青年人中的成年发病型糖尿病9型诊疗研究进展
Research Progress on the Diagnosis and Treatment of Maturity Onset Diabetes of the Young 9
DOI: 10.12677/acm.2024.1472158, PDF, HTML, XML,   
作者: 陈昕雨, 徐 潮*:山东大学齐鲁医学院,山东 济南;山东第一医科大学附属省立医院内分泌代谢病科,山东 济南
关键词: 青年人中的成年发病型糖尿病青年人中的成年发病型糖尿病9型成对盒4基因MODY MODY9 PAX4
摘要: 青年人中的成年发病型糖尿病(maturity onset diabetes of the young, MODY)是一组罕见的单基因糖尿病,具有发病年龄小、常染色体显性遗传模式的糖尿病家族史和胰岛素非依赖性等典型特征。基因检测对于MODY亚型的诊断至关重要。MODY9是由PAX4基因突变引起的MODY亚型。PAX4基因编码成对盒4蛋白(Paired box 4, PAX4),在胰腺发育过程中对胰岛β细胞的分化和在胰腺成熟后对胰岛β细胞的存活和增殖至关重要。PAX4突变导致胰岛β细胞功能障碍。目前已发现PAX4多个突变位点,这些突变可导致不同的临床表型。除了典型的MODY临床表现外,MODY9还表现出酮症或酮症酸中毒倾向。MODY9可以通过饮食控制、口服降糖药或胰岛素进行治疗。本综述对MODY9在病因、临床表现、诊断、治疗等方面的研究进展进行总结。同时对PAX4与糖尿病相关的变异位点汇总,探讨PAX4基因突变与糖尿病的关系。
Abstract: Maturity onset diabetes of the young (MODY) is a rare group of monogenic diabetes mellitus with typical features such as young age of onset, family history of diabetes in an autosomal dominant pattern of inheritance, and insulin non-dependence. Genetic testing is essential for the diagnosis of MODY subtypes. MODY9 is a MODY subtype caused by mutations in the PAX4 gene. PAX4 gene encodes the paired box 4 protein (PAX4), which is essential for islet β-cell differentiation during pancreatic development and for survival and proliferation after maturation. Mutations in PAX4 cause β-cell dysfunction. Multiple mutation sites in PAX4 have been identified, and these mutations can lead to different clinical phenotypes. In addition to the typical clinical manifestations of MODY, MODY9 exhibits a tendency toward ketosis or ketoacidosis. MODY9 can be treated by dietary control, oral hypoglycemic agents or insulin. This review summarizes the research progress of MODY9 in terms of etiology, clinical manifestations, diagnosis, and treatment. It also summarizes the mutation loci of PAX4 associated with diabetes and discusses the relationship between PAX4 gene mutation and diabetes.
文章引用:陈昕雨, 徐潮. 青年人中的成年发病型糖尿病9型诊疗研究进展[J]. 临床医学进展, 2024, 14(7): 1386-1396. https://doi.org/10.12677/acm.2024.1472158

1. 引言

青年人中的成年发病型糖尿病(maturity onset diabetes of the young, MODY)是最常见的单基因糖尿病,代表了一组罕见的单基因形式的糖尿病,每种亚型都是由与胰岛素表达细胞(β细胞)发育、功能发挥或胰岛素信号通路中起关键作用的单个基因突变引起的[1],具有发病年龄小、常染色体显性遗传模式的糖尿病家族史和胰岛素非依赖性等典型特征[2]。目前在线人类孟德尔遗传数据库(Online Mendelian Inheritance in Man, OMIM)已收录14种MODY亚型。基因测序对于MODY不同亚型的诊断至关重要。据估计,MODY在英国的最小患病率为108例/100万人[3]。根据德国和奥地利对40,757名糖尿病病程小于20年的患者进行的研究,0.83%的MODY病例是依据临床标准来诊断的,而0.65%则是通过基因检测得到证实的[4]。目前我国MODY不同亚型的发病情况尚缺少流行病学数据。

MODY9是由位于染色体7q32上的成对盒4 (Paired box 4, PAX4)基因突变导致的罕见MODY亚型[5],目前病例报道极少。其临床表现除了MODY的典型特征外,具有酮症或酮症酸中毒倾向,多数患者需要应用胰岛素治疗。本文主要对MODY9的病因、临床表现、诊断、治疗相关研究进展做一综述。同时对PAX4与糖尿病已报道的相关变异位点汇总,探讨PAX4基因突变与糖尿病的关系。

2. 病因和发病机制

2001年,Shimajiri在日本的2型糖尿病人群中首次描述了PAX4的一个罕见的错义突变c.385C > T(p.R129W) [6]。此后,PAX4基因突变在不同糖尿病研究中被相继报道,特别是MODY。PAX4因此被确立为MODY9的致病基因。

