[1]
|
Brookmeyer, R., Corrada, M.M., Curriero, F.C. and Kawas, C. (2002) Survival Following a Diagnosis of Alzheimer Disease. Archives of Neurology, 59, 1764-1767. https://doi.org/10.1001/archneur.59.11.1764
|
[2]
|
Lashley, T., Schott, J.M., Weston, P., Murray, C.E., Wellington, H., Keshavan, A., et al. (2018) Molecular Biomarkers of Alzheimer’s Disease: Progress and Prospects. Disease Models & Mechanisms, 11, dmm031781. https://doi.org/10.1242/dmm.031781
|
[3]
|
McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Kawas, C.H., et al. (2011) The Diagnosis of Dementia Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s & Dementia, 7, 263-269. https://doi.org/10.1016/j.jalz.2011.03.005
|
[4]
|
Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., et al. (2011) The Diagnosis of Mild Cognitive Impairment Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s & Dementia, 7, 270-279. https://doi.org/10.1016/j.jalz.2011.03.008
|
[5]
|
Dubois, B., Feldman, H.H., Jacova, C., Hampel, H., Molinuevo, J.L., Blennow, K., et al. (2014) Advancing Research Diagnostic Criteria for Alzheimer’s Disease: The IWG-2 Criteria. The Lancet Neurology, 13, 614-629. https://doi.org/10.1016/s1474-4422(14)70090-0
|
[6]
|
Khachaturian, A.S., Hayden, K.M., Mielke, M.M., Tang, Y., Lutz, M.W., Gustafson, D.R., et al. (2018) Future Prospects and Challenges for Alzheimer’s Disease Drug Development in the Era of the NIA‐AA Research Framework. Alzheimer’s & Dementia, 14, 532-534. https://doi.org/10.1016/j.jalz.2018.03.003
|
[7]
|
Dubois, B., Villain, N., Frisoni, G.B., Rabinovici, G.D., Sabbagh, M., Cappa, S., et al. (2021) Clinical Diagnosis of Alzheimer’s Disease: Recommendations of the International Working Group. The Lancet Neurology, 20, 484-496. https://doi.org/10.1016/s1474-4422(21)00066-1
|
[8]
|
Clark, C.M., Pontecorvo, M.J., Beach, T.G., Bedell, B.J., Coleman, R.E., Doraiswamy, P.M., et al. (2012) Cerebral PET with Florbetapir Compared with Neuropathology at Autopsy for Detection of Neuritic Amyloid-β Plaques: A Prospective Cohort Study. The Lancet Neurology, 11, 669-678. https://doi.org/10.1016/s1474-4422(12)70142-4
|
[9]
|
Ossenkoppele, R., Rabinovici, G.D., Smith, R., Cho, H., Schöll, M., Strandberg, O., et al. (2018) Discriminative Accuracy of [18F]flortaucipir Positron Emission Tomography for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA, 320, 1151-1162. https://doi.org/10.1001/jama.2018.12917
|
[10]
|
Morbelli, S., Garibotto, V., Van De Giessen, E., Arbizu, J., Chételat, G., Drezgza, A., et al. (2015) A Cochrane Review on Brain [18F]FDG PET in Dementia: Limitations and Future Perspectives. European Journal of Nuclear Medicine and Molecular Imaging, 42, 1487-1491. https://doi.org/10.1007/s00259-015-3098-2
|
[11]
|
Mosconi, L., Tsui, W.H., Herholz, K., Pupi, A., Drzezga, A., Lucignani, G., et al. (2008) Multicenter Standardized 18F-FDG PET Diagnosis of Mild Cognitive Impairment, Alzheimer’s Disease, and Other Dementias. Journal of Nuclear Medicine, 49, 390-398. https://doi.org/10.2967/jnumed.107.045385
|
[12]
|
Fleisher, A.S., Pontecorvo, M.J., Devous, M.D., Lu, M., Arora, A.K., Truocchio, S.P., et al. (2020) Positron Emission Tomography Imaging with [18F]flortaucipir and Postmortem Assessment of Alzheimer Disease Neuropathologic Changes. JAMA Neurology, 77, 829-839. https://doi.org/10.1001/jamaneurol.2020.0528
