring. Environmental Research, 227, Article ID: 115817.
https://doi.org/10.1016/j.envres.2023.115817
[31] Florez-Garcia, V., Guevara-Romero, E., Hawkins, M., Bautista, L., Jenson, T., Yu, J., et al. (2023) Cadmium Exposure and Risk of Breast Cancer: A Meta-Analysis. Environmental Research, 219, Article ID: 115109.
https://doi.org/10.1016/j.envres.2022.115109
[32] Amadou, A., Praud, D., Coudon, T., Deygas, F., Grassot, L., Dubuis, M., et al. (2023) Long-Term Exposure to Nitrogen Dioxide Air Pollution and Breast Cancer Risk: A Nested Case-Control within the French E3N Cohort Study. Environmental Pollution, 317, Article ID: 120719.
https://doi.org/10.1016/j.envpol.2022.120719
[33] Gabet, S., Lemarchand, C., Guénel, P. and Slama, R. (2021) Breast Cancer Risk in Association with Atmospheric Pollution Exposure: A Meta-Analysis of Effect Estimates Followed by a Health Impact Assessment. Environmental Health Perspectives, 129, Article No. 57012.
https://doi.org/10.1289/ehp8419
[34] Guo, Q., Lu, Y., Liu, W., Lan, G. and Lan, T. (2024) The Global, Regional, and National Disease Burden of Breast Cancer Attributable to Tobacco from 1990 to 2019: A Global Burden of Disease Study. BMC Public Health, 24, Article No. 107.
https://doi.org/10.1186/s12889-023-17405-w
[35] Talibov, M., Hansen, J., Heikkinen, S., Martinsen, J., Sparen, P., Tryggvadottir, L., et al. (2019) Occupational Exposures and Male Breast Cancer: A Nested Case-Control Study in the Nordic Countries. The Breast, 48, 65-72.
https://doi.org/10.1016/j.breast.2019.09.004
[36] Dall, G.V. and Britt, K.L. (2017) Estrogen Effects on the Mammary Gland in Early and Late Life and Breast Cancer Risk. Frontiers in Oncology, 7, Article No. 110.
https://doi.org/10.3389/fonc.2017.00110
[37] Cereser, B., Yiu, A., Tabassum, N., Del Bel Belluz, L., Zagorac, S., Ancheta, K.R.Z., et al. (2023) The Mutational Landscape of the Adult Healthy Parous and Nulliparous Human Breast. Nature Communications, 14, Article No. 5136.
https://doi.org/10.1038/s41467-023-40608-z
[38] Nichols, H.B., Schoemaker, M.J., Cai, J., Xu, J., Wright, L.B., Brook, M.N., et al. (2018) Breast Cancer Risk after Recent Childbirth: A Pooled Analysis of 15 Prospective Studies. Annals of Internal Medicine, 170, 222-302.
https://doi.org/10.7326/m18-1323
[39] Lynge, E., Vejborg, I., Lillholm, M., Nielsen, M., Napolitano, G. and von Euler‐Chelpin, M. (2022) Breast Density and Risk of Breast Cancer. International Journal of Cancer, 152, 1150-1158.
https://doi.org/10.1002/ijc.34316
[40] Hartmann, L.C., Sellers, T.A., Frost, M.H., Lingle, W.L., Degnim, A.C., Ghosh, K., et al. (2005) Benign Breast Disease and the Risk of Breast Cancer. New England Journal of Medicine, 353, 229-237.
https://doi.org/10.1056/nejmoa044383
[41] Coopey, S.B., Kartal, K., Li, C., Yala, A., Barzilay, R., Faulkner, H.R., et al. (2019) Atypical Ductal Hyperplasia in Men with Gynecomastia: What Is Their Breast Cancer Risk? Breast Cancer Research and Treatment, 175, 1-4.
https://doi.org/10.1007/s10549-018-05117-4
[42] Yao, N., Shi, W., Liu, T., Siyin, S.T., Wang, W., Duan, N., et al. (2022) Clinicopathologic Characteristics and Prognosis for Male Breast Cancer Compared to Female Breast Cancer. Scientific Reports, 12, Article No. 220.
https://doi.org/10.1038/s41598-021-04342-0
[43] Önder, Ö., Azizova, A., Durhan, G., Elibol, F.D., Akpınar, M.G. and Demirkazık, F. (2020) Imaging Findings and Classification of the Common and Uncommon Male Breast Diseases. Insights into Imaging, 11, Article No. 27.
