|
[1]
|
Phinikaridou, A., Hua, N., Pham, T. and Hamilton, J.A. (2013) Regions of Low Endothelial Shear Stress Colocalize with Positive Vascular Remodeling and Atherosclerotic Plaque Disruption: An in Vivo Magnetic Resonance Imaging Study. Circulation: Cardiovascular Imaging, 6, 302-310. [Google Scholar] [CrossRef]
|
|
[2]
|
Zhou, J., Li, Y.S. and Chien, S. (2014) Shear Stress-Initiated Signaling and Its Regulation of Endothelial Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 2191-2198. [Google Scholar] [CrossRef]
|
|
[3]
|
Harloff, A., Nussbaumer, A., Bauer, S., Stalder, A.F., Frydrychowicz, A., Weiller, C., et al. (2010) In Vivo Assessment of Wall Shear Stress in the Atherosclerotic Aorta Using Flow-Sensitive 4D MRI. Magnetic Resonance in Medicine, 63, 1529-1536. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hoi, Y., Wasserman, B.A., Lakatta, E.G. and Steinman, D.A. (2010) Carotid Bifurcation Hemodynamics in Older Adults: Effect of Measured versus Assumed Flow Waveform. Journal of Biomechanical Engineering, 132, Article 071006. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ma, Q., Gu, W., Li, T., Zhang, K., Cui, Y., Qu, K., et al. (2020) SRGN, a New Identified Shear-Stress-Responsive Gene in Endothelial Cells. Molecular and Cellular Biochemistry, 474, 15-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Barrett, T., Troup, D.B., Wilhite, S.E., Ledoux, P., Rudnev, D., Evangelista, C., et al. (2007) NCBI GEO: Mining Tens of Millions of Expression Profiles—Database and Tools Update. Nucleic Acids Research, 35, D760-D765. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., et al. (2015) Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Research, 43, E47. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Weichenberger, C.X., Palermo, A., Pramstaller, P.P. and Domingues, F.S. (2017) Exploring Approaches for Detecting Protein Functional Similarity Within an Orthology-Based Framework. Scientific Reports, 7, Article 381. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. and Hattori, M. (2004) The KEGG Resource for Deciphering the Genome. Nucleic Acids Research, 32, D277-D280. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., et al. (2013) STRING V9.1: Protein-Protein Interaction Networks, with Increased Coverage and Integration. Nucleic Acids Research, 41, D808-D815. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kohl, M., Wiese, S. and Warscheid, B. (2011) Cytoscape: Software for Visualization and Analysis of Biological Networks. Methods in Molecular Biology, 696, 291-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Tibshirani, R. (1997) The Lasso Method for Variable Selection in the Cox Model. Statistics in Medicine, 16, 385-395. [Google Scholar] [CrossRef]
|
|
[13]
|
Izmirlian, G. (2004) Application of the Random Forest Classification Algorithm to a SELDI-TOF Proteomics Study in the Setting of a Cancer Prevention Trial. Annals of the New York Academy of Sciences, 1020, 154-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Sanz, H., Valim, C., Vegas, E., Oller, J.M. and Reverter, F. (2018) SVM-RFE: Selection and Visualization of the Most Relevant Features Through Non-Linear Kernels. BMC Bioinformatics, 19, Article No. 432. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Da Silva, R.A., Fernandes, C., Feltran, G.D.S., Gomes, A.M., de Camargo, Andrade, A.F., Andia, D.C., et al. (2019) Laminar Shear Stress-Provoked Cytoskeletal Changes Are Mediated by Epigenetic Reprogramming of TIMP1 in Human Primary Smooth Muscle Cells. Journal of Cellular Physiology, 234, 6382-6396. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Pedrigi, R.M., De Silva, R., Bovens, S.M., Mehta, V.V., Petretto, E. and Krams, R. (2014) Thin-Cap Fibroatheroma Rupture Is Associated with a Fine Interplay of Shear and Wall Stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 2224-2231. [Google Scholar] [CrossRef]
|
|
[17]
|
Pyne, N.J. and Pyne, S. (2011) Receptor Tyrosine Kinase-G-Protein-Coupled Receptor Signalling Platforms: Out of the Shadow? Trends in Pharmacological Sciences, 32, 443-450. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
White, C.R. and Frangos, J.A. (2007) The Shear Stress of It All: The Cell Membrane and Mechanochemical Transduction. Philosophical Transactions of the Royal Society B, 362, 1459-1467. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Otte, L.A., Bell, K.S., Loufrani, L., Yeh, J.C., Melchior, B., Dao, D.N., et al. (2009) Rapid Changes in Shear Stress Induce Dissociation of a Alpha(q/11)-Platelet Endothelial Cell Adhesion Molecule-1 Complex. The Journal of Physiology, 587, 2365-2373. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zou, Q.Y., Zhao, Y.J., Zhou, C., Liu, A.X., Zhong, X.Q., Yan, Q., et al. (2019) G Protein Alpha Subunit 14 Mediates Fibroblast Growth Factor 2-Induced Cellular Responses in Human Endothelial Cells. Journal of Cellular Physiology, 234, 10184-10195. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Malek, A.M., Alper, S.L. and Izumo, S. (1999) Hemodynamic Shear Stress and Its Role in Atherosclerosis. Journal of the American Medical Association, 282, 2035-2042. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Shindo, T., Kurihara, Y., Nishimatsu, H., Moriyama, N., Kakoki, M., Wang, Y., et al. (2001) Vascular Abnormalities and Elevated Blood Pressure in Mice Lacking Adrenomedullin Gene. Circulation, 104, 1964-1971. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Koyama, T., Kuriyama, N., Ozaki, E., Matsui, D., Watanabe, I., Takeshita, W., et al. (2017) Genetic Variants of RAMP2 and CLR Are Associated with Stroke. Journal of Atherosclerosis and Thrombosis, 24, 1267-1281. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kitamura, K., Kangawa, K., Kawamoto, M., Ichiki, Y., Nakamura, S., Matsuo, H., et al. (1993) Adrenomedullin: A Novel Hypotensive Peptide Isolated from Human Pheochromocytoma. Biochemical and Biophysical Research Communications, 192, 553-560. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Parameswaran, N. and Spielman, W.S. (2006) RAMPs: The Past, Present and Future. Trends in Biochemical Sciences, 31, 631-638. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Mclatchie, L.M., Fraser, N.J., Main, M.J., Wise, A., Brown, J., Thompson, N., et al. (1998) RAMPs Regulate the Transport and Ligand Specificity of the Calcitonin-Receptor-Like Receptor. Nature, 393, 333-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Abe, M., Sata, M., Nishimatsu, H., Nagata, D., Suzuki, E., Terauchi, Y., et al. (2003) Adrenomedullin Augments Collateral Development in Response to Acute Ischemia. Biochemical and Biophysical Research Communications, 306, 10-15. [Google Scholar] [CrossRef]
|
|
[28]
|
Brain, S.D. and Grant, A.D. (2004) Vascular Actions of Calcitonin Gene-Related Peptide and Adrenomedullin. Physiological Reviews, 84, 903-934. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kato, J., Tsuruda, T., Kita, T., Kitamura, K. and Eto, T. (2005) Adrenomedullin: A Protective Factor for Blood Vessels. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 2480-2487. [Google Scholar] [CrossRef]
|
|
[30]
|
Nagaya, N., Nishikimi, T., Yoshihara, F., Horio, T., Morimoto, A. and Kangawa, K. (2000) Cardiac Adrenomedullin Gene Expression and Peptide Accumulation after Acute Myocardial Infarction in Rats. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 278, R1019-R10226. [Google Scholar] [CrossRef]
|
|
[31]
|
Nagaya, N., Mori, H., Murakami, S., Kangawa, K. and Kitamura, S. (2005) Adrenomedullin: Angiogenesis and Gene Therapy. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 288, R1432-R1437. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Nishimatsu, H., Hirata, Y., Shindo, T., Kurihara, H., Kakoki, M., Nagata, D., et al. (2002) Role of Endogenous Adrenomedullin in the Regulation of Vascular Tone and Ischemic Renal Injury: Studies on Transgenic/Knockout Mice of Adrenomedullin Gene. Circulation Research, 90, 657-663. [Google Scholar] [CrossRef]
|
|
[33]
|
Iimuro, S., Shindo, T., Moriyama, N., Amaki, T., Niu, P., Takeda, N., et al. (2004) Angiogenic Effects of Adrenomedullin in Ischemia and Tumor Growth. Circulation Research, 95, 415-423. [Google Scholar] [CrossRef]
|
|
[34]
|
Hojo, Y., Ikeda, U., Katsuki, T.A. and Shimada, K. (2000) Decreased Adrenomedullin Production in the Coronary Circulation of Patients with Coronary Artery Disease. Heart, 84, Article 88. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Furuhashi, M. and Hotamisligil, G.S. (2008) Fatty Acid-Binding Proteins: Role in Metabolic Diseases and Potential as Drug Targets. Nature Reviews Drug Discovery, 7, 489-503. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Babaev, V.R., Runner, R.P., Fan, D., Ding, L., Zhang, Y., Tao, H., et al. (2011) Macrophage Mal1 Deficiency Suppresses Atherosclerosis in Low-Density Lipoprotein Receptor-Null Mice by Activating Peroxisome Proliferator-Activated Receptor-Gamma-Regulated Genes. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 1283-1290. [Google Scholar] [CrossRef]
|
|
[37]
|
Furuhashi, M., Ogura, M., Matsumoto, M., Yuda, S., Muranaka, A., Kawamukai, M., et al. (2017) Serum FABP5 Concentration Is a Potential Biomarker for Residual Risk of Atherosclerosis in Relation to Cholesterol Efflux from Macrophages. Scientific Reports, 7, Article No. 217. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Umbarawan, Y., Enoura, A., Ogura, H., Sato, T., Horikawa, M., Ishii, T., et al. (2021) FABP5 Is a Sensitive Marker for Lipid-Rich Macrophages in the Luminal Side of Atherosclerotic Lesions. International Heart Journal, 62, 666-676. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Yu, C.W., Liang, X., Lipsky, S., Karaaslan, C., Kozakewich, H., Hotamisligil, G.S., et al. (2016) Dual Role of Fatty Acid-Binding Protein 5 on Endothelial Cell Fate: A Potential Link Between Lipid Metabolism and Angiogenic Responses. Angiogenesis, 19, 95-106. [Google Scholar] [CrossRef] [PubMed]
|