|
[13]
|
Jelistratova, I., Teipel, S.J. and Grothe, M.J. (2020) Longitudinal Validity of PET‐Based Staging of Regional Amyloid Deposition. Human Brain Mapping, 41, 4219-4231. https://doi.org/10.1002/hbm.25121
|
[14]
|
Zhang, Y., Chen, H., Li, R., Sterling, K. and Song, W. (2023) Amyloid β-Based Therapy for Alzheimer’s Disease: Challenges, Successes and Future. Signal Transduction and Targeted Therapy, 8, Article No. 248. https://doi.org/10.1038/s41392-023-01484-7
|
[15]
|
Thientunyakit, T., Thongpraparn, T., Sethanandha, C., Yamada, T., Kimura, Y., Muangpaisan, W., et al. (2021) Relationship between F-18 Florbetapir Uptake in Occipital Lobe and Neurocognitive Performance in Alzheimer’s Disease. Japanese Journal of Radiology, 39, 984-993. https://doi.org/10.1007/s11604-021-01132-6
|
[16]
|
Haddad, H.W., Malone, G.W., Comardelle, N.J., Degueure, A.E., Kaye, A.M. and Kaye, A.D. (2022) Aducanumab, a Novel Anti-Amyloid Monoclonal Antibody, for the Treatment of Alzheimer’s Disease: A Comprehensive Review. Health Psychology Research, 10, Article No. 31925. https://doi.org/10.52965/001c.31925
|
[17]
|
Sander, K., Lashley, T., Gami, P., Gendron, T., Lythgoe, M.F., Rohrer, J.D., et al. (2016) Characterization of Tau Positron Emission Tomography Tracer [18F]AV‐1451 Binding to Postmortem Tissue in Alzheimer’s Disease, Primary Tauopathies, and Other Dementias. Alzheimer’s & Dementia, 12, 1116-1124. https://doi.org/10.1016/j.jalz.2016.01.003
|
[18]
|
Leuzy, A., Chiotis, K., Lemoine, L., Gillberg, P., Almkvist, O., Rodriguez-Vieitez, E., et al. (2019) Tau PET Imaging in Neurodegenerative Tauopathies—Still a Challenge. Molecular Psychiatry, 24, 1112-1134. https://doi.org/10.1038/s41380-018-0342-8
|
[19]
|
Aguero, C., Dhaynaut, M., Normandin, M.D., Amaral, A.C., Guehl, N.J., Neelamegam, R., et al. (2019) Autoradiography Validation of Novel Tau PET Tracer [F-18]-MK-6240 on Human Postmortem Brain Tissue. Acta Neuropathologica Communications, 7, Article No. 37. https://doi.org/10.1186/s40478-019-0686-6
|
[20]
|
Alafuzoff, I., Arzberger, T., Al‐Sarraj, S., Bodi, I., Bogdanovic, N., Braak, H., et al. (2008) Staging of Neurofibrillary Pathology in Alzheimer’s Disease: A Study of the Brainnet Europe Consortium. Brain Pathology, 18, 484-496. https://doi.org/10.1111/j.1750-3639.2008.00147.x
|
[21]
|
Ossenkoppele, R., Smith, R., Mattsson-Carlgren, N., Groot, C., Leuzy, A., Strandberg, O., et al. (2021) Accuracy of Tau Positron Emission Tomography as a Prognostic Marker in Preclinical and Prodromal Alzheimer Disease: A Head-to-Head Comparison against Amyloid Positron Emission Tomography and Magnetic Resonance Imaging. JAMA Neurology, 78, 961-971. https://doi.org/10.1001/jamaneurol.2021.1858
|
[22]
|
Gordon, B.A., Blazey, T.M., Su, Y., Hari-Raj, A., Dincer, A., Flores, S., et al. (2018) Spatial Patterns of Neuroimaging Biomarker Change in Individuals from Families with Autosomal Dominant Alzheimer’s Disease: A Longitudinal Study. The Lancet Neurology, 17, 241-250. https://doi.org/10.1016/s1474-4422(18)30028-0
|
[23]
|