https://doi.org/10.1186/s13244-019-0834-3
[44] Shaaban, A.M. (2019) Pathology of the Male Breast. Diagnostic Histopathology, 25, 138-142.
https://doi.org/10.1016/j.mpdhp.2019.01.004
[45] Tan, P.H., Ellis, I., Allison, K., Brogi, E., Fox, S.B., Lakhani, S., et al. (2020) The 2019 World Health Organization Classification of Tumours of the Breast. Histopathology, 77, 181-185.
https://doi.org/10.1111/his.14091
[46] Accomasso, F., Actis, S., Minella, C., Rosso, R., Granaglia, C., Ponzone, R., et al. (2023) Clinical, Pathological, and Prognostic Features of Male Breast Cancer: A Multicenter Study. Current Oncology, 30, 9860-9871.
https://doi.org/10.3390/curroncol30110716
[47] Xie, J., Ying, Y., Xu, B., Li, Y., Zhang, X. and Li, C. (2019) Metastasis Pattern and Prognosis of Male Breast Cancer Patients in US: A Population-Based Study from SEER Database. Therapeutic Advances in Medical Oncology, 11, 1-12.
https://doi.org/10.1177/1758835919889003
[48] Niccolai, E., Baldi, S., Nannini, G., Gensini, F., Papi, L., Vezzosi, V., et al. (2023) Breast Cancer: The First Comparative Evaluation of Oncobiome Composition between Males and Females. Biology of Sex Differences, 14, Article No. 37.
https://doi.org/10.1186/s13293-023-00523-w
[49] Sineshaw, H.M., Freedman, R.A., Ward, E.M., Flanders, W.D. and Jemal, A. (2015) Black/white Disparities in Receipt of Treatment and Survival among Men with Early-Stage Breast Cancer. Journal of Clinical Oncology, 33, 2337-2344.
https://doi.org/10.1200/jco.2014.60.5584
[50] Miao, H., Verkooijen, H.M., Chia, K., Bouchardy, C., Pukkala, E., Larønningen, S., et al. (2011) Incidence and Outcome of Male Breast Cancer: An International Population-Based Study. Journal of Clinical Oncology, 29, 4381-4386.
https://doi.org/10.1200/jco.2011.36.8902
[51] Konduri, S., Singh, M., Bobustuc, G., Rovin, R. and Kassam, A. (2020) Epidemiology of Male Breast Cancer. The Breast, 54, 8-14.
https://doi.org/10.1016/j.breast.2020.08.010
[52] Fang, W., Huang, Y., Han, X., Peng, J. and Zheng, M. (2021) Characteristics of Metastasis and Survival between Male and Female Breast Cancer with Different Molecular Subtypes: A Population‐based Observational Study. Cancer Medicine, 11, 764-777.
https://doi.org/10.1002/cam4.4469
[53] Grenader, T., Goldberg, A. and Shavit, L. (2008) Second Cancers in Patients with Male Breast Cancer: A Literature Review. Journal of Cancer Survivorship: Research and Practice, 2, 73-78.
https://doi.org/10.1007/s11764-008-0042-5
[54] Kim, H., Yoon, T.I., Kim, S., Lee, S.B., Kim, J., Chung, I.Y., et al. (2023) Age-Related Incidence and Peak Occurrence of Contralateral Breast Cancer. JAMA Network Open, 6, e2347511.
https://doi.org/10.1001/jamanetworkopen.2023.47511
[55] Allen, I., Hassan, H., Sofianopoulou, E., Eccles, D., Turnbull, C., Tischkowitz, M., et al. (2022) Risk of Developing a Second Primary Cancer in Male Breast Cancer Survivors: A Systematic Review and Meta-Analysis. British Journal of Cancer, 127, 1660-1669.
https://doi.org/10.1038/s41416-022-01940-1
[56] Ramin, C., Veiga, L.H.S., Vo, J.B., Curtis, R.E., Bodelon, C., Aiello Bowles, E.J., et al. (2023) Risk of Second Primary Cancer among Women in the Kaiser Permanente Breast Cancer Survivors Cohort. Breast Cancer Research, 25, Article No. 50.
https://doi.org/10.1186/s13058-023-01647-y