[1]
|
Hattersley, A.T., Greeley, S.A.W., Polak, M., Rubio-Cabezas, O., Njølstad, P.R., Mlynarski, W., et al. (2018) ISPAD Clinical Practice Consensus Guidelines 2018: The Diagnosis and Management of Monogenic Diabetes in Children and Adolescents. Pediatric Diabetes, 19, 47-63. https://doi.org/10.1111/pedi.12772
|
[2]
|
Zhang, H., Colclough, K., Gloyn, A.L. and Pollin, T.I. (2021) Monogenic Diabetes: A Gateway to Precision Medicine in Diabetes. Journal of Clinical Investigation, 131, e142244. https://doi.org/10.1172/jci142244
|
[3]
|
Shields, B.M., Hicks, S., Shepherd, M.H., Colclough, K., Hattersley, A.T. and Ellard, S. (2010) Maturity-Onset Diabetes of the Young (MODY): How Many Cases Are We Missing? Diabetologia, 53, 2504-2508. https://doi.org/10.1007/s00125-010-1799-4
|
[4]
|
Schober, E., Rami, B., Grabert, M., Thon, A., Kapellen, T., Reinehr, T., et al. (2009) Phenotypical Aspects of Maturity‐Onset Diabetes of the Young (MODY Diabetes) in Comparison with Type 2 Diabetes Mellitus (T2DM) in Children and Adolescents: Experience from a Large Multicentre Database. Diabetic Medicine, 26, 466-473. https://doi.org/10.1111/j.1464-5491.2009.02720.x
|
[5]
|
Oliveira, S.C., Neves, J.S., Pérez, A. and Carvalho, D. (2020) Maturity-Onset Diabetes of the Young: From a Molecular Basis Perspective toward the Clinical Phenotype and Proper Management. Endocrinología, Diabetes y Nutrición, 67, 137-147. https://doi.org/10.1016/j.endinu.2019.07.012
|
[6]
|
Shimajiri, Y., Sanke, T., Furuta, H., Hanabusa, T., Nakagawa, T., Fujitani, Y., et al. (2001) A Missense Mutation of PAX4 Gene (R121W) Is Associated with Type 2 Diabetes in Japanese. Diabetes, 50, 2864-2869. https://doi.org/10.2337/diabetes.50.12.2864
|
[7]
|
Inoue, H., Nomiyama, J., Nakai, K., Matsutani, A., Tanizawa, Y. and Oka, Y. (1998) Isolation of Full-Length cDNA of Mouse PAX4 Gene and Identification of Its Human Homologue. Biochemical and Biophysical Research Communications, 243, 628-633. https://doi.org/10.1006/bbrc.1998.8144
|
[8]
|
Smith, S.B., Ee, H.C., Conners, J.R. and German, M.S. (1999) Paired-Homeodomain Transcription Factor PAX4 Acts as a Transcriptional Repressor in Early Pancreatic Development. Molecular and Cellular Biology, 19, 8272-8280. https://doi.org/10.1128/mcb.19.12.8272
|
[9]
|
Chi, N. and Epstein, J.A. (2002) Getting Your PAX Straight: PAX Proteins in Development and Disease. Trends in Genetics, 18, 41-47. https://doi.org/10.1016/s0168-9525(01)02594-x
|
[10]
|
Sosa-Pineda, B., Chowdhury, K., Torres, M., Oliver, G. and Gruss, P. (1997) The Pax4 Gene Is Essential for Differentiation of Insulin-Producing β Cells in the Mammalian Pancreas. Nature, 386, 399-402. https://doi.org/10.1038/386399a0
|
[11]
|
Collombat, P., Mansouri, A., Hecksher-Sørensen, J., Serup, P., Krull, J., Gradwohl, G., et al. (2003) Opposing Actions of ARX and PAX4 in Endocrine Pancreas Development. Genes & Development, 17, 2591-2603. https://doi.org/10.1101/gad.269003
|
[12]
|
Collombat, P., Hecksher-Sørensen, J., Broccoli, V., Krull, J., Ponte, I., Mundiger, T., et al. (2005) The Simultaneous Loss of ARX and PAX4 Genes Promotes a Somatostatin-Producing Cell Fate Specification at the Expense of the α-and β-Cell Lineages in the Mouse Endocrine Pancreas. Development, 132, 2969-2980. https://doi.org/10.1242/dev.01870
|
[13]
|
Lorenzo, P.I., Fuente-Martín, E., Brun, T., Cobo-Vuilleumier, N., Jimenez-Moreno, C.M., G. Herrera Gomez, I., et al. (2015) PAX4 Defines an Expandable β-Cell Subpopulation in the Adult Pancreatic Islet. Scientific Reports, 5, Article No. 15672. https://doi.org/10.1038/srep15672
|
[14]
|
Mauvais-Jarvis, F., Smith, S.B., May, C.L., Leal, S.M., Gautier, J., Molokhia, M., et al. (2004) PAX4 Gene Variations Predispose to Ketosis-Prone Diabetes. Human Molecular Genetics, 13, 3151-3159. https://doi.org/10.1093/hmg/ddh341
