|
[1]
|
周京敏, 王华, 黎励文. 射血分数保留的心力衰竭诊断与治疗中国专家共识2023[J]. 中国循环杂志, 2023, 38(4): 375-393.
|
|
[2]
|
Gollmer, J., Zirlik, A. and Bugger, H. (2020) Mitochondrial Mechanisms in Diabetic Cardiomyopathy. Diabetes & Metabolism Journal, 44, 33-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Tilokani, L., Nagashima, S., Paupe, V. and Prudent, J. (2018) Mitochondrial Dynamics: Overview of Molecular Mechanisms. Essays in Biochemistry, 62, 341-360. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Youle, R.J. and van der Bliek, A.M. (2012) Mitochondrial Fission, Fusion, and Stress. Science, 337, 1062-1065. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
del Campo, A., Perez, G., Castro, P.F., Parra, V. and Verdejo, H.E. (2021) Mitochondrial Function, Dynamics and Quality Control in the Pathophysiology of HFpEF. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1867, Article ID: 166208. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Tong, D., Schiattarella, G.G., Jiang, N., Altamirano, F., Szweda, P.A., Elnwasany, A., et al. (2021) NAD+ Repletion Reverses Heart Failure with Preserved Ejection Fraction. Circulation Research, 128, 1629-1641. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Kumar, A.A., Kelly, D.P. and Chirinos, J.A. (2019) Mitochondrial Dysfunction in Heart Failure with Preserved Ejection Fraction. Circulation, 139, 1435-1450. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Bowen, T.S., Rolim, N.P.L., Fischer, T., Bækkerud, F.H., Medeiros, A., Werner, S., et al. (2015) Heart Failure with Preserved Ejection Fraction Induces Molecular, Mitochondrial, Histological, and Functional Alterations in Rat Respiratory and Limb Skeletal Muscle. European Journal of Heart Failure, 17, 263-272. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Scandalis, L., Kitzman, D.W., Nicklas, B.J., Lyles, M., Brubaker, P., Nelson, M.B., et al. (2023) Skeletal Muscle Mitochondrial Respiration and Exercise Intolerance in Patients with Heart Failure with Preserved Ejection Fraction. JAMA Cardiology, 8, 575-584. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Sabbah, H.N. (2020) Targeting the Mitochondria in Heart Failure: A Translational Perspective. JACC: Basic to Translational Science, 5, 88-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Karamanlidis, G., Nascimben, L., Couper, G.S., Shekar, P.S., del Monte, F. and Tian, R. (2010) Defective DNA Replication Impairs Mitochondrial Biogenesis in Human Failing Hearts. Circulation Research, 106, 1541-1548. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Gupta, R.C., Szekely, K., Wang, M., Zhang, K., Rastogi, S., Albrecht-Küpper, B., et al. (2013) Long-Term Therapy with the Partial Adenosine A 1-Receptor Agonist Capadenoson, Improves Peroxisome Proliferator-Activated Receptor Coactivator-1α Phosphorylation and Protein Expression in Left Ventricular Myocardium of Dogs with Chronic Heart Failure. Journal of the American College of Cardiology, 61, e702. [Google Scholar] [CrossRef]
|
|
[13]
|
Qiu, Z., Wei, Y., Song, Q., Du, B., Wang, H., Chu, Y., et al. (2019) The Role of Myocardial Mitochondrial Quality Control in Heart Failure. Frontiers in Pharmacology, 10, Article No. 1404. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Pereira, R.O., Wende, A.R., Crum, A., Hunter, D., Olsen, C.D., Rawlings, T., et al. (2014) Maintaining PGC‐1α Expression Following Pressure Overload‐Induced Cardiac Hypertrophy Preserves Angiogenesis but Not Contractile or Mitochondrial Function. The FASEB Journal, 28, 3691-3702. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Hu, X., Xu, X., Lu, Z., Zhang, P., Fassett, J., Zhang, Y., et al. (2011) AMP Activated Protein Kinase-α2 Regulates Expression of Estrogen-Related Receptor-α, a Metabolic Transcription Factor Related to Heart Failure Development. Hypertension, 58, 696-703. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Chaanine, A.H., Joyce, L. D., Stulak, J.M., Maltais, S., Joyce, D.L., Dearani, J.A., et al. (2019) Mitochondrial Morphology, Dynamics, and Function in Human Pressure Overload or Ischemic Heart Disease with Preserved or Reduced Ejection Fraction. Circulation: Heart Failure, 12, e005131. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Molina, A.J.A., Bharadwaj, M.S., Van Horn, C., Nicklas, B.J., Lyles, M.F., Eggebeen, J., et al. (2016) Skeletal Muscle Mitochondrial Content, Oxidative Capacity, and Mfn2 Expression Are Reduced in Older Patients with Heart Failure and Preserved Ejection Fraction and Are Related to Exercise Intolerance. JACC: Heart Failure, 4, 636-645. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Sabbah, H.N., Gupta, R.C., Singh-Gupta, V., Zhang, K. and Lanfear, D.E. (2018) Abnormalities of Mitochondrial Dynamics in the Failing Heart: Normalization Following Long-Term Therapy with Elamipretide. Cardiovascular Drugs and Therapy, 32, 319-328. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Archer, S.-L. (2014) Mitochondrial Fission and Fusion in Human Diseases. The New England Journal of Medicine, 370, 1073-1074.
