|
[1]
|
Weller, M., Wick, W., Aldape, K., Brada, M., Berger, M., Pfister, S.M., et al. (2015) Glioma. Nature Reviews Disease Primers, 1, Article No. 15017. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Tang, Z., Dokic, I., Knoll, M., Ciamarone, F., Schwager, C., Klein, C., et al. (2022) Radioresistance and Transcriptional Reprograming of Invasive Glioblastoma Cells. International Journal of Radiation Oncology∙Biology∙Physics, 112, 499-513. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
LeBlanc, V.G., Trinh, D.L., Aslanpour, S., Hughes, M., Livingstone, D., Jin, D., et al. (2022) Single-Cell Landscapes of Primary Glioblastomas and Matched Explants and Cell Lines Show Variable Retention of Inter-and Intratumor Heterogeneity. Cancer Cell, 40, 379-392.E9. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Qazi, M.A., Vora, P., Venugopal, C., Sidhu, S.S., Moffat, J., Swanton, C., et al. (2017) Intratumoral Heterogeneity: Pathways to Treatment Resistance and Relapse in Human Glioblastoma. Annals of Oncology, 28, 1448-1456. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Gao, Z., Xu, J., Fan, Y., Zhang, Z., Wang, H., Qian, M., et al. (2022) ARPC1B Promotes Mesenchymal Phenotype Maintenance and Radiotherapy Resistance by Blocking TRIM21-Mediated Degradation of IFI16 and HuR in Glioma Stem Cells. Journal of Experimental & Clinical Cancer Research, 41, Article No. 323. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wang, L., Jung, J., Babikir, H., Shamardani, K., Jain, S., Feng, X., et al. (2022) A Single-Cell Atlas of Glioblastoma Evolution under Therapy Reveals Cell-Intrinsic and Cell-Extrinsic Therapeutic Targets. Nature Cancer, 3, 1534-1552. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Brown, T.J., Brennan, M.C., Li, M., Church, E.W., Brandmeir, N.J., Rakszawski, K.L., et al. (2016) Association of the Extent of Resection with Survival in Glioblastoma. JAMA Oncology, 2, 1460-1469. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Tang, S., Liao, J. and Long, Y. (2019) Comparative Assessment of the Efficacy of Gross Total versus Subtotal Total Resection in Patients with Glioma: A Meta-Analysis. International Journal of Surgery, 63, 90-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lemaitre, A., Herbet, G., Ng, S., Moritz-Gasser, S. and Duffau, H. (2021) Cognitive Preservation Following Awake Mapping-Based Neurosurgery for Low-Grade Gliomas: A Longitudinal, Within-Patient Design Study. Neuro-Oncology, 24, 781-793. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Chaichana, K.L., Jusue-Torres, I., Navarro-Ramirez, R., Raza, S.M., Pascual-Gallego, M., Ibrahim, A., et al. (2013) Establishing Percent Resection and Residual Volume Thresholds Affecting Survival and Recurrence for Patients with Newly Diagnosed Intracranial Glioblastoma. Neuro-Oncology, 16, 113-122. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kurokawa, R., Kurokawa, M., Baba, A., Ota, Y., Pinarbasi, E., Camelo-Piragua, S., et al. (2022) Major Changes in 2021 World Health Organization Classification of Central Nervous System Tumors. RadioGraphics, 42, 1474-1493. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Louis, D.N., Perry, A., Wesseling, P., Brat, D.J., Cree, I.A., Figarella-Branger, D., et al. (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology, 23, 1231-1251. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Horbinski, C., Berger, T., Packer, R.J. and Wen, P.Y. (2022) Clinical Implications of the 2021 Edition of the WHO Classification of Central Nervous System Tumours. Nature Reviews Neurology, 18, 515-529. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zakharova, G., Efimov, V., Raevskiy, M., Rumiantsev, P., Gudkov, A., Belogurova-Ovchinnikova, O., et al. (2022) Reclassification of TCGA Diffuse Glioma Profiles Linked to Transcriptomic, Epigenetic, Genomic and Clinical Data, According to the 2021 WHO CNS Tumor Classification. International Journal of Molecular Sciences, 24, Article 157. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Stupp, R., Mason, W.P., van den Bent, M.J., Weller, M., Fisher, B., Taphoorn, M.J.B., et al. (2005) Radiotherapy Plus Concomitant and Adjuvant Temozolomide for Glioblastoma. New England Journal of Medicine, 352, 987-996. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Franceschi, E., Tosoni, A., Bartolini, S., Minichillo, S., Mura, A., Asioli, S., et al. (2020) Histopathological Grading Affects Survival in Patients with IDH-Mutant Grade II and Grade III Diffuse Gliomas. European Journal of Cancer, 137, 10-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ardon, H., Van Gool, S., Lopes, I.S., Maes, W., Sciot, R., Wilms, G., et al. (2010) Integration of Autologous Dendritic Cell-Based Immunotherapy in the Primary Treatment for Patients with Newly Diagnosed Glioblastoma Multiforme: A Pilot Study. Journal of Neuro-Oncology, 99, 261-272. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Omuro, A. (2013) Glioblastoma and Other Malignant Gliomas. JAMA, 310, 1842-1850. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Yang, K., Wu, Z., Zhang, H., Zhang, N., Wu, W., Wang, Z., et al. (2022) Glioma Targeted Therapy: Insight into Future of Molecular Approaches. Molecular Cancer, 21, Article No. 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Stupp, R., Taillibert, S., Kanner, A., Read, W., Steinberg, D.M., Lhermitte, B., et al. (2017) Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients with Glioblastoma. JAMA, 318, 2306-2316. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Marko, N.F., Weil, R.J., Schroeder, J.L., Lang, F.F., Suki, D. and Sawaya, R.E. (2014) Extent of Resection of Glioblastoma Revisited: Personalized Survival Modeling Facilitates More Accurate Survival Prediction and Supports a Maximum-Safe-Resection Approach to Surgery. Journal of Clinical Oncology, 32, 774-782. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Sanai, N., Polley, M., McDermott, M.W., Parsa, A.T. and Berger, M.S. (2011) An Extent of Resection Threshold for Newly Diagnosed Glioblastomas. Journal of Neurosurgery, 115, 3-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Napolitano, M., Vaz, G., Lawson, T.M., Docquier, M.-A., van Maanen, A., Duprez, T., et al. (2014) Glioblastoma Surgery with and without Intraoperative MRI at 3.0T. Neurochirurgie, 60, 143-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Cordova, J.S., Gurbani, S.S., Holder, C.A., Olson, J.J., Schreibmann, E., Shi, R., et al. (2015) Semi-Automated Volumetric and Morphological Assessment of Glioblastoma Resection with Fluorescence-Guided Surgery. Molecular Imaging and Biology, 18, 454-462. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bø, H.K., Solheim, O., Kvistad, K., Berntsen, E.M., Torp, S.H., Skjulsvik, A.J., et al. (2020) Intraoperative 3D Ultrasound-Guided Resection of Diffuse Low-Grade Gliomas: Radiological and Clinical Results. Journal of Neurosurgery, 132, 518-529. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Pan, S., Chen, J., Cheng, W., Lee, H. and Shen, C. (2020) The Role of Tailored Intraoperative Neurophysiological Monitoring in Glioma Surgery: A Single Institute Experience. Journal of Neuro-Oncology, 146, 459-467. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Lapointe, S., Perry, A. and Butowski, N.A. (2018) Primary Brain Tumours in Adults. The Lancet, 392, 432-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Eckel-Passow, J.E., Lachance, D.H., Molinaro, A.M., Walsh, K.M., Decker, P.A., Sicotte, H., et al. (2015) Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. New England Journal of Medicine, 372, 2499-2508. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wick, W., Weller, M., van den Bent, M., Sanson, M., Weiler, M., von Deimling, A., et al. (2014) MGMT Testing—The Challenges for Biomarker-Based Glioma Treatment. Nature Reviews Neurology, 10, 372-385. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kanamori, M., Maekawa, M., Shibahara, I., Saito, R., Chonan, M., Shimada, M., et al. (2018) Rapid Detection of Mutation in Isocitrate Dehydrogenase 1 and 2 Genes Using Mass Spectrometry. Brain Tumor Pathology, 35, 90-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Xu, H., Xia, Y., Li, C., Zhang, J., Liu, Y., Yi, W., et al. (2019) Rapid Diagnosis of IDH1-Mutated Gliomas by 2-HG Detection with Gas Chromatography Mass Spectrometry. Laboratory Investigation, 99, 588-598. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Alfaro, C.M., Pirro, V., Keating, M.F., Hattab, E.M., Cooks, R.G. and Cohen-Gadol, A.A. (2020) Intraoperative Assessment of Isocitrate Dehydrogenase Mutation Status in Human Gliomas Using Desorption Electrospray Ionization-Mass Spectrometry. Journal of Neurosurgery, 132, 180-187. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Santagata, S., Eberlin, L.S., Norton, I., Calligaris, D., Feldman, D.R., Ide, J.L., et al. (2014) Intraoperative Mass Spectrometry Mapping of an Onco-Metabolite to Guide Brain Tumor Surgery. Proceedings of the National Academy of Sciences, 111, 11121-11126. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Lan, C., Li, H., Wang, L., Zhang, J., Wang, X., Zhang, R., et al. (2021) Absolute Quantification of 2‐Hydroxyglutarate on Tissue by Matrix‐Assisted Laser Desorption/Ionization Mass Spectrometry Imaging for Rapid and Precise Identification of Isocitrate Dehydrogenase Mutations in Human Glioma. International Journal of Cancer, 149, 2091-2098. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Avsar, T., Sursal, A., Turan, G., Yigit, B.N., Altunsu, D., Cantasir, K., et al. (2020) Development of a Rapid and Sensitive IDH1/2 Mutation Detection Method for Glial Tumors and a Comparative Mutation Analysis of 236 Glial Tumor Samples. Molecular Diagnosis & Therapy, 24, 327-338. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Xue, H., Han, Z., Li, H., Li, X., Jia, D., Qi, M., et al. (2022) Application of Intraoperative Rapid Molecular Diagnosis in Precision Surgery for Glioma: Mimic the World Health Organization CNS5 Integrated Diagnosis. Neurosurgery, 92, 762-771. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Shankar, G.M., Francis, J.M., Rinne, M.L., Ramkissoon, S.H., Huang, F.W., Venteicher, A.S., et al. (2015) Rapid Intraoperative Molecular Characterization of Glioma. JAMA Oncology, 1, 662-667. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Diplas, B.H., Liu, H., Yang, R., Hansen, L.J., Zachem, A.L., Zhao, F., et al. (2018) Sensitive and Rapid Detection of TERT Promoter and IDH Mutations in Diffuse Gliomas. Neuro-Oncology, 21, 440-450. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Kanamori, M., Kikuchi, A., Watanabe, M., Shibahara, I., Saito, R., Yamashita, Y., et al. (2014) Rapid and Sensitive Intraoperative Detection of Mutations in the Isocitrate Dehydrogenase 1 and 2 Genes during Surgery for Glioma. Journal of Neurosurgery, 120, 1288-1297. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Domon, B. and Aebersold, R. (2006) Mass Spectrometry and Protein Analysis. Science, 312, 212-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Xu, W., Yang, H., Liu, Y., Yang, Y., Wang, P., Kim, S., et al. (2011) Oncometabolite 2-Hydroxyglutarate Is a Competitive Inhibitor of Α-Ketoglutarate-Dependent Dioxygenases. Cancer Cell, 19, 17-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Chou, F., Liu, Y., Lang, F. and Yang, C. (2021) D-2-Hydroxyglutarate in Glioma Biology. Cells, 10, Article 2345. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Li, J., Wang, L., Mamon, H., Kulke, M.H., Berbeco, R. and Makrigiorgos, G.M. (2008) Replacing PCR with COLD-PCR Enriches Variant DNA Sequences and Redefines the Sensitivity of Genetic Testing. Nature Medicine, 14, 579-584. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Boisselier, B., Marie, Y., Labussière, M., Ciccarino, P., Desestret, V., Wang, X., et al. (2010) COLD PCR HRM: A Highly Sensitive Detection Method for IDH1 Mutations. Human Mutation, 31, 1360-1365. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
McNeill, R.S., Vitucci, M., Wu, J. and Miller, C.R. (2014) Contemporary Murine Models in Preclinical Astrocytoma Drug Development. Neuro-Oncology, 17, 12-28. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Barzilai, O., Moshe, S.B., Sitt, R., et al. (2018) Improvement in Cognitive Function after Surgery for Low-Grade Glioma. Journal of Neurosurgery, 130, 426-434. [Google Scholar] [CrossRef]
|
|
[47]
|
Hervey-Jumper, S.L., Zhang, Y., Phillips, J.J., Morshed, R.A., Young, J.S., McCoy, L., et al. (2023) Interactive Effects of Molecular, Therapeutic, and Patient Factors on Outcome of Diffuse Low-Grade Glioma. Journal of Clinical Oncology, 41, 2029-2042. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Rossi, M., Gay, L., Ambrogi, F., Conti Nibali, M., Sciortino, T., Puglisi, G., et al. (2020) Association of Supratotal Resection with Progression-Free Survival, Malignant Transformation, and Overall Survival in Lower-Grade Gliomas. Neuro-Oncology, 23, 812-826. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Pessina, F., Navarria, P., Cozzi, L., Ascolese, A.M., Simonelli, M., Santoro, A., et al. (2016) Value of Surgical Resection in Patients with Newly Diagnosed Grade III Glioma Treated in a Multimodal Approach: Surgery, Chemotherapy and Radiotherapy. Annals of Surgical Oncology, 23, 3040-3046. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Prabhu, R.S., Won, M., Shaw, E.G., et al. (2014) Effect of the Addition of Chemotherapy to Radiotherapy on Cognitive Function in Patients with Low-Grade Glioma: Secondary Analysis of RTOG 98-02. Journal of Clinical Oncology, 32, 535-541. [Google Scholar] [CrossRef]
|
|
[51]
|
Shaw, E.G., Wang, M., Coons, S.W., Brachman, D.G., Buckner, J.C., Stelzer, K.J., et al. (2012) Randomized Trial of Radiation Therapy Plus Procarbazine, Lomustine, and Vincristine Chemotherapy for Supratentorial Adult Low-Grade Glioma: Initial Results of RTOG 9802. Journal of Clinical Oncology, 30, 3065-3070. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Wesseling, P., van den Bent, M. and Perry, A. (2015) Oligodendroglioma: Pathology, Molecular Mechanisms and Markers. Acta Neuropathologica, 129, 809-827. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Alattar, A.A., Brandel, M.G., Hirshman, B.R., Dong, X., Carroll, K.T., Ali, M.A., et al. (2018) Oligodendroglioma Resection: A Surveillance, Epidemiology, and End Results (SEER) Analysis. Journal of Neurosurgery, 128, 1076-1083. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Garton, A.L.A., Kinslow, C.J., Rae, A.I., Mehta, A., Pannullo, S.C., Magge, R.S., et al. (2021) Extent of Resection, Molecular Signature, and Survival in 1p19q-Codeleted Gliomas. Journal of Neurosurgery, 134, 1357-1367. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Cairncross, G., Wang, M., Shaw, E., Jenkins, R., Brachman, D., Buckner, J., et al. (2013) Phase III Trial of Chemoradiotherapy for Anaplastic Oligodendroglioma: Long-Term Results of RTOG 9402. Journal of Clinical Oncology, 31, 337-343. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Molinaro, A.M., Hervey-Jumper, S., Morshed, R.A., Young, J., Han, S.J., Chunduru, P., et al. (2020) Association of Maximal Extent of Resection of Contrast-Enhanced and Non-Contrast-Enhanced Tumor with Survival within Molecular Subgroups of Patients with Newly Diagnosed Glioblastoma. JAMA Oncology, 6, 495-503. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Zigiotto, L., Annicchiarico, L., Corsini, F., Vitali, L., Falchi, R., Dalpiaz, C., et al. (2020) Effects of Supra-Total Resection in Neurocognitive and Oncological Outcome of High-Grade Gliomas Comparing Asleep and Awake Surgery. Journal of Neuro-Oncology, 148, 97-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Hathout, L., Ellingson, B. and Pope, W. (2016) Modeling the Efficacy of the Extent of Surgical Resection in the Setting of Radiation Therapy for Glioblastoma. Cancer Science, 107, 1110-1116. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Knauth, M., Wirtz, C.R., Tronnier, V.M., et al. (1999) Intraoperative MR Imaging Increases the Extent of Tumor Resection in Patients with High-Grade Gliomas. American Journal of Neuroradiology, 20, 1642-1646.
|
|
[60]
|
Kuhnt, D., Becker, A., Ganslandt, O., Bauer, M., Buchfelder, M. and Nimsky, C. (2011) Correlation of the Extent of Tumor Volume Resection and Patient Survival in Surgery of Glioblastoma Multiforme with High-Field Intraoperative MRI Guidance. Neuro-Oncology, 13, 1339-1348. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Nickel, K., Renovanz, M., König, J., Stöckelmaier, L., Hickmann, A., Nadji-Ohl, M., et al. (2017) The Patients’ View: Impact of the Extent of Resection, Intraoperative Imaging, and Awake Surgery on Health-Related Quality of Life in High-Grade Glioma Patients—Results of a Multicenter Cross-Sectional Study. Neurosurgical Review, 41, 207-219. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Prada, F., Ciocca, R., Corradino, N., Gionso, M., Raspagliesi, L., Vetrano, I.G., et al. (2022) Multiparametric Intraoperative Ultrasound in Oncological Neurosurgery: A Pictorial Essay. Frontiers in Neuroscience, 16, Article 881661. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Wang, J., Liu, X., Hou, W., Dong, G., Wei, Z., Zhou, H., et al. (2008) The Relationship between Intra-Operative Ultrasonography and Pathological Grade in Cerebral Glioma. Journal of International Medical Research, 36, 1426-1434. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Li, Z., Song, Y., Farrukh Hameed, N.U., Yuan, S., Wu, S., Gong, X., et al. (2024) Effect of High-Field iMRI Guided Resection in Cerebral Glioma Surgery: A Randomized Clinical Trial. European Journal of Cancer, 199, Article 113528. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Bello, L., Riva, M., Fava, E., Ferpozzi, V., Castellano, A., Raneri, F., et al. (2014) Tailoring Neurophysiological Strategies with Clinical Context Enhances Resection and Safety and Expands Indications in Gliomas Involving Motor Pathways. Neuro-Oncology, 16, 1110-1128. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Clavreul, A., Aubin, G., Delion, M., Lemée, J., Ter Minassian, A. and Menei, P. (2021) What Effects Does Awake Craniotomy Have on Functional and Survival Outcomes for Glioblastoma Patients? Journal of Neuro-Oncology, 151, 113-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Gerritsen, J.K.W., Viëtor, C.L., Rizopoulos, D., Schouten, J.W., Klimek, M., Dirven, C.M.F., et al. (2019) Awake Craniotomy versus Craniotomy under General Anesthesia without Surgery Adjuncts for Supratentorial Glioblastoma in Eloquent Areas: A Retrospective Matched Case-Control Study. Acta Neurochirurgica, 161, 307-315. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Musca, B., Bonaudo, C., Tushe, A., et al. (2023) Sodium Fluorescein Uptake by the Tumor Microenvironment in Human Gliomas and Brain Metastases. Journal of Neurosurgery, 140, 958-967. [Google Scholar] [CrossRef]
