|
[1]
|
Mulvihill, E.E. and Drucker, D.J. (2014) Pharmacology, Physiology, and Mechanisms of Action of Dipeptidyl Peptidase-4 Inhibitors. Endocrine Reviews, 35, 992-1019. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zhang, T., Tong, X., Zhang, S., Wang, D., Wang, L., Wang, Q., et al. (2021) The Roles of Dipeptidyl Peptidase 4 (DPP4) and DPP4 Inhibitors in Different Lung Diseases: New Evidence. Frontiers in Pharmacology, 12, Article 731453. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Thornberry, N.A. and Gallwitz, B. (2009) Mechanism of Action of Inhibitors of Dipeptidyl-Peptidase-4 (DPP-4). Best Practice & Research Clinical Endocrinology & Metabolism, 23, 479-486. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhong, J., Rao, X. and Rajagopalan, S. (2013) An Emerging Role of Dipeptidyl Peptidase 4 (DPP4) Beyond Glucose Control: Potential Implications in Cardiovascular Disease. Atherosclerosis, 226, 305-314. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Sebastián-Martín, A., Sánchez, B.G., Mora-Rodríguez, J.M., Bort, A. and Díaz-Laviada, I. (2022) Role of Dipeptidyl Peptidase-4 (DPP4) on COVID-19 Physiopathology. Biomedicines, 10, Article 2026. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Gupta, S. and Sen, U. (2019) More than Just an Enzyme: Dipeptidyl Peptidase-4 (DPP-4) and Its Association with Diabetic Kidney Remodelling. Pharmacological Research, 147, Article ID: 104391. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Weber, A.E. (2004) Dipeptidyl Peptidase IV Inhibitors for the Treatment of Diabetes. Journal of Medicinal Chemistry, 47, 4135-4141. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Mest, H.J. and Mentlein, R. (2005) Dipeptidyl Peptidase Inhibitors as New Drugs for the Treatment of Type 2 Diabetes. Diabetologia, 48, 616-620. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yazbeck, R., Howarth, G.S. and Abbott, C.A. (2009) Dipeptidyl Peptidase Inhibitors, an Emerging Drug Class for Inflammatory Disease? Trends in Pharmacological Sciences, 30, 600-607. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Lyseng-Williamson, K.A. (2007) Sitagliptin. Drugs, 67, 587-597. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Dhillon, S. and Weber, J. (2009) Saxagliptin. Drugs, 69, 2103-2114. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Graefe-Mody, U., Retlich, S. and Friedrich, C. (2012) Clinical Pharmacokinetics and Pharmacodynamics of Linagliptin. Clinical Pharmacokinetics, 51, 411-427. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Scott, L.J. (2017) Sitagliptin: A Review in Type 2 Diabetes. Drugs, 77, 209-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Nicotera, R., Casarella, A., Longhitano, E., Bolignano, D., Andreucci, M., De Sarro, G., et al. (2020) Antiproteinuric Effect of DPP-IV Inhibitors in Diabetic and Non-Diabetic Kidney Diseases. Pharmacological Research, 159, Article ID: 105019. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kim, S.C., Schneeweiss, S., Glynn, R.J., Doherty, M., Goldfine, A.B. and Solomon, D.H. (2014) Dipeptidyl Peptidase-4 Inhibitors in Type 2 Diabetes May Reduce the Risk of Autoimmune Diseases: A Population-Based Cohort Study. Annals of the Rheumatic Diseases, 74, 1968-1975. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Liu, D., Jin, B., Chen, W. and Yun, P. (2019) Dipeptidyl Peptidase 4 (DPP-4) Inhibitors and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus (T2DM): A Systematic Review and Meta-Analysis. BMC Pharmacology and Toxicology, 20, Article No. 15. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Leung, M., Leung, D.Y. and Wong, V.W. (2016) Effects of Dipeptidyl Peptidase-4 Inhibitors on Cardiac and Endothelial Function in Type 2 Diabetes Mellitus: A Pilot Study. Diabetes and Vascular Disease Research, 13, 236-243. