[1]
|
FUJITA, I., WATANABE, H. and TSUBAKI, R. Development of a non-intrusive and efficient flow monitoring technique: The space-time image velocimetry (STIV). International Journal of River Basin Management, 2007, 5: 105-114. https://doi.org/10.1080/15715124.2007.9635310
|
[2]
|
CHEN, Y. C. Flood discharge measurement of a mountain river—Nanshih River in Taiwan. Hydrology and Earth System Sciences, 2013, 17: 1951-1962. https://doi.org/10.5194/hess-17-1951-2013
|
[3]
|
ZHAO, H. Y., CHEN, H., LIU, B. Y., LIU, W. G., XU, C. Y., GUO, S. L. and WANG, J. An improvement of the space-time image velocimetry combined with a new denoising method for estimating river discharge. Flow Measurement and Instrumentation, 2021, 77: 101864. https://doi.org/10.1016/j.flowmeasinst.2020.101864
|
[4]
|
周冬生, 宗军, 蒋东进, 等. 雷达流速仪测量精度关键技术研究[J]. 水文, 2018, 38(5): 67-70.
|
[5]
|
HUANG, C., CHEN, Y., ZHANG, S. Q. and WU, J. P. Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Reviews of Geophysics, 2018, 56: 333-360. https://doi.org/10.1029/2018rg000598
|
[6]
|
黄炜, 王丽, 王聪聪. 非接触式河流流量监测技术研究[J]. 江苏水利, 2022(9): 19-22.
|
[7]
|
FUJITA, I., MUSTE, M. and KRUGER, A. Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. Journal of Hydraulic Research, 1998, 36: 397-414. https://doi.org/10.1080/00221689809498626
|
[8]
|
MUSTE, M., FUJITA, I. and HAUET, A. Large-scale particle image velocimetry for measurements in riverine environments. Water Resources Research, 2008, 44: W00D19. https://doi.org/10.1029/2008WR006950
|
[9]
|
张振, 徐枫, 王鑫, 等. 河流水面成像测速研究进展[J]. 仪器仪表学报, 2015, 36(7): 1441-1450.
|
[10]
|
FUJITA, I., KITADA, M., SHIMONO, M., KITSUDA, T., YOROZUYA, A. and MOTONAGA, Y. Spatial measurements of snowmelt flood by image analysis with multiple-angle images and radio-controlled ADCP. Journal of JSCE, 2017, 5: 305-312. https://doi.org/10.2208/journalofjsce.5.1_305
|
[11]
|
FUJITA, I. Discharge measurements of snowmelt flood by space-time image velocimetry during the night using far-infrared camera. WATER, 2017, 9: 269. https://doi.org/10.3390/w9040269
|
[12]
|
FUJITA, I., NOTOYA, Y., TANI, K. and TATEGUCHI, S. Efficient and accurate estimation of water surface velocity in STIV. Environmental Fluid Mechanics, 2019, 19: 1363-1378. https://doi.org/10.1007/s10652-018-9651-3
|
[13]
|
陈华, 赵浩源, 黄凯霖, 刘炳义, 王俊. 基于图像智能识别的河流流量计算方法[M]. 北京: 电子工业出版社, 2022.
|
[14]
|
HUANG, K. L., CHEN, H., XIANG, T. Y., LIN, Y. F., LIU, B. Y., WANG, J., LIU, D. D. and XU, C. Y. A photogrammetry-based variational optimization method for river surface velocity measurement. Journal of Hydrology, 2022, 605: 127240. https://doi.org/10.1016/j.jhydrol.2021.127240
|
[15]
|
曾焱, 程益联, 江志琴, 等. “十四五”智慧水利建设规划关键问题思考[J]. 水利信息化, 2022(1): 1-5.
|
[16]
|
杨聃, 邵广俊, 胡伟飞, 等. 基于图像的河流表面测速研究综述[J]. 浙江大学学报(工学版), 2021, 55(9): 1752-1763.