PAX4基因编码成对盒4蛋白(Paired box 4, PAX4),是一种对胰腺发育和β细胞分化至关重要的转录因子[7] [8]。该转录因子由一个保守的配对盒结构域(Paired box domain, PD)和一个同源结构域(Homeodomain, HD)组成,两者均可与DNA结合[9]PAX4基因主要在胰腺中的内分泌祖细胞中表达,尤其是胚胎发育时期,之后随着分化仅限于β细胞表达[10]。如图1所示,在胰岛的胚胎发育时期,PAX4和转录因子α视黄醇结合蛋白(Alpha-retinol binding protein, ARX)通过互相抑制,决定胰腺中的内分泌祖细胞向胰高血糖素生成细胞(α细胞)或β细胞谱系分化[11] [12]PAX4基因纯合缺失的小鼠表现出生长发育迟缓和脱水,并在出生3天内死亡[10]。组织学检查显示,这些新生小鼠胰腺缺乏成熟的β细胞,但α细胞大量增加[10]。在胰腺发育早期,PAX4还可以独立或者通过与同家族转录因子PAX6竞争结合位点在αβ细胞系中来抑制胰岛素和胰高血糖素启动子的活性,但在β细胞中,PAX4对胰岛素基因的抑制作用明显弱于胰高血糖素基因[8],这一机制也可能参与了细胞分化。在成年小鼠胰岛中,只有大约30%的胰岛细胞表达PAX4,主要是β细胞,该特定亚群在生理需求增加时可以增殖,并且在应激条件下对凋亡具有抵抗力,适应性地提高血清胰岛素水平[13]

Figure 1. Mechanism of PAX4 mutation pathogenesis

1. PAX4突变致病机制

许多研究表明,PAX4基因突变导致β细胞发育异常,并导致β细胞功能障碍[14]-[18]。位于PD和HD的PAX4突变通常表现出与靶基因的结合率下降[14]-[17],而位于域间的突变无此变化[14] [17],但无论是何种突变,都可导致转录活性受损,并影响细胞存活和细胞凋亡[14]-[18]。位于PD的PAX4错义突变c.133C > T(p.R45W)降低了PAX4与胰岛素启动子的结合率,损害了对胰岛素启动子的阻遏活性[14]。同样,位于PD的c.385C > T(p.R129W)突变导致PAX4对PAX6的竞争能力下降,几乎完全失去与胰高血糖素启动子的结合能力[15]。位于HD的c.514C > T(p.R172W)和c.599G > A(p.R200H)错义突变损害了PAX4对胰岛素和胰高血糖素启动子的阻遏活性[16] [17]。此外,研究表明,在慢性高糖刺激下,过表达c.599G > A(p.R200H)错义突变导致β细胞存活相较于过表达野生型PAX4减少,细胞凋亡增加[17]。而位于域间的c.421C > T(p.R141W)错义突变与胰岛素启动子结合率无明显变化,但表现出对胰岛素启动子的抑制作用下降[14]。另一位于域间的c.986C > A(p.P329H)错义突变对胰岛素和胰高血糖素启动子的阻遏活性与野生型PAX4无明显差异,但表现出在慢性高糖刺激下的β细胞存活减少和细胞凋亡增加[17]。另一项对c.986C > A(p.P329H)突变的体外研究还发现PAX4变体限制了β细胞在葡萄糖刺激下的增殖,且这种效应可以通过野生型PAX4克服[18]。这些研究表明PAX4的作用不仅依赖于与DNA结合,与其他分子的相互作用同样参与其中,但相关分子机制目前并不明确,仍需继续探究。

3. PAX4变异位点汇总

Table 1. Summary of PAX4 variants associated with diabetes

1. 与糖尿病相关的PAX4变异位点汇总

突变位点

突变类型

结构域

致病性

文献来源

诊断

性别

发病年龄(岁)

家族史

BMI

(kg/m2)

C肽

(ng/ml)

糖尿病抗体

DKA

治疗

c.58C > T

(p.R20W)

错义突变

PD

LP

[36]

eDia

28

25

-

阴性

-

-

c.80G > A

(p.R27Q)

错义突变

PD

US

[37]

T1DM

-

-

-

-

-

阳性

-

-

c.79C > T

(p.R27W)

错义突变

PD

LP

[38]

GDM

-

<30.2

-

阴性

-

-

c.116G > A

(p.R39Q)

错义突变

PD

-

[39]

MODY

10.2

-

-

阴性

-

[16]

MODY

-

<35

-

-

阴性

-

c.116G > T

(p.R39L)

错义突变

PD

LP

[40]

MODY

14

23

-

阴性

格列美脲、胰岛素

c.133C > T

(p.R45W)

错义突变

PD

-

[14]

KPD

39

28.7

0.1

阴性

胰岛素

c.178C > T

(p.R60C)

错义突变

PD

US

[37]

T1DM

-

<18

-

-

-

阳性

-

-

c.290C > T

(p.A97V)

错义突变

PD

US

[37]

T1DM

-

<18

-

-

-

阳性

-

-

T1DM

-

<18

-

-

-

阴性

-

-

c.314G > A(p.R105H)

错义突变

PD

-

[24]

T1DM

42

31.85

-

阳性

胰岛素→利拉鲁肽

c.356C > T

(p.P119L)

错义突变

PD

US

[41]

MODY9

12

18.83

-

阴性

-

[42]