|
[15]
|
Cheon, C.K., Lee, Y.J., Yoo, S., Lee, J.H., Lee, J.E., Kim, H.J., et al. (2020) Delineation of the Genetic and Clinical Spectrum, Including Candidate Genes, of Monogenic Diabetes: A Multicenter Study in South Korea. Journal of Pediatric Endocrinology and Metabolism, 33, 1539-1550. https://doi.org/10.1515/jpem-2020-0336
|
[16]
|
Plengvidhya, N., Kooptiwut, S., Songtawee, N., Doi, A., Furuta, H., Nishi, M., et al. (2007) PAX4 Mutations in Thais with Maturity Onset Diabetes of the Young. The Journal of Clinical Endocrinology & Metabolism, 92, 2821-2826. https://doi.org/10.1210/jc.2006-1927
|
[17]
|
Sujjitjoon, J., Kooptiwut, S., Chongjaroen, N., Semprasert, N., Hanchang, W., Chanprasert, K., et al. (2016) PAX4 R192H and P321H Polymorphisms in Type 2 Diabetes and Their Functional Defects. Journal of Human Genetics, 61, 943-949. https://doi.org/10.1038/jhg.2016.80
|
[18]
|
Biason-Lauber, A., Boehm, B., Lang-Muritano, M., Gauthier, B.R., Brun, T., Wollheim, C.B., et al. (2005) Association of Childhood Type 1 Diabetes Mellitus with a Variant of PAX4: Possible Link to Beta Cell Regenerative Capacity. Diabetologia, 48, 900-905. https://doi.org/10.1007/s00125-005-1723-5
|
[19]
|
(2018) Professional Practice Committee, American College of Cardiology-Designated Representatives, and American Diabetes Association Staff Disclosures. Diabetes Care, 41, S154-S155.
|
[20]
|
Geng, D., Liu, S., Steck, A., Eisenbarth, G., Rewers, M. and She, J. (2005) Comment On: Biason-Lauber A, Boehm B, Lang-Muritano M, et al. (2005) Association of Childhood Type 1 Diabetes Mellitus with a Variant of PAX4: Possible Link to Beta Cell Regenerative Capacity. Diabetologia 48: 900-905. Diabetologia, 49, 215-216. https://doi.org/10.1007/s00125-005-0064-8
|
[21]
|
Martin, R.J.L., Savage, D.A., Carson, D.J., Maxwell, A.P. and Patterson, C.C. (2006) The PAX4 Gene Variant A1168C Is Not Associated with Early Onset Type 1 Diabetes in a UK Population. Diabetic Medicine, 23, 927-928. https://doi.org/10.1111/j.1464-5491.2006.01869.x
|
[22]
|
Zhang, Y., Xiao, X., Liu, Y., Zhu, X., Wenhui, L., Li, N., et al. (2008) The Association of the PAX4 Gene with Type 1 Diabetes in Han Chinese. Diabetes Research and Clinical Practice, 81, 365-369. https://doi.org/10.1016/j.diabres.2008.05.009
|
[23]
|
Hermann, R., Mantere, J., Lipponen, K., Veijola, R., Soltesz, G., Otonkoski, T., et al. (2005) Lack of Association of PAX4 Gene with Type 1 Diabetes in the Finnish and Hungarian Populations. Diabetes, 54, 2816-2819. https://doi.org/10.2337/diabetes.54.9.2816
|
[24]
|
Zhou, G., Tao, M., Wang, Q., Chen, X., Liu, J. and Zhang, L. (2023) Maturity-Onset Diabetes of the Young Type 9 or Latent Autoimmune Diabetes in Adults: A Case Report and Review of Literature. World Journal of Diabetes, 14, 1137-1145. https://doi.org/10.4239/wjd.v14.i7.1137
|
[25]
|
Cheung, C.Y.Y., Tang, C.S., Xu, A., Lee, C., Au, K., Xu, L., et al. (2016) Exome-Chip Association Analysis Reveals an Asian-Specific Missense Variant in PAX4 Associated with Type 2 Diabetes in Chinese Individuals. Diabetologia, 60, 107-115. https://doi.org/10.1007/s00125-016-4132-z
|
[26]
|
Boike, S., Mir, M., Rauf, I., Jama, A.B., Sunesara, S., Mushtaq, H., et al. (2022) Ketosis-Prone Diabetes Mellitus: A Phenotype That Hospitalists Need to Understand. World Journal of Clinical Cases, 10, 10867-10872. https://doi.org/10.12998/wjcc.v10.i30.10867
|
[27]
|
Wang, Y., Zhang, J., Zhao, Y., Wang, S., Zhang, J., Han, Q., et al. (2018) COL4A3 Gene Variants and Diabetic Kidney Disease in MODY. Clinical Journal of the American Society of Nephrology, 13, 1162-1171. https://doi.org/10.2215/cjn.09100817
|
[28]
|
WHO Expert Consultation (2004) Appropriate Body-Mass Index for Asian Populations and Its Implications for Policy and Intervention Strategies. The Lancet, 363, 157-163.