|
|
[20]
|
Yao, R., Ren, C., Xia, Z. and Yao, Y. (2020) Organelle-Specific Autophagy in Inflammatory Diseases: A Potential Therapeutic Target Underlying the Quality Control of Multiple Organelles. Autophagy, 17, 385-401. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kawajiri, S., Saiki, S., Sato, S., Sato, F., Hatano, T., Eguchi, H., et al. (2010) PINK1 Is Recruited to Mitochondria with Parkin and Associates with LC3 in Mitophagy. FEBS Letters, 584, 1073-1079. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Shou, J. and Huo, Y. (2022) PINK1 Phosphorylates Drp1(S616) to Improve Mitochondrial Fission and Inhibit the Progression of Hypertension-Induced HFpEF. International Journal of Molecular Sciences, 23, Article No. 11934. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yuan, X., Xiao, Y.-C., Zhang, G.-P., et al. (2016) Chloroquine Improves Left Ventricle Diastolic Function in Streptozotocin-Induced Diabetic Mice. Drug Design, Development and Therapy, 10, 2729-2737.
|
|
[24]
|
Sharov, V.G., Todor, A., Khanal, S., Imai, M. and Sabbah, H.N. (2007) Cyclosporine a Attenuates Mitochondrial Permeability Transition and Improves Mitochondrial Respiratory Function in Cardiomyocytes Isolated from Dogs with Heart Failure. Journal of Molecular and Cellular Cardiology, 42, 150-158. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Haileselassie, B., Mukherjee, R., Joshi, A.U., Napier, B.A., Massis, L.M., Ostberg, N.P., et al. (2019) Drp1/Fis1 Interaction Mediates Mitochondrial Dysfunction in Septic Cardiomyopathy. Journal of Molecular and Cellular Cardiology, 130, 160-169. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Loffredo, F.S., Nikolova, A.P., Pancoast, J.R. and Lee, R.T. (2014) Heart Failure with Preserved Ejection Fraction: Molecular Pathways of the Aging Myocardium. Circulation Research, 115, 97-107. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Tong, M., Saito, T., Zhai, P., Oka, S., Mizushima, W., Nakamura, M., et al. (2019) Mitophagy Is Essential for Maintaining Cardiac Function during High Fat Diet-Induced Diabetic Cardiomyopathy. Circulation Research, 124, 1360-1371. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Jäger, S., Handschin, C., St.-Pierre, J. and Spiegelman, B.M. (2007) Amp-Activated Protein Kinase (AMPK) Action in Skeletal Muscle via Direct Phosphorylation of PGC-1α. Proceedings of the National Academy of Sciences, 104, 12017-12022. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Marin, T.L., Gongol, B., Zhang, F., Martin, M., Johnson, D.A., Xiao, H., et al. (2017) AMPK Promotes Mitochondrial Biogenesis and Function by Phosphorylating the Epigenetic Factors DNMT1, RBBP7, and HAT1. Science Signaling, 10, eaaf7478. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Yang, H., Kong, B., Shuai, W., Zhang, J. and Huang, H. (2020) MD1 Deletion Exaggerates Cardiomyocyte Autophagy Induced by Heart Failure with Preserved Ejection Fraction through ROS/MAPK Signalling Pathway. Journal of Cellular and Molecular Medicine, 24, 9300-9312. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
唐艳. Gasdermin d介导内毒素血症致心肌功能障碍的机制研究[D]: [博士学位论文]. 长沙: 中南大学, 2023.
|