T1DM

7

12.73

0.3

阳性

-

胰岛素

c.385C > T(p.R129W)

错义突变

域间

P

[15]

MODY

16.7

-

1.3

阴性

胰岛素→胰岛素、口服降糖药

16

-

0.95

阴性

胰岛素、口服降糖药

[6]

T2DM

29

22.2

-

阴性

胰岛素→磺脲类药物→胰岛素

43

29.4

-

-

-

饮食控制

49

26.7

-

-

-

饮食控制

49

-

17.8

-

-

-

胰岛素→口服降糖药

47

32.4

-

-

-

口服降糖药

32

22

-

-

-

胰岛素

25

21.8

-

-

-

胰岛素

[43]

T1DM

-

-

-

-

阳性

-

-

c.421C > T(P.R141W)

错义突变

域间

-

[14]

KPD

47

26.5

0.2

阴性

胰岛素→口服降糖药

22

-

16.2

0.6

阴性

胰岛素→口服降糖药

38

25.4

0.4

阴性

胰岛素→口服降糖药→胰岛素

20

21.6

0

阴性

胰岛素→口服降糖药→胰岛素

c.449C > T

(p.P150L)

错义突变

域间

US

[37]

T1DM

-

<18

-

-

-

阳性

-

-

c.487C > T(p.R163W)

错义突变

HD

-

[44]

MODY9

19个月

-

0.09

阴性

胰岛素

c.515G > A(p.R172Q)

错义突变

HD

US

[45]

MODY9

6.5

14.1

1.42

阴性

[46]

MODY

-

10~20

23.7

1.2

-

非胰岛素

c.514C > T(p.R172W)

错义突变

HD

-

[16]

MODY

20

-

-

阴性

口服降糖药

c.521G > T(p.R174L)

错义突变

HD

US

[31]

T1DM

5.5

-

-

阴性

饮食控制、磺脲类药物、胰岛素

c.595C > A(p.R191C)

错义突变

HD

-

[16]

MODY

-

<35

-

-

阴性

-

c.599G > A(p.R200H)

错义突变

HD

-

[16]

MODY

-

-

-

-

-

-

-

-

c.598C > A(p.R200S)

错义突变

HD

US

[39]

MODY

12.3

-

-

阴性

-

13.7

-

-

阴性

-

10.5

-

-

阴性

-

[27]

MODY

31

25

-

阳性

-

胰岛素、口服降糖药

32

24.8

-

阴性

-

胰岛素、口服降糖药

[16]

MODY

-

<35

-

-

阴性

-

[47]

DM

-

<18

-

-

-

阴性

-

-

c.617C > T(p.A206V)

错义突变

HD

LP

[48]

MODY

20

30.2

-

-

-

口服降糖药

c.986C > A(p.P329H)

错义突变

域间

-

[18]

T1DM

-

-

-

-

-

-

-

-

[16]

MODY

-

<35

-

-

阴性

-

c.1022G > A(p.W341*)

无义突变

-

US

[43]

T1DM

-

-

-

-

阳性

-

-

c.360 + 19C > T

剪接突变

PD

-

[45]

MODY9

-

-

-

-

-

-

-

-

c.436 + 1G > A

剪接突变

域间

US

[37]

T1DM

-

<18

-

-

-

阳性

-

-

c.562 + 8G > C

剪接突变

HD

US

[15]

MODY

15

-

0.95

阴性

胰岛素→饮食控制

c.716-42C > T

剪接突变

域间

-

[45]

MODY9

-

-

-

-

-

-

-

-

c.772-1G > A

(p.Q250del)

剪接/缺失突变

域间

-

[16]

MODY

44

-

-

阴性

非胰岛素

c.771 + 3A > G

剪接突变

域间

US

[37]

T1DM

-

<18

-

-

-

阳性

-

-

c.579_581dupGTA

(p.Tyr194*)

插入/无义突变

-

-

[37]

MODY

-

<18

-

-

-

-

-

-

c.398_436del39 (p.Glu133_Pro145del)

缺失突变

PD

-

[49]

MODY

15

18.1

1.08

阴性

胰岛素

注:致病性:根据ACMG指南进行致病性评级,P (Pathogenic)致病性,LP (Likely pathogenic)可能致病性,US (Uncertain significance)临床意义不明。

迄今为止,MODY9的病例报道极少。根据人类基因突变数据库HGMD (http://www.hgmd.org/),本文列出并总结了所有已报道过的与糖尿病相关的PAX4基因变异(见表1),总结归纳出31个与糖尿病相关的PAX4基因突变,其中错义突变22个,无义突变2个,剪接突变6个,插入突变2个,缺失突变2个。较为特殊的是,c.772-1G > A(p.Q250del)既是剪接突变,也是缺失突变,c.579_581dupGTA(p.Tyr194*)既是插入突变,也是无义突变。在非无义突变中,突变位点在不同结构域中突变率相似,37.9%的突变位于PD结构域,34.5%的突变位于HD结构域,27.6%的突变位于域间。