|
[29]
|
Kodama, S., Horikawa, C., Fujihara, K., Yoshizawa, S., Yachi, Y., Tanaka, S., et al. (2013) Quantitative Relationship between Body Weight Gain in Adulthood and Incident Type 2 Diabetes: A Meta-Analysis. Obesity Reviews, 15, 202-214. https://doi.org/10.1111/obr.12129
|
[30]
|
Shankar, R.K., Pihoker, C., Dolan, L.M., Standiford, D., Badaru, A., Dabelea, D., et al. (2012) Permanent Neonatal Diabetes Mellitus: Prevalence and Genetic Diagnosis in the SEARCH for Diabetes in Youth Study. Pediatric Diabetes, 14, 174-180. https://doi.org/10.1111/pedi.12003
|
[31]
|
Şimşek, E., Çilingir, O., Şimşek, T., Kocagil, S., Erzurumluoğlu Gökalp, E., Demiral, M., et al. (2024) Screening of Mutations in Maturity-Onset Diabetes of the Young-Related Genes and RFX6 in Children with Autoantibody-Negative Type 1 Diabetes Mellitus. Journal of Clinical Research in Pediatric Endocrinology, 16, 137-145. https://doi.org/10.4274/jcrpe.galenos.2023.2023-5-10
|
[32]
|
Dong, S. and Wu, H. (2017) Regenerating Β Cells of the Pancreas—Potential Developments in Diabetes Treatment. Expert Opinion on Biological Therapy, 18, 175-185. https://doi.org/10.1080/14712598.2018.1402885
|
[33]
|
Lorenzo, P.I., Cobo-Vuilleumier, N. and Gauthier, B.R. (2018) Therapeutic Potential of Pancreatic PAX4-Regulated Pathways in Treating Diabetes Mellitus. Current Opinion in Pharmacology, 43, 1-10. https://doi.org/10.1016/j.coph.2018.07.004
|
[34]
|
Blyszczuk, P., Czyz, J., Kania, G., Wagner, M., Roll, U., St-Onge, L., et al. (2003) Expression of PAX4 in Embryonic Stem Cells Promotes Differentiation of Nestin-Positive Progenitor and Insulin-Producing Cells. Proceedings of the National Academy of Sciences, 100, 998-1003. https://doi.org/10.1073/pnas.0237371100
|
[35]
|
Parajuli, K.R., Zhang, Y., Cao, A.M., Wang, H., Fonseca, V.A. and Wu, H. (2020) Pax4 Gene Delivery Improves Islet Transplantation Efficacy by Promoting Β Cell Survival and α-to-β Cell Transdifferentiation. Cell Transplantation, 29. https://doi.org/10.1177/0963689720958655
|
[36]
|
Wang, D., Yuan, J., Yang, F., Qiu, H., Lu, J. and Yang, J. (2022) Early-Onset Diabetes Involving Three Consecutive Generations Had Different Clinical Features from Age-Matched Type 2 Diabetes without a Family History in China. Endocrine, 78, 47-56. https://doi.org/10.1007/s12020-022-03144-2
|
[37]
|
Johnson, S.R., Ellis, J.J., Leo, P.J., Anderson, L.K., Ganti, U., Harris, J.E., et al. (2018) Comprehensive Genetic Screening: The Prevalence of Maturity-Onset Diabetes of the Young Gene Variants in a Population-Based Childhood Diabetes Cohort. Pediatric Diabetes, 20, 57-64. https://doi.org/10.1111/pedi.12766
|
[38]
|
Zubkova, N., Burumkulova, F., Plechanova, M., Petrukhin, V., Petrov, V., Vasilyev, E., et al. (2019) High Frequency of Pathogenic and Rare Sequence Variants in Diabetes-Related Genes among Russian Patients with Diabetes in Pregnancy. Acta Diabetologica, 56, 413-420. https://doi.org/10.1007/s00592-018-01282-6
|
[39]
|