|
[17]
|
KIM, Y., MUSTE, M., HAUET, A., KRAJEWSKI, W. F., KRUGER, A. and BRADLEY, A. Stream discharge using mobile large-scale particle image velocimetry: A proof of concept. Water Resources Research, 2008, 44: W09502. https://doi.org/10.1029/2006WR005441
|
[18]
|
BECHLE, A. J., WU, C. H., LIU, W. C. and KIMURA, N. Development and application of an automated river-estuary discharge imaging system. Journal of Hydraulic Engineering, 2012, 138: 327-339. https://doi.org/10.1061/(Asce)Hy.1943-7900.0000521
|
[19]
|
FUJITA, I., NOTOYA, Y. and FURUTA, T. Measurement of inundating flow from a broken enbankment by using video images shoot from a media helicopter. E3S Web of Conferences, 2018, 40: 06001. https://doi.org/10.1051/e3sconf/20184006001
|
[20]
|
LEWIS, Q. W., LINDROTH, E. M. and RHOADS, B. L. Integrating unmanned aerial systems and LSPIV for rapid, cost-effective stream gauging. Journal of Hydrology, 2018, 560: 230-246. https://doi.org/10.1016/j.jhydrol.2018.03.008
|
[21]
|
KOUTALAKIS, P., TZORAKI, O. and ZAIMES, G. UAVs for hydrologic scopes: Application of a low-cost UAV to estimate surface water velocity by using three different image-based methods. Drones-Basel, 2019, 3: 14. https://doi.org/10.3390/drones3010014
|
[22]
|
ISLAM, M. T., YOSHIDA, K., NISHIYAMA, S., SAKAI, K., ADACHI, S. and PAN, S. J. Promises and uncertainties in remotely sensed riverine hydro-environmental attributes: Field testing of novel approaches to unmanned aerial vehicle-borne lidar and imaging velocimetry. River Research and Applications, 2022, 38(10): 1757-1774. https://doi.org/10.1002/rra.4042
|
[23]
|
BIGGS, H. J., SMITH, B., DETERT, M. and SUTTON, H. Surface image velocimetry: Aerial tracer particle distribution system and techniques for reducing environmental noise with coloured tracer particles. River Research and Applications, 2022, 38: 1192-1198. https://doi.org/10.1002/rra.3973
|
[24]
|
张振, 徐枫, 沈洁, 等. 基于变高单应的单目视觉平面测量方法[J]. 仪器仪表学报, 2014, 35(8): 1860-1868.
|
[25]
|
赵浩源, 陈华, 刘维高, 黄凯霖, 刘炳义, 刘德地, 王俊. 基于河流表面时空图像识别的测流方法[J]. 水资源研究, 2020, 9(1): 1-11. https://doi.org/10.12677/jwrr.2020.91001
|
[26]
|
LI, W., LIAO, Q. and RAN, Q. H. Stereo-imaging LSPIV (SI-LSPIV) for 3D water surface reconstruction and discharge measurement in mountain river flows. Journal of Hydrology, 2019, 578: 124099. https://doi.org/10.1016/j.jhydrol.2019.124099
|
[27]
|
ZHANG, Z., WANG, X., FAN, T. H. and XU, L. Z. River surface target enhancement and background suppression for unseeded LSPIV. Flow Measurement and Instrumentation, 2013, 30: 99-111. https://doi.org/10.1016/j.flowmeasinst.2012.12.002
|
[28]
|
LU, J. H., YANG, X. H. and WANG, J. P. Velocity vector estimation of two-dimensional flow field based on STIV. Sensors-Basel, 2023, 23(2): 955. https://doi.org/10.3390/s23020955
|
[29]
|
DOBSON, D. W., HOLLAND, K. T. and CALANTONI, J. Fast, large-scale, particle image velocimetry-based estimations of river surface velocity. Computers & Geosciences, 2014, 70: 35-43. https://doi.org/10.1016/j.cageo.2014.05.007
|
[30]
|
SCARANO, F., RIETHMULLER, M. L. Iterative multigrid approach in PIV image processing with discrete window offset. Experiments in Fluids, 1999, 26: 513-523. https://doi.org/10.1007/s003480050318
|
[31]
|
WEITBRECHT, V., KUHN, G. and JIRKA, G. H. Large scale PIV-measurements at the surface of shallow water flows. Flow Measurement and Instrumentation, 2002, 13: 237-245. https://doi.org/10.1016/S0955-5986(02)00059-6
|
[32]
|
ZHANG, Z., ZHOU, Y., YUCHOU, L., YOUJIE, Y. and XURUI, L. IP camera-based LSPIV system for online monitoring of river flow. In Proceedings of the 2017 13th IEEE international conference on electronic measurement & instruments (ICEMI) (pp. 357-363). IEEE.