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Sarkar, J., Nargis, T., Tantia, O., Ghosh, S. and Chakrabarti, P. (2019) Increased Plasma Dipeptidyl Peptidase-4 (DPP4) Activity Is an Obesity-Independent Parameter for Glycemic Deregulation in Type 2 Diabetes Patients. Frontiers in Endocrinology, 10, Article 505. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Ayaori, M., Iwakami, N., Uto‐Kondo, H., Sato, H., Sasaki, M., Komatsu, T., et al. (2013) Dipeptidyl Peptidase‐4 Inhibitors Attenuate Endothelial Function as Evaluated by Flow‐mediated Vasodilatation in Type 2 Diabetic Patients. Journal of the American Heart Association, 2, e003277. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Barnett, A. (2006) DPP-4 Inhibitors and Their Potential Role in the Management of Type 2 Diabetes. International Journal of Clinical Practice, 60, 1454-1470. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Gallwitz, B. (2019) Clinical Use of DPP-4 Inhibitors. Frontiers in Endocrinology, 10, Article 389. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Aschner, P., Kipnes, M.S., Lunceford, J.K., Sanchez, M., Mickel, C. and Williams-Herman, D.E. (2006) Effect of the Dipeptidyl Peptidase-4 Inhibitor Sitagliptin as Monotherapy on Glycemic Control in Patients with Type 2 Diabetes. Diabetes Care, 29, 2632-2637. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Chan, J.C.N., Aschner, P., Owens, D.R., Picard, S., Vincent, M., Dain, M., et al. (2015) Triple Combination of Insulin Glargine, Sitagliptin and Metformin in Type 2 Diabetes: The EASIE Post-Hoc Analysis and Extension Trial. Journal of Diabetes and Its Complications, 29, 134-141. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Libby, P. (2021) The Changing Landscape of Atherosclerosis. Nature, 592, 524-533. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Björkegren, J.L.M. and Lusis, A.J. (2022) Atherosclerosis: Recent Developments. Cell, 185, 1630-1645. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zeng, Y., Li, C., Guan, M., Zheng, Z., Li, J., Xu, W., et al. (2014) The DPP-4 Inhibitor Sitagliptin Attenuates the Progress of Atherosclerosis in Apolipoprotein-E-Knockout Mice via AMPK-and MAPK-Dependent Mechanisms. Cardiovascular Diabetology, 13, Article No. 32. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ervinna, N., Mita, T., Yasunari, E., Azuma, K., Tanaka, R., Fujimura, S., et al. (2013) Anagliptin, a DPP-4 Inhibitor, Suppresses Proliferation of Vascular Smooth Muscles and Monocyte Inflammatory Reaction and Attenuates Atherosclerosis in Male Apo E-Deficient Mice. Endocrinology, 154, 1260-1270. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Meng, J., Zhang, W., Wang, C., Xiong, S., Wang, Q., Li, H., et al. (2020) The Dipeptidyl Peptidase (DPP)-4 Inhibitor Trelagliptin Inhibits Il-1β-Induced Endothelial Inflammation and Monocytes Attachment. International Immunopharmacology, 89, Article ID: 106996. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Lu, H.Y., Huang, C.Y., Shih, C.M., Chang, W.H., Tsai, C.S., Lin, F.Y., et al. (2015) Dipeptidyl Peptidase-4 Inhibitor Decreases Abdominal Aortic Aneurysm Formation through GLP-1-Dependent Monocytic Activity in Mice. PLOS ONE, 10, e0121077. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Vittone, F., Liberman, A., Vasic, D., Ostertag, R., Esser, M., Walcher, D., et al. (2012) Sitagliptin Reduces Plaque Macrophage Content and Stabilises Arteriosclerotic Lesions in Apoe−/− Mice. Diabetologia, 55, 2267-2275. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Han, S.J., Ha, K.H., Lee, N. and Kim, D.J. (2020) Effectiveness and Safety of Sodium‐Glucose Co‐Transporter‐2 Inhibitors Compared with Dipeptidyl Peptidase‐4 Inhibitors in Older Adults with Type 2 Diabetes: A Nationwide Population‐Based Study. Diabetes, Obesity and Metabolism, 23, 682-691. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Chen, S., Kong, X., Zhang, K., Luo, S., Wang, F. and Zhang, J. (2022) DPP4 as a Potential Candidate in Cardiovascular Disease. Journal of Inflammation Research, 15, 5457-5469. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Haidinger, M., Werzowa, J., Hecking, M., Antlanger, M., Stemer, G., Pleiner, J., et al. (2014) Efficacy and Safety of Vildagliptin in New-Onset Diabetes after Kidney Transplantation—A Randomized, Double-Blind, Placebo-Controlled Trial. American Journal of Transplantation, 14, 115-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Mita, T., Katakami, N., Shiraiwa, T., Yoshii, H., Gosho, M., Ishii, H., et al. (2017) The Influence of Sitagliptin on Treatment-Related Quality of Life in Patients with Type 2 Diabetes Mellitus Receiving Insulin Treatment: A Prespecified Sub-Analysis. Diabetes Therapy, 8, 693-704. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Mita, T., Katakami, N., Yoshii, H., Onuma, T., Kaneto, H., Osonoi, T., et al. (2015) Alogliptin, a Dipeptidyl Peptidase 4 Inhibitor, Prevents the Progression of Carotid Atherosclerosis in Patients with Type 2 Diabetes: The Study of Preventive Effects of Alogliptin on Diabetic Atherosclerosis (SPEAD-A). Diabetes Care, 39, 139-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Mita, T., Katakami, N., Shiraiwa, T., Yoshii, H., Onuma, T., Kuribayashi, N., et al. (2016) Sitagliptin Attenuates the Progression of Carotid Intima-Media Thickening in Insulin-Treated Patients with Type 2 Diabetes: The Sitagliptin Preventive Study of Intima-Media Thickness Evaluation (Spike). Diabetes Care, 39, 455-464. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
de Boer, S.A., Heerspink, H.J.L., Juárez Orozco, L.E., van Roon, A.M., Kamphuisen, P.W., Smit, A.J., et al. (2017) Effect of Linagliptin on Pulse Wave Velocity in Early Type 2 Diabetes: A Randomized, Double‐Blind, Controlled 26‐Week Trial (Release). Diabetes, Obesity and Metabolism, 19, 1147-1154. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Lu, Z., Ma, G. and Chen, L. (2020) Sitagliptin on Carotid Intima-Media Thickness in Type 2 Diabetes Mellitus Patients and Anemia: A Subgroup Analysis of the PROLOGUE Study. Mediators of Inflammation, 2020, Article ID: 8143835. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Staessen, J.A., Wang, J., Bianchi, G. and Birkenhäger, W.H. (2003) Essential Hypertension. The Lancet, 361, 1629-1641. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Suzuki, Y., Kaneko, H., Okada, A., Komuro, J., Fujiu, K., Takeda, N., et al. (2024) Comparison of Incident Hypertension between SGLT2 Inhibitors vs. DPP4 Inhibitors. Hypertension Research, 47, 1789-1796. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Nistala, R. and Savin, V. (2017) Diabetes, Hypertension, and Chronic Kidney Disease Progression: Role of DPP4. American Journal of Physiology-Renal Physiology, 312, F661-F670. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Sweadner, K.J. and Donnet, C. (2001) Structural Similarities of Na, K-ATpase and SERCA, the Ca2+-ATpase of the Sarcoplasmic Reticulum. Biochemical Journal, 356, 685-704. [Google Scholar] [CrossRef]
|
|
[43]
|
Mason, R.P., Jacob, R.F., Kubant, R., Ciszewski, A., Corbalan, J.J. and Malinski, T. (2012) Dipeptidyl Peptidase-4 Inhibition with Saxagliptin Enhanced Nitric Oxide Release and Reduced Blood Pressure and Sicam-1 Levels in Hypertensive Rats. Journal of Cardiovascular Pharmacology, 60, 467-473. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Vellecco, V., Mitidieri, E., Gargiulo, A., Brancaleone, V., Matassa, D., Klein, T., et al. (2016) Vascular Effects of Linagliptin in Non‐Obese Diabetic Mice Are Glucose‐Independent and Involve Positive Modulation of the Endothelial Nitric Oxide Synthase (eNOS)/Caveolin‐1 (CAV‐1) Pathway. Diabetes, Obesity and Metabolism, 18, 1236-1243. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Hussain, M., Atif, M.A. and Ghafoor, M.B. (2016) Beneficial Effects of Sitagliptin and Metformin in Non-Diabetic Hypertensive and Dyslipidemic Patients. Pakistan Journal of Pharmaceutical Sciences, 29, 2385-2389.