Zhu, M.-Q., et al. (2019) Maturity Onset Diabetes of the Young (MODY) in Chinese Children: Genes and Clinical Phenotypes. Journal of Pediatric Endocrinology and Metabolism, 32, 759-765. https://doi.org/10.1515/jpem-2018-0446
|
[40]
|
Chapla, A., Mruthyunjaya, M.D., Asha, H.S., Varghese, D., Varshney, M., Vasan, S.K., et al. (2014) Maturity Onset Diabetes of the Young in India—A Distinctive Mutation Pattern Identified through Targeted Next-Generation Sequencing. Clinical Endocrinology, 82, 533-542. https://doi.org/10.1111/cen.12541
|
[41]
|
Liang, H., Zhang, Y., Li, M., Yan, J., Yang, D., Luo, S., et al. (2020) Recognition of Maturity‐Onset Diabetes of the Young in China. Journal of Diabetes Investigation, 12, 501-509. https://doi.org/10.1111/jdi.13378
|
[42]
|
Ding, Y., Li, N., Lou, D., Zhang, Q., Chang, G., Li, J., et al. (2020) Clinical and Genetic Analysis in a Chinese Cohort of Children and Adolescents with Diabetes/Persistent Hyperglycemia. Journal of Diabetes Investigation, 12, 48-62. https://doi.org/10.1111/jdi.13322
|
[43]
|
Yu, M.G., Keenan, H.A., Shah, H.S., Frodsham, S.G., Pober, D., He, Z., et al. (2019) Residual Β Cell Function and Monogenic Variants in Long-Duration Type 1 Diabetes Patients. Journal of Clinical Investigation, 129, 3252-3263. https://doi.org/10.1172/jci127397
|
[44]
|
Zhang, D., Chen, C., Yang, W., Piao, Y., Ren, L. and Sang, Y. (2022) C.487C>T Mutation in PAX4 Gene Causes MODY9: A Case Report and Literature Review. Medicine, 101, e32461. https://doi.org/10.1097/md.0000000000032461
|
[45]
|
Demirci, D.K., Darendeliler, F., Poyrazoglu, S., Al, A.D.K., Gul, N., Tutuncu, Y., et al. (2021) Monogenic Childhood Diabetes: Dissecting Clinical Heterogeneity by Next-Generation Sequencing in Maturity-Onset Diabetes of the Young. OMICS: A Journal of Integrative Biology, 25, 431-449. https://doi.org/10.1089/omi.2021.0081
|
[46]
|
Lee, D., Kwak, S., Park, H.S., Ku, E.J., Jeon, H.J. and Oh, T.K. (2021) Identification of Candidate Gene Variants of Monogenic Diabetes Using Targeted Panel Sequencing in Early Onset Diabetes Patients. BMJ Open Diabetes Research & Care, 9, e002217. https://doi.org/10.1136/bmjdrc-2021-002217
|
[47]
|
Glotov, O., Serebryakova, E., Turkunova, M., Efimova, O., Glotov, A., Barbitoff, Y., et al. (2019) Whole-Exome Sequencing in Russian Children with Non-Type 1 Diabetes Mellitus Reveals a Wide Spectrum of Genetic Variants in Mody-Related and Unrelated Genes. Molecular Medicine Reports, 20, 4905-4914. https://doi.org/10.3892/mmr.2019.10751
|
[48]
|
Pezzilli, S., Ludovico, O., Biagini, T., Mercuri, L., Alberico, F., Lauricella, E., et al. (2017) Insights from Molecular Characterization of Adult Patients of Families with Multigenerational Diabetes. Diabetes, 67, 137-145. https://doi.org/10.2337/db17-0867
|
[49]
|
Jo, W., Endo, M., Ishizu, K., Nakamura, A. and Tajima, T. (2011) A Novel PAX4 Mutation in a Japanese Patient with Maturity-Onset Diabetes of the Young. The Tohoku Journal of Experimental Medicine, 223, 113-118. https://doi.org/10.1620/tjem.223.113
|