|
[33]
|
MESELHE, E. A., PEEVA, T. and MUSTE, M. Large scale particle image velocimetry for low velocity and shallow water flows. Journal of Hydraulic Engineering, 2004, 130: 937-940. https://doi.org/10.1061/(Asce)0733-9429(2004)130:9(937)
|
[34]
|
HAUET, A., KRUGER, A., KRAJEWSKI, W. F., BRADLEY, A., MUSTE, M., CREUTIN, J. D. and WILSON, M. Experimental system for real-time discharge estimation using an image-based method. Journal of Hydrologic Engineering, 2008, 13: 105-110. https://doi.org/10.1061/(Asce)1084-0699(2008)13:2(105)
|
[35]
|
HARPOLD, A. A., MOSTAGHIMI, S., VLACHOS, P. P., BRANNAN, K. and DILLAHA, T. Stream discharge measurement using a large-scale particle image velocimetry (LSPIV) prototype. Transactions of the ASABE, 2006, 49: 1791-1805. https://doi.org/10.13031/2013.22300
|
[36]
|
LE COZ, J., HAUET, A., PIERREFEU, G., DRAMAIS, G. and CAMENEN, B. Performance of image-based velocimetry (LSPIV) applied to flash-flood discharge measurements in Mediterranean rivers. Journal of Hydrology, 2010, 394: 42-52. https://doi.org/10.1016/j.jhydrol.2010.05.049
|
[37]
|
LEITAO, J. P., PENA-HARO, S., LUTHI, B., SCHEIDEGGER, A. and DE VITRY, M. M. Urban overland runoff velocity measurement with consumer-grade surveillance cameras and surface structure image velocimetry. Journal of Hydrology, 2018, 565: 791-804. https://doi.org/10.1016/j.jhydrol.2018.09.001
|
[38]
|
BAEK, S. J., LEE, S. J. A new two-frame particle tracking algorithm using match probability. Experiments in Fluids, 1996, 22: 23-32. https://doi.org/10.1007/Bf01893303
|
[39]
|
CIERPKA, C., LUTKE, B. and KAHLER, C. J. Higher order multi-frame particle tracking velocimetry. Experiments in Fluids, 2013, 54: 1533. https://doi.org/10.1007/s00348-013-1533-3
|
[40]
|
ZHANG, Z., LI, H. B., ZHOU, Y. and HUANG, J. Design and evaluation of an FFT-based space-time image velocimetry (STIV) for time-averaged velocity measurement. In Proceedings of 2019 14th IEEE international conference on electronic measurement & instruments (ICEMI) (pp. 503-514). IEEE.