|
|
[46]
|
Yuasa, S., Sato, K., Furuki, T., Minamizawa, K., Sakai, H., Numata, Y., et al. (2017) Primary Care-Based Investigation of the Effect of Sitagliptin on Blood Pressure in Hypertensive Patients with Type 2 Diabetes. Journal of Clinical Medicine Research, 9, 188-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Harangi, M., Tóth, N. and Katona, É. (2023) A dipeptidil-peptidáz-4-gátlók szerepe a 2-es típusú diabetes mellitus kezelésében napjainkban. Diabetologia Hungarica, 31, 113-122. [Google Scholar] [CrossRef]
|
|
[48]
|
Groenewegen, A., Rutten, F.H., Mosterd, A. and Hoes, A.W. (2020) Epidemiology of Heart Failure. European Journal of Heart Failure, 22, 1342-1356. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Xia, C., Goud, A., D’Souza, J., Dahagam, C., Rao, X., Rajagopalan, S., et al. (2017) DPP4 Inhibitors and Cardiovascular Outcomes: Safety on Heart Failure. Heart Failure Reviews, 22, 299-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Lee, S.J., Lee, K.H., Oh, H.G., Seo, H.J., Jeong, S.J. and Kim, C.H. (2019) Effect of Sodium-Glucose Cotransporter-2 Inhibitors versus Dipeptidyl Peptidase 4 Inhibitors on Cardiovascular Function in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease. Journal of Obesity & Metabolic Syndrome, 28, 254-261. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Matsubara, J., Sugiyama, S., Akiyama, E., Iwashita, S., Kurokawa, H., Ohba, K., et al. (2013) Dipeptidyl Peptidase-4 Inhibitor, Sitagliptin, Improves Endothelial Dysfunction in Association with Its Anti-Inflammatory Effects in Patients with Coronary Artery Disease and Uncontrolled Diabetes. Circulation Journal, 77, 1337-1344. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Read, P.A., Khan, F.Z., Heck, P.M., Hoole, S.P. and Dutka, D.P. (2010) DPP-4 Inhibition by Sitagliptin Improves the Myocardial Response to Dobutamine Stress and Mitigates Stunning in a Pilot Study of Patients with Coronary Artery Disease. Circulation: Cardiovascular Imaging, 3, 195-201. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Chaykovska, L., von Websky, K., Rahnenführer, J., Alter, M., Heiden, S., Fuchs, H., et al. (2011) Effects of DPP-4 Inhibitors on the Heart in a Rat Model of Uremic Cardiomyopathy. PLOS ONE, 6, e27861. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Hong, S., Choo, E., Ihm, S., Chang, K. and Seung, K. (2017) Dipeptidyl Peptidase 4 Inhibitor Attenuates Obesity-Induced Myocardial Fibrosis by Inhibiting Transforming Growth Factor-βl and Smad2/3 Pathways in High-Fat Diet-Induced Obesity Rat Model. Metabolism, 76, 42-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Kopin, L. and Lowenstein, C.J. (2017) Dyslipidemia. Annals of Internal Medicine, 167, ITC81. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Berberich, A.J. and Hegele, R.A. (2021) A Modern Approach to Dyslipidemia. Endocrine Reviews, 43, 611-653. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Fukuda-Tsuru, S., Anabuki, J., Abe, Y., Yoshida, K. and Ishii, S. (2012) A Novel, Potent, and Long-Lasting Dipeptidyl Peptidase-4 Inhibitor, Teneligliptin, Improves Postprandial Hyperglycemia and Dyslipidemia after Single and Repeated Administrations. European Journal of Pharmacology, 696, 194-202. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Cha, S., Park, Y., Yun, J., Lim, T., Song, K., Yoo, K., et al. (2017) A Comparison of Effects of DPP-4 Inhibitor and SGLT2 Inhibitor on Lipid Profile in Patients with Type 2 Diabetes. Lipids in Health and Disease, 16, Article No. 58. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Love, K.M. and Liu, Z. (2021) DPP4 Activity, Hyperinsulinemia, and Atherosclerosis. The Journal of Clinical Endocrinology & Metabolism, 106, 1553-1565. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Sato, Y., Koshioka, S., Kirino, Y., Kamimoto, T., Kawazoe, K., Abe, S., et al. (2011) Role of Dipeptidyl Peptidase IV (DPP4) in the Development of Dyslipidemia: DPP4 Contributes to the Steroid Metabolism Pathway. Life Sciences, 88, 43-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Zhang, Q., Xiao, X., Zheng, J., Li, M., Yu, M., Ping, F., et al. (2021) Vildagliptin, a Dipeptidyl Peptidase-4 Inhibitor, Attenuated Endothelial Dysfunction through Mirnas in Diabetic Rats. Archives of Medical Science, 17, 1378-1387. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Noda, Y., Miyoshi, T., Oe, H., Ohno, Y., Nakamura, K., Toh, N., et al. (2013) Alogliptin Ameliorates Postprandial Lipemia and Postprandial Endothelial Dysfunction in Non-Diabetic Subjects: A Preliminary Report. Cardiovascular Diabetology, 12, Article No. 8. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Baumeier, C., Schlüter, L., Saussenthaler, S., Laeger, T., Rödiger, M., Alaze, S.A., et al. (2017) Elevated Hepatic DPP4 Activity Promotes Insulin Resistance and Non-Alcoholic Fatty Liver Disease. Molecular Metabolism, 6, 1254-1263. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Zhou, Y., Liang, F., Tian, H., Luo, D., Wang, Y. and Yang, S. (2023) Mechanisms of Gut Microbiota-Immune-Host Interaction on Glucose Regulation in Type 2 Diabetes. Frontiers in Microbiology, 14, Article 1121695. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Kuramitsu, S., Miyauchi, K., Yokoi, H., Suwa, S., Nishizaki, Y., Yokoyama, T., et al. (2017) Effect of Sitagliptin on Plaque Changes in Coronary Artery Following Acute Coronary Syndrome in Diabetic Patients: The ESPECIAL-ACS Study. Journal of Cardiology, 69, 369-376. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Alrouji, M., Al-kuraishy, H.M., Al-buhadily, A.K., Al-Gareeb, A.I., Elekhnawy, E. and Batiha, G.E. (2023) DPP-4 Inhibitors and Type 2 Diabetes Mellitus in Parkinson’s Disease: A Mutual Relationship. Pharmacological Reports, 75, 923-936. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Angelopoulou, E. and Piperi, C. (2018) DPP-4 Inhibitors: A Promising Therapeutic Approach against Alzheimer’s Disease. Annals of Translational Medicine, 6, 255-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Sim, A.Y., Barua, S., Kim, J.Y., Lee, Y. and Lee, J.E. (2021) Role of DPP-4 and SGLT2 Inhibitors Connected to Alzheimer Disease in Type 2 Diabetes Mellitus. Frontiers in Neuroscience, 15, Article 708547. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Jeong, S.H., Chung, S.J., Yoo, H.S., Hong, N., Jung, J.H., Baik, K., et al. (2021) Beneficial Effects of Dipeptidyl Peptidase-4 Inhibitors in Diabetic Parkinson’s Disease. Brain, 144, 1127-1137. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Kosaraju, J., Gali, C.C., Khatwal, R.B., Dubala, A., Chinni, S., Holsinger, R.M.D., et al. (2013) Saxagliptin: A Dipeptidyl Peptidase-4 Inhibitor Ameliorates Streptozotocin Induced Alzheimer’s Disease. Neuropharmacology, 72, 291-300. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Shah, Z., Kampfrath, T., Deiuliis, J.A., Zhong, J., Pineda, C., Ying, Z., et al. (2011) Long-Term Dipeptidyl-Peptidase 4 Inhibition Reduces Atherosclerosis and Inflammation via Effects on Monocyte Recruitment and Chemotaxis. Circulation, 124, 2338-2349. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Wiciński, M., Górski, K., Walczak, M., Wódkiewicz, E., Słupski, M., Pawlak-Osińska, K., et al. (2019) Neuroprotective Properties of Linagliptin: Focus on Biochemical Mechanisms in Cerebral Ischemia, Vascular Dysfunction and Certain Neurodegenerative Diseases. International Journal of Molecular Sciences, 20, Article 4052. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Chiazza, F., Tammen, H., Pintana, H., Lietzau, G., Collino, M., Nyström, T., et al. (2018) The Effect of DPP-4 Inhibition to Improve Functional Outcome after Stroke Is Mediated by the SDF-1α/CXCR4 Pathway. Cardiovascular Diabetology, 17, Article No. 60. [Google Scholar] [CrossRef] [PubMed]
|