4. PAX4和糖尿病

PAX4突变在不同类型的糖尿病中被报道,包括MODY、MODY9、1型糖尿病(Type 1 diabetes mellitus, T1DM)、2型糖尿病(Type 2 diabetes mellitus, T2DM)、早发性糖尿病(Early-onset diabetes, eDia)、酮症倾向糖尿病(Ketosis-Prone diabetes, KPD)、妊娠期糖尿病(Gestational diabetes mellitus, GDM)。目前的研究多采用临床分析,缺乏对相关基因功能的深入验证,仅有少数的PAX4突变通过体内外实验被证实为致病性突变。

多数PAX4突变研究与MODY相关,而在诊断为非MODY的研究中,部分因年代久远缺乏对MODY的认知,部分可能存在MODY9合并T1DM或T2DM。T1DM是一种自身抗体阳性的多基因糖尿病,胰岛β细胞被自身抗体攻击破坏,导致胰岛素绝对缺乏[19]。Biason-Lauber等[18]提出PAX4基因c.1192C > A(R329H)变异是T1DM的易感性标志。但这一观点在美国[20]和英国的人群[21]研究中被反驳。另外,在两项对中国汉族[22]、芬兰和匈牙利[23]的人群研究中,未发现PAX4基因与T1DM发病风险之间存在显著关联。有观点认为在T1DM中PAX4突变可能促进了β细胞功能的下降,再加上自身免疫性抗体的破坏,加速了糖尿病的进展[24]。T2DM是由环境或生活方式因素中影响较小的几个变异共同引起的[2]PAX4突变可能是其易感因素之一。Cheung等[25]通过外显子芯片关联分析,发现PAX4基因c.599G > A(R200H)变异与T2DM显著关联,特别是在东亚人群中。KPD是一种特殊类型的糖尿病,以自发性酮症或酮症酸中毒起病,给予胰岛素治疗达到缓解后无需胰岛素维持治疗[26],可能与PAX4突变导致的MODY严重表型相关。PAX4突变与GDM关系尚不明确,有研究表明,在怀孕小鼠中,表达PAX4的β细胞大量增殖,对凋亡的抵抗力增强[13]。这些结果强调了PAX4在妊娠这一特定生理时期的潜在作用。

5. 临床表现

MODY9的临床异质性大,可出现仅需饮食控制的轻度高血糖[6],或需要胰岛素治疗的酮症酸中毒[14],或合并严重糖尿病并发症[16]。目前已发现PAX4基因的各种突变,包括错义突变、无义突变、剪接突变、缺失突变,这些突变可导致不同的临床表型。PAX4突变大多为杂合突变,而纯合突变可能导致更严重的临床表型[14]。Mauvais-Jarvis等[14]发现PAX4基因c.421C > T(p.R141W)纯合突变的糖尿病患者相比杂合变异患者有更严重的胰岛素分泌障碍。PAX4的特定变异还可导致严重糖尿病并发症。Plengvidhya等[16]报道了一例与PAX4突变相关早发性肾脏并发症MODY家系,该家系中先证者的2位姐姐和1位哥哥患有糖尿病和早发性肾衰竭,3人均在52~53岁因终末期肾衰竭死亡,先证者妹妹在30岁时被诊断为糖尿病,并在确诊糖尿病10年后出现视网膜病变和肾病。此外,Wang等[27]在MODY9和其他MODY家系中发现合并COL4A3基因变异很可能加重糖尿病肾病(Diabetic Kidney Disease, DKD)。

在本文汇总的可获得临床信息的PAX4基因突变的糖尿病患者中,发病年龄从19个月到47岁不等,77.1% (37/48)的患者在35岁之前起病。43.4% (10/23)的患者存在超重或肥胖(体重指数大于25 kg/m2被定义为超重,大于30 kg/m2被定义为肥胖[28])。82.1% (32/39)的患者具有连续2代及以上家族史。33.3% (9/27)的患者发生酮症。11例糖尿病自身抗体阴性的患者行C肽水平检测,其中6例C肽水平降低。在28例可获得的临床治疗信息中,1例患者未接受任何治疗,3例患者行饮食控制,9例患者接受非胰岛素药物治疗,15例患者接受胰岛素或胰岛素联合药物治疗,其中仅2例患者糖尿病抗体阳性。9例发生酮症酸中毒的患者初始都接受了胰岛素治疗,6例患者酮症缓解后停用胰岛素,其中4例患者随着病情发展再次使用胰岛素治疗,其余3例患者未曾停用胰岛素。

根据以上信息总结出MODY9患者临床特征:

1) 发病年龄小,但可发生在任何年龄;

2) 连续2代及以上糖尿病家族史(常染色体显性遗传模式);

3) 糖尿病自身抗体阴性;

4) 临床异质性大:MODY9患者血糖异常可从轻度高血糖到酮症酸中毒,酮症或酮症酸中毒发病率高,随着病情进展可出现严重糖尿病并发症;

5) 可合并T1DM或T2DM:MODY9患者可合并T1DM出现糖尿病自身抗体。部分MODY9患者存在肥胖,而成年早期体重增加在T2DM发展中起着重要作用[29]

