[1]
|
Rosenberg, I. (1989) Epidemiologic and Methodologic Problems in Determining Nutritional Status of Older Persons. The American Journal of Clinical Nutrition, 50, 1121-1235.
|
[2]
|
Cruz-Jentoft, A.J., Baeyens, J.P., Bauer, J.M., Boirie, Y., Cederholm, T., Landi, F., et al. (2010) Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age and Ageing, 39, 412-423. https://doi.org/10.1093/ageing/afq034
|
[3]
|
Morley, J.E., et al. (2011) Sarcopenia with Limited Mobility: An International Consensus. Journal of the American Medical Directors Association, 12, 403-409.
|
[4]
|
Yeung, S.S.Y., Reijnierse, E.M., Pham, V.K., Trappenburg, M.C., Lim, W.K., Meskers, C.G.M., et al. (2019) Sarcopenia and Its Association with Falls and Fractures in Older Adults: A Systematic Review and Meta‐Analysis. Journal of Cachexia, Sarcopenia and Muscle, 10, 485-500. https://doi.org/10.1002/jcsm.12411
|
[5]
|
姜珊, 康琳, 刘晓红. 2019亚洲肌少症诊断及治疗共识解读[J]. 中华老年医学杂志, 2020, 39(4): 373-376.
|
[6]
|
Chen, L., Woo, J., Assantachai, P., Auyeung, T., Chou, M., Iijima, K., et al. (2020) Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. Journal of the American Medical Directors Association, 21, 300-307.e2. https://doi.org/10.1016/j.jamda.2019.12.012
|
[7]
|
Sinelnikov, A., Qu, C., Fetzer, D.T., Pelletier, J., Dunn, M.A., Tsung, A., et al. (2016) Measurement of Skeletal Muscle Area: Comparison of CT and MR Imaging. European Journal of Radiology, 85, 1716-1721. https://doi.org/10.1016/j.ejrad.2016.07.006
|
[8]
|
Borga, M., West, J., Bell, J.D., Harvey, N.C., Romu, T., Heymsfield, S.B., et al. (2018) Advanced Body Composition Assessment: From Body Mass Index to Body Composition Profiling. Journal of Investigative Medicine, 66, 1-9. https://doi.org/10.1136/jim-2018-000722
|
[9]
|
Tosato, M., Marzetti, E., Cesari, M., Savera, G., Miller, R.R., Bernabei, R., et al. (2017) Measurement of Muscle Mass in Sarcopenia: From Imaging to Biochemical Markers. Aging Clinical and Experimental Research, 29, 19-27. https://doi.org/10.1007/s40520-016-0717-0
|
[10]
|
Albano, D., Messina, C., Vitale, J. and Sconfienza, L.M. (2019) Imaging of Sarcopenia: Old Evidence and New Insights. European Radiology, 30, 2199-2208. https://doi.org/10.1007/s00330-019-06573-2
|
[11]
|
孙鹤, 孙玲玲, 潘诗农, 等. 肥胖症对体质成分的交互作用及影像学评价现状[J]. 中国医学影像技术, 2018, 34(8): 1263-1266.
|
[12]
|
Prado, C.M.M. and Heymsfield, S.B. (2014) Lean Tissue Imaging: A New Era for Nutritionanl Assessment Andintervention. Journal of Parenteral and Enteral Nutrition, 38, 940-953. https://doi.org/10.1177/0148607114550189
|
[13]
|
Kyle, U.G., Genton, L., Hans, D. and Pichard, C. (2003) Validation of a Bioelectrical Impedance Analysis Equation to Predict Appendicular Skeletal Muscle Mass (ASMM). Clinical Nutrition, 22, 537-543. https://doi.org/10.1016/s0261-5614(03)00048-7
|
[14]
|
Rutten, E.P.A., Spruit, M.A. and Wouters, E.F.M. (2010) Critical View on Diagnosing Muscle Wasting by Single-Frequency Bio-Electrical Impedance in COPD. Respiratory Medicine, 104, 91-98. https://doi.org/10.1016/j.rmed.2009.07.004
|
[15]
|
Kashani, K.B., Frazee, E.N., Kukrálová, L., Sarvottam, K., Herasevich, V., Young, P.M., et al. (2017) Evaluating Muscle Mass by Using Markers of Kidney Function: Development of the Sarcopenia Index. Critical Care Medicine, 45, e23-e29. https://doi.org/10.1097/ccm.0000000000002013
|
[16]
|
Trajanoska, K., Schoufour, J.D., Darweesh, S.K., Benz, E., Medina-Gomez, C., Alferink, L.J., et al. (2018) Sarcopenia and Its Clinical Correlates in the General Population: The Rotterdam Study. Journal of Bone and Mineral Research, 33, 1209-1218. https://doi.org/10.1002/jbmr.3416
|
[17]
|
