[1]
|
王冰, 周扬, 张秋良. 兴安落叶松林龄对土壤团聚体分布及其有机碳含量的影响[J]. 生态学杂志, 2021, 40(6): 1618-1628.
|
[2]
|
Schlesinger, W.H. (1997) Biogeochemistry: An Analysis of Global Change. Academic Press, New York.
|
[3]
|
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J.W., Schuur, E.A.G., Ping, C., et al. (2014) Estimated Stocks of Circumpolar Permafrost Carbon with Quantified Uncertainty Ranges and Identified Data Gaps. Biogeosciences, 11, 6573-6593. https://doi.org/10.5194/bg-11-6573-2014
|
[4]
|
Chen, Y., Liu, F., Kang, L., Zhang, D., Kou, D., Mao, C., et al. (2021) Large‐Scale Evidence for Microbial Response and Associated Carbon Release after Permafrost Thaw. Global Change Biology, 27, 3218-3229. https://doi.org/10.1111/gcb.15487
|
[5]
|
Barrios, E., Buresh, R.J., Kwesiga, F. and Sprent, J.I. (1997) Light Fraction Soil Organic Matter and Available Nitrogen Following Trees and Maize. Soil Science Society of America Journal, 61, 826-831. https://doi.org/10.2136/sssaj1997.03615995006100030016x
|
[6]
|
倪杰, 吴通华, 赵林, 等. 北极多年冻土区碳循环研究进展与展望[J]. 冰川冻土, 2019, 41(4): 845-857.
|
[7]
|
Li, Y.Q., Zhao, H.L. and Chen, Y.P. (2005) Advance in the Study of Terrestrial Ecosystem Carbon Source, Sink and Affection Mechanisms. Chinese Journal of Ecology, 24, 37-42.
|
[8]
|
Mu, C., Zhang, T., Zhao, Q., Su, H., Wang, S., Cao, B., et al. (2017) Permafrost Affects Carbon Exchange and Its Response to Experimental Warming on the Northern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 247, 252-259. https://doi.org/10.1016/j.agrformet.2017.08.009
|
[9]
|
康世昌, 黄杰, 牟翠翠, 等. 冰冻圈化学: 解密气候环境和人类活动的指纹[J]. 中国科学院院刊, 2020, 35(4): 456-465.
|
[10]
|
张超飞, 马素萍, 何晓波, 汪少勇. 长江源多年冻土区土壤有机碳分布特征及其影响因素[J]. 生态学杂志, 2022, 41(9): 1665-1673.
|
[11]
|
曹樱子, 王小丹. 藏北高寒草原样带土壤有机碳分布及其影响因素[J]. 生态环境学报, 2012, 21(2): 213-219.
|
[12]
|
程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27): 2783-2795.
|
[13]
|
叶深溪, 许为民. 文献计量学在科研评价中的应用进展[J]. 图书馆论坛, 2003, 23(4): 12-14.
|
[14]
|
刘彩霞, 方必基. 2011-2020年中国结核病研究文献计量学分析[J]. 现代预防医学, 2021, 48(14): 2520-2523, 2551.
|
[15]
|
高懋芳, 邱建军, 刘三超, 刘宏斌, 王立刚, 逄焕成. 基于文献计量的农业面源污染研究发展态势分析[J]. 中国农业科学, 2014, 47(6): 1140-1150.
|
[16]
|
盛春蕾, 吕宪国, 尹晓敏, 闫长平. 基于Web of Science的1899-2010年湿地研究文献计量分析[J]. 湿地科学, 2012, 10(1): 92-101.
|
[17]
|
冯筠, 郑军卫. 基于文献计量学的国际遥感学科发展态势分析[J]. 遥感技术与应用, 2005, 20(5): 526-530.
|
[18]
|
刘杏梅, 赵健, 徐建明. 污染农田土壤的重金属钝化技术研究——基于Web of Science数据库的计量分析[J]. 土壤学报, 2021, 58(2): 445-455.
|
[19]
|
张维荣, 严康, 汪海珍, 等. 基于1983-2019年文献计量对多环芳烃降解基因研究及进展的剖析[J]. 环境科学学报, 2020, 40(3): 1138-1148.