6) 胰岛素需求:MODY9患者保留一定胰岛功能,C肽水平可处于正常或下降,但大多数患者需要接受胰岛素治疗。

6. 诊断

MODY9的诊断依赖于临床特征、家族史和基因检测的结合。MODY经常被误诊为1型或2型糖尿病,从而导致管理不当。据估计,至少80 %的单基因糖尿病病例仍未被诊断[30]。国际儿童青少年糖尿病学会(International Society of Pediatric and Adolescent Diabetes, ISPAD) [1]建议在以下糖尿病患者进行MODY诊断:缺乏T1DM和T2DM的临床特征;患者的父母一方及其一级亲属有糖尿病家族史。基因检测可以明确MODY亚型。目前,高通量测序(Next-generation sequencing, NGS)允许同时测试无限数量的基因,显著提高了突变检测率。对于MODY9,基因检测将对PAX4基因进行测序以明确诊断。

7. 管理和治疗

MODY9的管理涉及个性化治疗策略,旨在实现最佳血糖控制,同时将低血糖和长期并发症的风险降至最低。MODY9可以通过饮食控制、口服降糖药或胰岛素进行治疗。大多数患者应用胰岛素治疗,即便发病初期无胰岛素需要患者,随着病情进展,会逐渐过渡至胰岛素治疗[15]。发生酮症酸中毒的患者应用胰岛素缓解病情后部分可停用胰岛素,但有部分患者成为永久性胰岛素依赖患者[14] [15] [31]。目前,PAX4基因已成为糖尿病的潜在治疗靶点[32] [33]。Blyszczuk等[34]使用转基因技术使小鼠胚胎干细胞表达PAX4基因,分化过程中胰岛β细胞的数量显著增加,将这些细胞移植到链佐菌素诱导的T1DM小鼠体内后能够正常化血糖水平。Parajuli等[35]通过腺病毒载体Ad5将PAX4基因导入小鼠和人来源的原代胰岛细胞,不仅能诱导胰岛α细胞向胰岛β细胞转化,还能促进胰岛β细胞存活。将表达PAX4的原代胰岛移植到链佐菌素诱导的T1DM小鼠中时,与对照组胰岛相比,移植的治疗效果增强,显示出更好的血糖控制。虽然PAX4基因靶向治疗糖尿病的研究仍处于早期阶段,但这些发现对未来糖尿病的靶向治疗具有重要的临床意义。

8. 展望

尽管近年来该领域取得了重大进展,但在MODY9的诊断和管理方面仍然存在一些挑战。医疗人员的临床认知有限、临床异质性大以及缺乏特定的诊断标准对MODY9的及时诊断构成了挑战。此外,基因检测的高成本和有限的可用性可能会限制疑似MODY患者获得基因诊断的机会。未来的研究工作应侧重于加深对MODY9病理生理学和PAX4突变致病机制的理解,开发更易于获得和更具有成本效益的诊断方法,并为这种罕见的单基因糖尿病开发靶向治疗策略。