Chen, F. (2023) PET Radiomics of White Matter, Can Be Employed as a Biomarker to Identify the Progression of Mild Cognitive Impairment to Alzheimer’s Disease. Academic Radiology, 30, 1885-1886. https://doi.org/10.1016/j.acra.2023.06.020
|
[24]
|
Jiang, J., Wang, M., Alberts, I., Sun, X., Li, T., Rominger, A., et al. (2022) Using Radiomics-Based Modelling to Predict Individual Progression from Mild Cognitive Impairment to Alzheimer’s Disease. European Journal of Nuclear Medicine and Molecular Imaging, 49, 2163-2173. https://doi.org/10.1007/s00259-022-05687-y
|
[25]
|
Smailagic, N., Lafortune, L., Kelly, S., Hyde, C. and Brayne, C. (2018) 18F-FDG PET for Prediction of Conversion to Alzheimer’s Disease Dementia in People with Mild Cognitive Impairment: An Updated Systematic Review of Test Accuracy. Journal of Alzheimer’s Disease, 64, 1175-1194. https://doi.org/10.3233/jad-171125
|
[26]
|
Zhou, H., Jiang, J., Lu, J., Wang, M., Zhang, H. and Zuo, C. (2019) Dual-Model Radiomic Biomarkers Predict Development of Mild Cognitive Impairment Progression to Alzheimer’s Disease. Frontiers in Neuroscience, 12, Article No. 1045. https://doi.org/10.3389/fnins.2018.01045
|
[27]
|
Blazhenets, G., Ma, Y., Sörensen, A., Schiller, F., Rücker, G., Eidelberg, D., et al. (2019) Predictive Value of 18F-Florbetapir and 18F-FDG PET for Conversion from Mild Cognitive Impairment to Alzheimer Dementia. Journal of Nuclear Medicine, 61, 597-603. https://doi.org/10.2967/jnumed.119.230797
|
[28]
|
Hansson, O., Lehmann, S., Otto, M., Zetterberg, H. and Lewczuk, P. (2019) Advantages and Disadvantages of the Use of the CSF Amyloid β (aβ) 42/40 Ratio in the Diagnosis of Alzheimer’s Disease. Alzheimer’s Research & Therapy, 11, Article No. 34. https://doi.org/10.1186/s13195-019-0485-0
|
[29]
|
Janelidze, S., Zetterberg, H., Mattsson, N., Palmqvist, S., Vanderstichele, H., Lindberg, O., et al. (2016) CSF Aβ42/aβ40 and Aβ42/aβ38 Ratios: Better Diagnostic Markers of Alzheimer Disease. Annals of Clinical and Translational Neurology, 3, 154-165. https://doi.org/10.1002/acn3.274
|
[30]
|
Leuzy, A., Mattsson‐Carlgren, N., Palmqvist, S., Janelidze, S., Dage, J.L. and Hansson, O. (2021) Blood‐Based Biomarkers for Alzheimer’s Disease. EMBO Molecular Medicine, 14, e14408. https://doi.org/10.15252/emmm.202114408
|
[31]
|
Li, Y., Schindler, S.E., Bollinger, J.G., Ovod, V., Mawuenyega, K.G., Weiner, M.W., et al. (2022) Validation of Plasma Amyloid-β 42/40 for Detecting Alzheimer Disease Amyloid Plaques. Neurology, 98, e688-e699. https://doi.org/10.1212/wnl.0000000000013211
|
[32]
|
Schindler, S.E., Bollinger, J.G., Ovod, V., Mawuenyega, K.G., Li, Y., Gordon, B.A., et al. (2019) High-Precision Plasma β-Amyloid 42/40 Predicts Current and Future Brain Amyloidosis. Neurology, 93, e1647-e1659. https://doi.org/10.1212/wnl.0000000000008081
|
[33]
|
Brickman, A.M., Manly, J.J., Honig, L.S., Sanchez, D., Reyes‐Dumeyer, D., Lantigua, R.A., et al. (2021) Plasma P‐tau181, P‐tau217, and Other Blood‐Based Alzheimer’s Disease Biomarkers in a Multi‐Ethnic, Community Study. Alzheimer’s & Dementia, 17, 1353-1364. https://doi.org/10.1002/alz.12301
|
[34]
|
Ashton, N.J., Pascoal, T.A., Karikari, T.K., Benedet, A.L., Lantero-Rodriguez, J., Brinkmalm, G., et al. (2021) Plasma P-Tau231: A New Biomarker for Incipient Alzheimer’s Disease Pathology. Acta Neuropathologica, 141, 709-724. https://doi.org/10.1007/s00401-021-02275-6