|
[20]
|
Chen, C. (2005) Citespace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. Journal of the American Society for Information Science and Technology, 57, 359-377. https://doi.org/10.1002/asi.20317
|
[21]
|
李忠义, 韦彩会, 何铁光, 等. 基于学科知识图谱的紫云英研究态势分析[J]. 中国农机化学报, 2020, 41(7): 207-214.
|
[22]
|
Li, H.C., Crabbe, M.J. and Chen, H. (2020) History and Trends in Ecological Stoichiometry Research from 1992 to 2019: A Scientometric Analysis. Sustainability, 12, Article No. 8909. https://doi.org/10.3390/su12218909
|
[23]
|
Wei, F., Grubesic, T.H. and Bishop, B.W. (2015) Exploring the GIS Knowledge Domain Using Citespace. The Professional Geographer, 67, 374-384. https://doi.org/10.1080/00330124.2014.983588
|
[24]
|
Gao, H., Ding, X. and Wu, S. (2020) Exploring the Domain of Open Innovation: Bibliometric and Content Analyses. Journal of Cleaner Production, 275, Article ID: 122580. https://doi.org/10.1016/j.jclepro.2020.122580
|
[25]
|
李文元, 王平. 基于CiteSpace的我国顾客参与研究可视化分析[J]. 电子商务, 2020(2): 35-37.
|
[26]
|
柴海燕, 王璐, 任秋颖. 国家公园型保护地管理研究述评−基于科学计量及知识图谱分析[J]. 生态经济, 2019, 35(12): 96-101.
|
[27]
|
Schuur, E.A.G., McGuire, A.D., Schädel, C., Grosse, G., Harden, J.W., Hayes, D.J., et al. (2015) Climate Change and the Permafrost Carbon Feedback. Nature, 520, 171-179. https://doi.org/10.1038/nature14338
|
[28]
|
Tarnocai, C., Canadell, J.G., Schuur, E.A.G., Kuhry, P., Mazhitova, G. and Zimov, S. (2009) Soil Organic Carbon Pools in the Northern Circumpolar Permafrost Region. Global Biogeochemical Cycles, 23, GB2023. https://doi.org/10.1029/2008gb003327
|
[29]
|
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J.W., Schuur, E.A.G., Ping, C., et al. (2014) Estimated Stocks of Circumpolar Permafrost Carbon with Quantified Uncertainty Ranges and Identified Data Gaps. Biogeosciences, 11, 6573-6593. https://doi.org/10.5194/bg-11-6573-2014
|
[30]
|
Biskaborn, B.K., et al. (2019) Permafrost Is Warming at a Global Scale. Nature Communications, 10, Article No. 264.
|
[31]
|
陈悦, 陈超美, 胡志刚, 等. 引文空间分析原理与应用CiteSpace实用指南[M]. 北京: 科技出版社, 2014.
|
[32]
|
Mu, C., Wu, X., Zhao, Q., Smoak, J.M., Yang, Y., Hu, L., et al. (2017) Relict Mountain Permafrost Area (Loess Plateau, China) Exhibits High Ecosystem Respiration Rates and Accelerating Rates in Response to Warming. Journal of Geophysical Research: Biogeosciences, 122, 2580-2592. https://doi.org/10.1002/2017jg004060
|
[33]
|
Fu, Z., Wu, Q., Zhang, W., He, H. and Wang, L. (2022) Water Migration and Segregated Ice Formation in Frozen Ground: Current Advances and Future Perspectives. Frontiers in Earth Science, 10, Article ID: 826961. https://doi.org/10.3389/feart.2022.826961
|
[34]
|
Jiang, L., Chen, H., Zhu, Q., Yang, Y., Li, M., Peng, C., et al. (2018) Assessment of Frozen Ground Organic Carbon Pool on the Qinghai-Tibet Plateau. Journal of Soils and Sediments, 19, 128-139. https://doi.org/10.1007/s11368-018-2006-3
|
[35]
|
Toride, N., Watanabe, K. and Hayashi, M. (2013) Special Section: Progress in Modeling and Characterization of Frozen Soil Processes. Vadose Zone Journal, 12, 1-4. https://doi.org/10.2136/vzj2013.01.0001
|
[36]
|
Chen, Y., Lai, Y., Li, H. and Pei, W. (2022) Finite Element Analysis of Heat and Mass Transfer in Unsaturated Freezing Soils: Formulation and Verification. Computers and Geotechnics, 149, Article ID: 104848. https://doi.org/10.1016/j.compgeo.2022.104848
|
[37]
|
Vasil’ev, V.N. (2000) Specific Features of Hibernation in the Black-Capped Marmot (Marmota camtschatica) from Yakutia. Zoologichesky Zhumal, 79, 1114-1123.