NOTES

*通讯作者。

参考文献

[1] Hattersley, A.T., Greeley, S.A.W., Polak, M., Rubio-Cabezas, O., Njølstad, P.R., Mlynarski, W., et al. (2018) ISPAD Clinical Practice Consensus Guidelines 2018: The Diagnosis and Management of Monogenic Diabetes in Children and Adolescents. Pediatric Diabetes, 19, 47-63.
https://doi.org/10.1111/pedi.12772
[2] Zhang, H., Colclough, K., Gloyn, A.L. and Pollin, T.I. (2021) Monogenic Diabetes: A Gateway to Precision Medicine in Diabetes. Journal of Clinical Investigation, 131, e142244.
https://doi.org/10.1172/jci142244
[3] Shields, B.M., Hicks, S., Shepherd, M.H., Colclough, K., Hattersley, A.T. and Ellard, S. (2010) Maturity-Onset Diabetes of the Young (MODY): How Many Cases Are We Missing? Diabetologia, 53, 2504-2508.
https://doi.org/10.1007/s00125-010-1799-4
[4] Schober, E., Rami, B., Grabert, M., Thon, A., Kapellen, T., Reinehr, T., et al. (2009) Phenotypical Aspects of Maturity‐Onset Diabetes of the Young (MODY Diabetes) in Comparison with Type 2 Diabetes Mellitus (T2DM) in Children and Adolescents: Experience from a Large Multicentre Database. Diabetic Medicine, 26, 466-473.
https://doi.org/10.1111/j.1464-5491.2009.02720.x
[5] Oliveira, S.C., Neves, J.S., Pérez, A. and Carvalho, D. (2020) Maturity-Onset Diabetes of the Young: From a Molecular Basis Perspective toward the Clinical Phenotype and Proper Management. Endocrinología, Diabetes y Nutrición, 67, 137-147.
https://doi.org/10.1016/j.endinu.2019.07.012
[6] Shimajiri, Y., Sanke, T., Furuta, H., Hanabusa, T., Nakagawa, T., Fujitani, Y., et al. (2001) A Missense Mutation of PAX4 Gene (R121W) Is Associated with Type 2 Diabetes in Japanese. Diabetes, 50, 2864-2869.
https://doi.org/10.2337/diabetes.50.12.2864
[7] Inoue, H., Nomiyama, J., Nakai, K., Matsutani, A., Tanizawa, Y. and Oka, Y. (1998) Isolation of Full-Length cDNA of Mouse PAX4 Gene and Identification of Its Human Homologue. Biochemical and Biophysical Research Communications, 243, 628-633.
https://doi.org/10.1006/bbrc.1998.8144
[8] Smith, S.B., Ee, H.C., Conners, J.R. and German, M.S. (1999) Paired-Homeodomain Transcription Factor PAX4 Acts as a Transcriptional Repressor in Early Pancreatic Development. Molecular and Cellular Biology, 19, 8272-8280.
https://doi.org/10.1128/mcb.19.12.8272
[9] Chi, N. and Epstein, J.A. (2002) Getting Your PAX Straight: PAX Proteins in Development and Disease. Trends in Genetics, 18, 41-47.
https://doi.org/10.1016/s0168-9525(01)02594-x
[10] Sosa-Pineda, B., Chowdhury, K., Torres, M., Oliver, G. and Gruss, P. (1997) The Pax4 Gene Is Essential for Differentiation of Insulin-Producing β Cells in the Mammalian Pancreas. Nature, 386, 399-402.
https://doi.org/10.1038/386399a0
[11] Collombat, P., Mansouri, A., Hecksher-Sørensen, J., Serup, P., Krull, J., Gradwohl, G., et al. (2003) Opposing Actions of ARX and PAX4 in Endocrine Pancreas Development. Genes & Development, 17, 2591-2603.
https://doi.org/10.1101/gad.269003
[12] Collombat, P., Hecksher-Sørensen, J., Broccoli, V., Krull, J., Ponte, I., Mundiger, T., et al. (2005) The Simultaneous Loss of ARX and PAX4 Genes Promotes a Somatostatin-Producing Cell Fate Specification at the Expense of the α-and β-Cell Lineages in the Mouse Endocrine Pancreas. Development, 132, 2969-2980.
https://doi.org/10.1242/dev.01870
[13] Lorenzo, P.I., Fuente-Martín, E., Brun, T., Cobo-Vuilleumier, N., Jimenez-Moreno, C.M., G. Herrera Gomez, I., et al. (2015) PAX4 Defines an Expandable β-Cell Subpopulation in the Adult Pancreatic Islet. Scientific Reports, 5, Article No. 15672.
https://doi.org/10.1038/srep15672
[14] Mauvais-Jarvis, F., Smith, S.B., May, C.L., Leal, S.M., Gautier, J., Molokhia, M., et al. (2004) PAX4 Gene Variations Predispose to Ketosis-Prone Diabetes. Human Molecular Genetics, 13, 3151-3159.
https://doi.org/10.1093/hmg/ddh341
[15] Cheon, C.K., Lee, Y.J., Yoo, S., Lee, J.H., Lee, J.E., Kim, H.J., et al. (2020) Delineation of the Genetic and Clinical Spectrum, Including Candidate Genes, of Monogenic Diabetes: A Multicenter Study in South Korea. Journal of Pediatric Endocrinology and Metabolism, 33, 1539-1550.
https://doi.org/10.1515/jpem-2020-0336
[16] Plengvidhya, N., Kooptiwut, S., Songtawee, N., Doi, A., Furuta, H., Nishi, M., et al. (2007) PAX4 Mutations in Thais with Maturity Onset Diabetes of the Young. The Journal of Clinical Endocrinology & Metabolism, 92, 2821-2826.
https://doi.org/10.1210/jc.2006-1927