|
[35]
|
Moscoso, A., Grothe, M.J., Ashton, N.J., Karikari, T.K., Rodriguez, J.L., Snellman, A., et al. (2020) Time Course of Phosphorylated-Tau181 in Blood across the Alzheimer’s Disease Spectrum. Brain, 144, 325-339. https://doi.org/10.1093/brain/awaa399
|
[36]
|
Smirnov, D.S., Ashton, N.J., Blennow, K., Zetterberg, H., Simrén, J., Lantero-Rodriguez, J., et al. (2022) Plasma Biomarkers for Alzheimer’s Disease in Relation to Neuropathology and Cognitive Change. Acta Neuropathologica, 143, 487-503. https://doi.org/10.1007/s00401-022-02408-5
|
[37]
|
Jonaitis, E.M., Janelidze, S., Cody, K.A., Langhough, R., Du, L., Chin, N.A., et al. (2023) Plasma Phosphorylated Tau 217 in Preclinical Alzheimer’s Disease. Brain Communications, 5, fcad057. https://doi.org/10.1093/braincomms/fcad057
|
[38]
|
Preische, O., Schultz, S.A., Apel, A., Kuhle, J., Kaeser, S.A., Barro, C., et al. (2019) Serum Neurofilament Dynamics Predicts Neurodegeneration and Clinical Progression in Presymptomatic Alzheimer’s Disease. Nature Medicine, 25, 277-283. https://doi.org/10.1038/s41591-018-0304-3
|
[39]
|
Mattsson, N., Cullen, N.C., Andreasson, U., Zetterberg, H. and Blennow, K. (2019) Association between Longitudinal Plasma Neurofilament Light and Neurodegeneration in Patients with Alzheimer Disease. JAMA Neurology, 76, 791-799. https://doi.org/10.1001/jamaneurol.2019.0765
|
[40]
|
Benedet, A.L., Milà-Alomà, M., Vrillon, A., Ashton, N.J., Pascoal, T.A., Lussier, F., et al. (2021) Differences between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels across the Alzheimer Disease Continuum. JAMA Neurology, 78, 1471-1483. https://doi.org/10.1001/jamaneurol.2021.3671
|
[41]
|
Zhong, L., Xu, Y., Zhuo, R., Wang, T., Wang, K., Huang, R., et al. (2019) Soluble TREM2 Ameliorates Pathological Phenotypes by Modulating Microglial Functions in an Alzheimer’s Disease Model. Nature Communications, 10, Article No. 1365. https://doi.org/10.1038/s41467-019-09118-9
|
[42]
|
Muszyński, P., Groblewska, M., Kulczyńska-Przybik, A., Kułakowska, A. and Mroczko, B. (2017) YKL-40 as a Potential Biomarker and a Possible Target in Therapeutic Strategies of Alzheimer’s Disease. Current Neuropharmacology, 15, 906-917. https://doi.org/10.2174/1570159x15666170208124324
|
[43]
|
Jack, C.R., Therneau, T.M., Lundt, E.S., Wiste, H.J., Mielke, M.M., Knopman, D.S., et al. (2022) Long-Term Associations between Amyloid Positron Emission Tomography, Sex, Apolipoprotein E and Incident Dementia and Mortality among Individuals without Dementia: Hazard Ratios and Absolute Risk. Brain Communications, 4, fcac017. https://doi.org/10.1093/braincomms/fcac017
|
[44]
|
Chen, Y., Ma, X., Sundell, K., Alaka, K., Schuh, K., Raskin, J., et al. (2016) Quantile Regression to Characterize Solanezumab Effects in Alzheimer’s Disease Trials. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 2, 192-198. https://doi.org/10.1016/j.trci.2016.07.005
|
[45]
|
Bucci, M., Chiotis, K. and Nordberg, A. (2021) Alzheimer’s Disease Profiled by Fluid and Imaging Markers: Tau PET Best Predicts Cognitive Decline. Molecular Psychiatry, 26, 5888-5898. https://doi.org/10.1038/s41380-021-01263-2
|