|
[38]
|
Jiang, L., Chen, H., Zhu, Q., Yang, Y., Li, M., Peng, C., et al. (2018) Assessment of Frozen Ground Organic Carbon Pool on the Qinghai-Tibet Plateau. Journal of Soils and Sediments, 19, 128-139. https://doi.org/10.1007/s11368-018-2006-3
|
[39]
|
Abbott, B.W. and Jones, J.B. (2015) Permafrost Collapse Alters Soil Carbon Stocks, Respiration, CH4, and N2O in Upland Tundra. Global Change Biology, 21, 4570-4587. https://doi.org/10.1111/gcb.13069
|
[40]
|
Treat, C.C., Wollheim, W.M., Varner, R.K. and Bowden, W.B. (2016) Longer Thaw Seasons Increase Nitrogen Availability for Leaching during Fall in Tundra Soils. Environmental Research Letters, 11, Article ID: 064013. https://doi.org/10.1088/1748-9326/11/6/064013
|
[41]
|
Deshpande, B.N., Maps, F., Matveev, A. and Vincent, W.F. (2017) Oxygen Depletion in Subarctic Peatland Thaw Lakes. Arctic Science, 3, 406-428. https://doi.org/10.1139/as-2016-0048
|
[42]
|
Joss, H., Patzner, M.S., Maisch, M., Mueller, C.W., Kappler, A. and Bryce, C. (2022) Cryoturbation Impacts Iron-Organic Carbon Associations along a Permafrost Soil Chronosequence in Northern Alaska. Geoderma, 413, Article ID: 115738. https://doi.org/10.1016/j.geoderma.2022.115738
|
[43]
|
Koven, C.D., Lawrence, D.M. and Riley, W.J. (2015) Permafrost Carbon-Climate Feedback Is Sensitive to Deep Soil Carbon Decomposability but Not Deep Soil Nitrogen Dynamics. Proceedings of the National Academy of Sciences, 112, 3752-3757. https://doi.org/10.1073/pnas.1415123112
|
[44]
|
Lu, B., Song, L., Zang, S. and Wang, H. (2022) Warming Promotes Soil CO2 and CH4 Emissions but Decreasing Moisture Inhibits CH4 Emissions in the Permafrost Peatland of the Great Xing’an Mountains. Science of the Total Environment, 829, Article ID: 154725. https://doi.org/10.1016/j.scitotenv.2022.154725
|
[45]
|
Li, J., Yan, D., Pendall, E., Pei, J., Noh, N.J., He, J., et al. (2018) Depth Dependence of Soil Carbon Temperature Sensitivity across Tibetan Permafrost Regions. Soil Biology and Biochemistry, 126, 82-90. https://doi.org/10.1016/j.soilbio.2018.08.015
|
[46]
|
Lininger, K.B., Wohl, E., Rose, J.R. and Leisz, S.J. (2019) Significant Floodplain Soil Organic Carbon Storage along a Large High‐Latitude River and Its Tributaries. Geophysical Research Letters, 46, 2121-2129. https://doi.org/10.1029/2018gl080996
|
[47]
|
Lim, A.G., Sonke, J.E., Krickov, I.V., Manasypov, R.M., Loiko, S.V. and Pokrovsky, O.S. (2019) Enhanced Particulate Hg Export at the Permafrost Boundary, Western Siberia. Environmental Pollution, 254, Article ID: 113083. https://doi.org/10.1016/j.envpol.2019.113083
|
[48]
|
Wang, Q., Lv, W., Li, B., Zhou, Y., Jiang, L., Piao, S., et al. (2020) Annual Ecosystem Respiration Is Resistant to Changes in Freeze-Thaw Periods in Semi‐Arid Permafrost. Global Change Biology, 26, 2630-2641. https://doi.org/10.1111/gcb.14979
|