[17] Sujjitjoon, J., Kooptiwut, S., Chongjaroen, N., Semprasert, N., Hanchang, W., Chanprasert, K., et al. (2016) PAX4 R192H and P321H Polymorphisms in Type 2 Diabetes and Their Functional Defects. Journal of Human Genetics, 61, 943-949.
https://doi.org/10.1038/jhg.2016.80
[18] Biason-Lauber, A., Boehm, B., Lang-Muritano, M., Gauthier, B.R., Brun, T., Wollheim, C.B., et al. (2005) Association of Childhood Type 1 Diabetes Mellitus with a Variant of PAX4: Possible Link to Beta Cell Regenerative Capacity. Diabetologia, 48, 900-905.
https://doi.org/10.1007/s00125-005-1723-5
[19] (2018) Professional Practice Committee, American College of Cardiology-Designated Representatives, and American Diabetes Association Staff Disclosures. Diabetes Care, 41, S154-S155.
[20] Geng, D., Liu, S., Steck, A., Eisenbarth, G., Rewers, M. and She, J. (2005) Comment On: Biason-Lauber A, Boehm B, Lang-Muritano M, et al. (2005) Association of Childhood Type 1 Diabetes Mellitus with a Variant of PAX4: Possible Link to Beta Cell Regenerative Capacity. Diabetologia 48: 900-905. Diabetologia, 49, 215-216.
https://doi.org/10.1007/s00125-005-0064-8
[21] Martin, R.J.L., Savage, D.A., Carson, D.J., Maxwell, A.P. and Patterson, C.C. (2006) The PAX4 Gene Variant A1168C Is Not Associated with Early Onset Type 1 Diabetes in a UK Population. Diabetic Medicine, 23, 927-928.
https://doi.org/10.1111/j.1464-5491.2006.01869.x
[22] Zhang, Y., Xiao, X., Liu, Y., Zhu, X., Wenhui, L., Li, N., et al. (2008) The Association of the PAX4 Gene with Type 1 Diabetes in Han Chinese. Diabetes Research and Clinical Practice, 81, 365-369.
https://doi.org/10.1016/j.diabres.2008.05.009
[23] Hermann, R., Mantere, J., Lipponen, K., Veijola, R., Soltesz, G., Otonkoski, T., et al. (2005) Lack of Association of PAX4 Gene with Type 1 Diabetes in the Finnish and Hungarian Populations. Diabetes, 54, 2816-2819.
https://doi.org/10.2337/diabetes.54.9.2816
[24] Zhou, G., Tao, M., Wang, Q., Chen, X., Liu, J. and Zhang, L. (2023) Maturity-Onset Diabetes of the Young Type 9 or Latent Autoimmune Diabetes in Adults: A Case Report and Review of Literature. World Journal of Diabetes, 14, 1137-1145.
https://doi.org/10.4239/wjd.v14.i7.1137
[25] Cheung, C.Y.Y., Tang, C.S., Xu, A., Lee, C., Au, K., Xu, L., et al. (2016) Exome-Chip Association Analysis Reveals an Asian-Specific Missense Variant in PAX4 Associated with Type 2 Diabetes in Chinese Individuals. Diabetologia, 60, 107-115.
https://doi.org/10.1007/s00125-016-4132-z
[26] Boike, S., Mir, M., Rauf, I., Jama, A.B., Sunesara, S., Mushtaq, H., et al. (2022) Ketosis-Prone Diabetes Mellitus: A Phenotype That Hospitalists Need to Understand. World Journal of Clinical Cases, 10, 10867-10872.
https://doi.org/10.12998/wjcc.v10.i30.10867
[27] Wang, Y., Zhang, J., Zhao, Y., Wang, S., Zhang, J., Han, Q., et al. (2018) COL4A3 Gene Variants and Diabetic Kidney Disease in MODY. Clinical Journal of the American Society of Nephrology, 13, 1162-1171.
https://doi.org/10.2215/cjn.09100817
[28] WHO Expert Consultation (2004) Appropriate Body-Mass Index for Asian Populations and Its Implications for Policy and Intervention Strategies. The Lancet, 363, 157-163.
[29] Kodama, S., Horikawa, C., Fujihara, K., Yoshizawa, S., Yachi, Y., Tanaka, S., et al. (2013) Quantitative Relationship between Body Weight Gain in Adulthood and Incident Type 2 Diabetes: A Meta-Analysis. Obesity Reviews, 15, 202-214.
https://doi.org/10.1111/obr.12129
[30] Shankar, R.K., Pihoker, C., Dolan, L.M., Standiford, D., Badaru, A., Dabelea, D., et al. (2012) Permanent Neonatal Diabetes Mellitus: Prevalence and Genetic Diagnosis in the SEARCH for Diabetes in Youth Study. Pediatric Diabetes, 14, 174-180.
https://doi.org/10.1111/pedi.12003
[31] Şimşek, E., Çilingir, O., Şimşek, T., Kocagil, S., Erzurumluoğlu Gökalp, E., Demiral, M., et al. (2024) Screening of Mutations in Maturity-Onset Diabetes of the Young-Related Genes and RFX6 in Children with Autoantibody-Negative Type 1 Diabetes Mellitus. Journal of Clinical Research in Pediatric Endocrinology, 16, 137-145.
https://doi.org/10.4274/jcrpe.galenos.2023.2023-5-10
[32] Dong, S. and Wu, H. (2017) Regenerating Β Cells of the Pancreas—Potential Developments in Diabetes Treatment. Expert Opinion on Biological Therapy, 18, 175-185.
https://doi.org/10.1080/14712598.2018.1402885
[33] Lorenzo, P.I., Cobo-Vuilleumier, N. and Gauthier, B.R. (2018) Therapeutic Potential of Pancreatic PAX4-Regulated Pathways in Treating Diabetes Mellitus. Current Opinion in Pharmacology, 43, 1-10.
https://doi.org/10.1016/j.coph.2018.07.004