Sepúlveda‐Loyola, W., Osadnik, C., Phu, S., Morita, A.A., Duque, G. and Probst, V.S. (2020) Diagnosis, Prevalence, and Clinical Impact of Sarcopenia in COPD: A Systematic Review and Meta‐Analysis. Journal of Cachexia, Sarcopenia and Muscle, 11, 1164-1176. https://doi.org/10.1002/jcsm.12600
|
[18]
|
Morley, J.E. (2008) Sarcopenia: Diagnosis and Treatment. The Journal of Nutrition, Health and Aging, 12, 452-456. https://doi.org/10.1007/bf02982705
|
[19]
|
Xin, C., Sun, X., Lu, L. and Shan, L. (2021) Prevalence of Sarcopenia in Older Chinese Adults: A Systematic Review and Meta-Analysis. BMJ Open, 11, e041879. https://doi.org/10.1136/bmjopen-2020-041879
|
[20]
|
Smith, M. and Wrobel, J. (2014) Epidemiology and Clinical Impact of Major Comorbidities in Patients with COPD. International Journal of Chronic Obstructive Pulmonary Disease, 9, 871-888. https://doi.org/10.2147/copd.s49621
|
[21]
|
Demircioğlu, H., Cihan, F.G., Kutlu, R., Yosunkaya, Ş. and Zamani, A. (2020) Frequency of Sarcopenia and Associated Outcomes in Patients with Chronic Obstructive Pulmonary Disease. Turkish Journal of Medical Sciences, 50, 1270-1279. https://doi.org/10.3906/sag-1909-36
|
[22]
|
Bian, A., Hu, H., Rong, Y., Wang, J., Wang, J. and Zhou, X. (2017) A Study on Relationship between Elderly Sarcopenia and Inflammatory Factors IL-6 and Tnf-α. European Journal of Medical Research, 22, Article No. 25. https://doi.org/10.1186/s40001-017-0266-9
|
[23]
|
Schaap, L.A., Pluijm, S.M.F., Deeg, D.J.H. and Visser, M. (2006) Inflammatory Markers and Loss of Muscle Mass (Sarcopenia) and Strength. The American Journal of Medicine, 119, 526.e9-526.e17. https://doi.org/10.1016/j.amjmed.2005.10.049
|
[24]
|
Vasileiou, P., Evangelou, K., Vlasis, K., Fildisis, G., Panayiotidis, M., Chronopoulos, E., et al. (2019) Mitochondrial Homeostasis and Cellular Senescence. Cells, 8, Article No. 686. https://doi.org/10.3390/cells8070686
|
[25]
|
Marzetti, E., Calvani, R., Cesari, M., Buford, T.W., Lorenzi, M., Behnke, B.J., et al. (2013) Mitochondrial Dysfunction and Sarcopenia of Aging: From Signaling Pathways to Clinical Trials. The International Journal of Biochemistry & Cell Biology, 45, 2288-2301. https://doi.org/10.1016/j.biocel.2013.06.024
|
[26]
|
Wilkinson, D.J., Piasecki, M. and Atherton, P.J. (2018) The Age-Related Loss of Skeletal Muscle Mass and Function: Measurement and Physiology of Muscle Fibre Atrophy and Muscle Fibre Loss in Humans. Ageing Research Reviews, 47, 123-132. https://doi.org/10.1016/j.arr.2018.07.005
|
[27]
|
Gazdanova, A.A., Kukes, V.G., Parfenova, O.K., et al. (2021) Myostatin—A Modern Understanding of the Physiological Role and Significance in the Development of Age-Associated Diseases. Uspekhi Gerontologii, 34, 701-706. https://doi.org/10.34922/ae.2021.34.5.005
|
[28]
|
Ju, C., Chen, M., Zhang, J., Lin, Z. and Chen, R. (2016) Higher Plasma Myostatin Levels in Cor Pulmonale Secondary to Chronic Obstructive Pulmonary Disease. PLOS ONE, 11, e0150838. https://doi.org/10.1371/journal.pone.0150838
|
[29]
|
Gosselink, R., Troosters, T. and Decramer, M. (2000) Distribution of Muscle Weakness in Patients with Stable Chronic Obstructive Pulmonary Disease. Journal of Cardiopulmonary Rehabilitation, 20, 353-360. https://doi.org/10.1097/00008483-200011000-00004
|
[30]
|
Li, Y., Gao, H., Zhao, L. and Wang, J. (2022) Osteoporosis in COPD Patients: Risk Factors and Pulmonary Rehabilitation. The Clinical Respiratory Journal, 16, 487-496. https://doi.org/10.1111/crj.13514
|
[31]
|
Ma, K., Huang, F., Qiao, R. and Miao, L. (2022) Pathogenesis of Sarcopenia in Chronic Obstructive Pulmonary Disease. Frontiers in Physiology, 13, Article ID: 850964. https://doi.org/10.3389/fphys.2022.850964
|
[32]
|
李莎莎, 段凤英. 慢性阻塞性肺疾病伴营养不良的研究进展[J]. 实用医学杂志, 2015, 31(11): 1885-1887.