|
|
[69]
|
Moore, G.E., Peyton, W.T., French, L.A. and Walker, W.W. (1948) The Clinical Use of Fluorescein in Neurosurgery. Journal of Neurosurgery, 5, 392-398. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Murray, K.J. (1982) Improved Surgical Resection of Human Brain Tumors: Part 1. A Preliminary Study. Surgical Neurology, 17, 316-319. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Díez Valle, R., Tejada Solis, S., Idoate Gastearena, M.A., García de Eulate, R., Domínguez Echávarri, P. and Aristu Mendiroz, J. (2010) Surgery Guided by 5-Aminolevulinic Fluorescence in Glioblastoma: Volumetric Analysis of Extent of Resection in Single-Center Experience. Journal of Neuro-Oncology, 102, 105-113. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Katsevman, G.A., Turner, R.C., Urhie, O., Voelker, J.L. and Bhatia, S. (2020) Utility of Sodium Fluorescein for Achieving Resection Targets in Glioblastoma: Increased Gross-or Near-Total Resections and Prolonged Survival. Journal of Neurosurgery, 132, 914-920. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Stummer, W., Pichlmeier, U., Meinel, T., Wiestler, O.D., Zanella, F. and Reulen, H. (2006) Fluorescence-Guided Surgery with 5-Aminolevulinic Acid for Resection of Malignant Glioma: A Randomised Controlled Multicentre Phase III Trial. The Lancet Oncology, 7, 392-401. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Cao, C., Jin, Z., Shi, X., Zhang, Z., Xiao, A., Yang, J., et al. (2022) First Clinical Investigation of Near-Infrared Window IIA/IIB Fluorescence Imaging for Precise Surgical Resection of Gliomas. IEEE Transactions on Biomedical Engineering, 69, 2404-2413. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Zhang, L., Zhou, Y., Wu, B., Zhang, S., Zhu, K., Liu, C., et al. (2023) A Handheld Visible Resonance Raman Analyzer Used in Intraoperative Detection of Human Glioma. Cancers, 15, Article 1752. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Belykh, E., Bardonova, L., Abramov, I., Byvaltsev, V.A., Kerymbayev, T., Yu, K., et al. (2023) 5-Aminolevulinic Acid, Fluorescein Sodium, and Indocyanine Green for Glioma Margin Detection: Analysis of Operating Wide-Field and Confocal Microscopy in Glioma Models of Various Grades. Frontiers in Oncology, 13, Article 1156812. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Cakmakci, D., Kaynar, G., Bund, C., Piotto, M., Proust, F., Namer, I.J., et al. (2022) Targeted Metabolomics Analyses for Brain Tumor Margin Assessment during Surgery. Bioinformatics, 38, 3238-3244. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Cakmakci, D., Karakaslar, E.O., Ruhland, E., Chenard, M., Proust, F., Piotto, M., et al. (2020) Machine Learning Assisted Intraoperative Assessment of Brain Tumor Margins Using HRMAS NMR Spectroscopy. PLOS Computational Biology, 16, e1008184. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Jin, Z., Yue, Q., Duan, W., Sui, A., Zhao, B., Deng, Y., et al. (2022) Intelligent SERS Navigation System Guiding Brain Tumor Surgery by Intraoperatively Delineating the Metabolic Acidosis. Advanced Science, 9, Article 2104935. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Mair, M.J., Geurts, M., van den Bent, M.J. and Berghoff, A.S. (2021) A Basic Review on Systemic Treatment Options in WHO Grade II-III Gliomas. Cancer Treatment Reviews, 92, Article 102124. [Google Scholar] [CrossRef] [PubMed]
|