[34] Blyszczuk, P., Czyz, J., Kania, G., Wagner, M., Roll, U., St-Onge, L., et al. (2003) Expression of PAX4 in Embryonic Stem Cells Promotes Differentiation of Nestin-Positive Progenitor and Insulin-Producing Cells. Proceedings of the National Academy of Sciences, 100, 998-1003.
https://doi.org/10.1073/pnas.0237371100
[35] Parajuli, K.R., Zhang, Y., Cao, A.M., Wang, H., Fonseca, V.A. and Wu, H. (2020) Pax4 Gene Delivery Improves Islet Transplantation Efficacy by Promoting Β Cell Survival and α-to-β Cell Transdifferentiation. Cell Transplantation, 29.
https://doi.org/10.1177/0963689720958655
[36] Wang, D., Yuan, J., Yang, F., Qiu, H., Lu, J. and Yang, J. (2022) Early-Onset Diabetes Involving Three Consecutive Generations Had Different Clinical Features from Age-Matched Type 2 Diabetes without a Family History in China. Endocrine, 78, 47-56.
https://doi.org/10.1007/s12020-022-03144-2
[37] Johnson, S.R., Ellis, J.J., Leo, P.J., Anderson, L.K., Ganti, U., Harris, J.E., et al. (2018) Comprehensive Genetic Screening: The Prevalence of Maturity-Onset Diabetes of the Young Gene Variants in a Population-Based Childhood Diabetes Cohort. Pediatric Diabetes, 20, 57-64.
https://doi.org/10.1111/pedi.12766
[38] Zubkova, N., Burumkulova, F., Plechanova, M., Petrukhin, V., Petrov, V., Vasilyev, E., et al. (2019) High Frequency of Pathogenic and Rare Sequence Variants in Diabetes-Related Genes among Russian Patients with Diabetes in Pregnancy. Acta Diabetologica, 56, 413-420.
https://doi.org/10.1007/s00592-018-01282-6
[39] Zhu, M.-Q., et al. (2019) Maturity Onset Diabetes of the Young (MODY) in Chinese Children: Genes and Clinical Phenotypes. Journal of Pediatric Endocrinology and Metabolism, 32, 759-765.
https://doi.org/10.1515/jpem-2018-0446
[40] Chapla, A., Mruthyunjaya, M.D., Asha, H.S., Varghese, D., Varshney, M., Vasan, S.K., et al. (2014) Maturity Onset Diabetes of the Young in India—A Distinctive Mutation Pattern Identified through Targeted Next-Generation Sequencing. Clinical Endocrinology, 82, 533-542.
https://doi.org/10.1111/cen.12541
[41] Liang, H., Zhang, Y., Li, M., Yan, J., Yang, D., Luo, S., et al. (2020) Recognition of Maturity‐Onset Diabetes of the Young in China. Journal of Diabetes Investigation, 12, 501-509.
https://doi.org/10.1111/jdi.13378
[42] Ding, Y., Li, N., Lou, D., Zhang, Q., Chang, G., Li, J., et al. (2020) Clinical and Genetic Analysis in a Chinese Cohort of Children and Adolescents with Diabetes/Persistent Hyperglycemia. Journal of Diabetes Investigation, 12, 48-62.
https://doi.org/10.1111/jdi.13322
[43] Yu, M.G., Keenan, H.A., Shah, H.S., Frodsham, S.G., Pober, D., He, Z., et al. (2019) Residual Β Cell Function and Monogenic Variants in Long-Duration Type 1 Diabetes Patients. Journal of Clinical Investigation, 129, 3252-3263.
https://doi.org/10.1172/jci127397
[44] Zhang, D., Chen, C., Yang, W., Piao, Y., Ren, L. and Sang, Y. (2022) C.487C>T Mutation in PAX4 Gene Causes MODY9: A Case Report and Literature Review. Medicine, 101, e32461.
https://doi.org/10.1097/md.0000000000032461
[45] Demirci, D.K., Darendeliler, F., Poyrazoglu, S., Al, A.D.K., Gul, N., Tutuncu, Y., et al. (2021) Monogenic Childhood Diabetes: Dissecting Clinical Heterogeneity by Next-Generation Sequencing in Maturity-Onset Diabetes of the Young. OMICS: A Journal of Integrative Biology, 25, 431-449.
https://doi.org/10.1089/omi.2021.0081
[46] Lee, D., Kwak, S., Park, H.S., Ku, E.J., Jeon, H.J. and Oh, T.K. (2021) Identification of Candidate Gene Variants of Monogenic Diabetes Using Targeted Panel Sequencing in Early Onset Diabetes Patients. BMJ Open Diabetes Research & Care, 9, e002217.
https://doi.org/10.1136/bmjdrc-2021-002217
[47] Glotov, O., Serebryakova, E., Turkunova, M., Efimova, O., Glotov, A., Barbitoff, Y., et al. (2019) Whole-Exome Sequencing in Russian Children with Non-Type 1 Diabetes Mellitus Reveals a Wide Spectrum of Genetic Variants in Mody-Related and Unrelated Genes. Molecular Medicine Reports, 20, 4905-4914.
https://doi.org/10.3892/mmr.2019.10751
[48] Pezzilli, S., Ludovico, O., Biagini, T., Mercuri, L., Alberico, F., Lauricella, E., et al. (2017) Insights from Molecular Characterization of Adult Patients of Families with Multigenerational Diabetes. Diabetes, 67, 137-145.
https://doi.org/10.2337/db17-0867
[49] Jo, W., Endo, M., Ishizu, K., Nakamura, A. and Tajima, T. (2011) A Novel PAX4 Mutation in a Japanese Patient with Maturity-Onset Diabetes of the Young. The Tohoku Journal of Experimental Medicine, 223, 113-118.
https://doi.org/10.1620/tjem.223.113