|
[33]
|
Kim, S.H., Shin, M.J., Shin, Y.B. and Kim, K.U. (2019) Sarcopenia Associated with Chronic Obstructive Pulmonary Disease. Journal of Bone Metabolism, 26, 65. https://doi.org/10.11005/jbm.2019.26.2.65
|
[34]
|
Spruit, M.A., Singh, S.J., Garvey, C., et al. (2013) An Official American Thoracic Society/European Respiratory Society Statement: Key Concepts and Advances in Pulmonary Rehabilitation. American Journal of Respiratory and Critical Care Medicine, 188, e13-e64.
|
[35]
|
Passey, S.L., Hansen, M.J., Bozinovski, S., McDonald, C.F., Holland, A.E. and Vlahos, R. (2016) Emerging Therapies for the Treatment of Skeletal Muscle Wasting in Chronic Obstructive Pulmonary Disease. Pharmacology & Therapeutics, 166, 56-70. https://doi.org/10.1016/j.pharmthera.2016.06.013
|
[36]
|
Broekhuizen, R. (2005) Polyunsaturated Fatty Acids Improve Exercise Capacity in Chronic Obstructive Pulmonary Disease. Thorax, 60, 376-382. https://doi.org/10.1136/thx.2004.030858
|
[37]
|
Jolliffe, D.A., Greenberg, L., Hooper, R.L., Mathyssen, C., Rafiq, R., de Jongh, R.T., et al. (2019) Vitamin D to Prevent Exacerbations of COPD: Systematic Review and Meta-Analysis of Individual Participant Data from Randomised Controlled Trials. Thorax, 74, 337-345. https://doi.org/10.1136/thoraxjnl-2018-212092
|
[38]
|
Pan, L., Wang, M., Xie, X., Du, C. and Guo, Y. (2014) Effects of Anabolic Steroids on Chronic Obstructive Pulmonary Disease: A Meta-Analysis of Randomised Controlled Trials. PLOS ONE, 9, e84855. https://doi.org/10.1371/journal.pone.0084855
|
[39]
|
Baillargeon, J., Urban, R.J., Zhang, W., Zaiden, M.F., Javed, Z., Sheffield-Moore, M., et al. (2018) Testosterone Replacement Therapy and Hospitalization Rates in Men with COPD. Chronic Respiratory Disease, 16, 1-9. https://doi.org/10.1177/1479972318793004
|
[40]
|
Pape, G.S., Friedman, M., Underwood, L.E. and Clemmons, D.R. (1991) The Effect of Growth Hormone on Weight Gain and Pulmonary Function in Patients with Chronic Obstructive Lung Disease. Chest, 99, 1495-1500. https://doi.org/10.1378/chest.99.6.1495
|
[41]
|
Tashkin, D. (2015) Smoking Cessation in Chronic Obstructive Pulmonary Disease. Seminars in Respiratory and Critical Care Medicine, 36, 491-507. https://doi.org/10.1055/s-0035-1555610
|
[42]
|
Degens, H., Gayan-Ramirez, G. and van Hees, H.W.H. (2015) Smoking-Induced Skeletal Muscle Dysfunction. From Evidence to Mechanisms. American Journal of Respiratory and Critical Care Medicine, 191, 620-625. https://doi.org/10.1164/rccm.201410-1830pp
|
[43]
|
Troosters, T., Maltais, F., Leidy, N., Lavoie, K.L., Sedeno, M., Janssens, W., et al. (2018) Effect of Bronchodilation, Exercise Training, and Behavior Modification on Symptoms and Physical Activity in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 198, 1021-1032. https://doi.org/10.1164/rccm.201706-1288oc
|
[44]
|
Mineo, D., Ambrogi, V., Lauriola, V., Pompeo, E. and Mineo, T.C. (2010) Recovery of Body Composition Improves Long-Term Outcomes after Lung Volume Reduction Surgery for Emphysema. European Respiratory Journal, 36, 408-416. https://doi.org/10.1183/09031936.00142309
|
[45]
|
Sanders, K.J.C., Klooster, K., Vanfleteren, L.E.G.W., Slebos, D. and Schols, A.M.W.J. (2018) CT-Derived Muscle Remodelling after Bronchoscopic Lung Volume Reduction in Advanced Emphysema. Thorax, 74, 206-207. https://doi.org/10.1136/thoraxjnl-2018-211931
|
[46]
|
van Bakel, S.I., Gosker, H.R., Langen, R.C. and Schols, A.M. (2021) Towards Personalized Management of Sarcopenia in COPD. International Journal of Chronic Obstructive Pulmonary Disease, 16, 25-40. https://doi.org/10.2147/copd.s280540
|