|
[41]
|
TSUBAKI, R., FUJITA, I. and TSUTSUMI, S. Measurement of the flood discharge of a small-sized river using an existing digital video recording system. Journal of Hydro-Environment Research, 2011, 5: 313-321. https://doi.org/10.1016/j.jher.2010.12.004
|
[42]
|
TSUBAKI, R. On the texture angle detection used in space-time image velocimetry (STIV). Water Resources Research, 2017, 53: 10908-10914. https://doi.org/10.1002/2017wr021913
|
[43]
|
TANI, K., FUJITA, I. Wavenumber-frequency analysis of river surface texture to improve accuracy of image-based velocimetry. E3S Web of Conferences, 2018, 40: 06012. https://doi.org/10.1051/e3sconf/20184006012
|
[44]
|
FUJITA, I., SHIBANO, T. and TANI, K. Application of masked two-dimensional fourier spectra for improving the accuracy of STIV-based river surface flow velocity measurements. Measurement Science and Technology, 2020, 31: 094015. https://doi.org/10.1088/1361-6501/ab808a
|
[45]
|
张振, 王慧斌, 严锡君, 等. 时空图像测速法的敏感性分析及不确定度评估[J]. 仪器仪表学报, 2017, 38(7): 1763-1771.
|
[46]
|
YU, K., KIM, S. and KIM, D. Correlation analysis of spatio-temporal images for estimating two-dimensional flow velocity field in a rotating flow condition. Journal of Hydrology, 2015, 529: 1810-1822. https://doi.org/10.1016/j.jhydrol.2015.08.005
|
[47]
|
TSUJI, I., TANI, K., FUJITA, I. and NOTOYA, Y. Development of aerial space time volume velocimetry for measuring surface velocity vector distribution from UAV. E3S Web of Conferences, 2018, 40: 06011. https://doi.org/10.1051/e3sconf/20184006011
|
[48]
|
AL-MAMARI, M. M., KANTOUSH, S. A., KOBAYASHI, S., SUMI, T. and SABER, M. Real-time measurement of flash-flood in a wadi area by LSPIV and STIV. Hydrology-Basel, 2019, 6(1): 27. https://doi.org/10.3390/hydrology6010027
|
[49]
|
KIM, Y.-J., YOON, J.-S., MAKOTO, H. and JEONG, J.-H. Evaluation of the applicability of STIV to wave characteristic measurement in the swash zone. Journal of Coastal Disaster Prevention, 2021, 8: 141-150. https://doi.org/10.20481/kscdp.2021.8.3.141
|
[50]
|
陈华, 黄煜, 黄凯霖, 等. 基于图像智能识别的山洪流速流量监测技术与装置[J]. 中国水利, 2022(15): 77-78.
|
[51]
|
陈梦, 陈华, 黄贵平, 等. 河道流量视频测验技术应用研究及误差分析[J]. 中国农村水利水电, 2023(5): 106-110+118.
|
[52]
|
张振, 周扬, 李旭睿, 等. 图像法测流系统开发与应用[J]. 水利信息化, 2018(3): 7-13.
|
[53]
|
LIN, D., GRUNDMANN, J. and ELTNER, A. Evaluating image tracking approaches for surface velocimetry with thermal tracers. Water Resources Research, 2019, 55: 3122-3136. https://doi.org/10.1029/2018wr024507
|
[54]
|
周登浩, 武斌. 基于景深和LK光流法的视频测速算法[J]. 传感器与微系统, 2021, 40(8): 116-120.
|
[55]
|
BACHARIDIS, K., MOIROGIORGOU, K., SIBETHEROS, I. A., SAVAKIS, A. E. and ZERVAKIS, M. River flow estimation using video data. In 2014 IEEE international conference on imaging systems and techniques (IST) proceedings (pp. 173-178). IEEE.
|
[56]
|
PERKS, M. T., RUSSELL, A. J. and LARGE, A. R. G. Technical note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs). Hydrology and Earth System Sciences, 2016, 20: 4005-4015. https://doi.org/10.5194/hess-20-4005-2016
|
[57]
|
TAURO, F., TOSI, F., MATTOCCIA, S., TOTH, E., PISCOPIA, R. and GRIMALDI, S. Optical tracking velocimetry (OTV): Leveraging optical flow and trajectory-based filtering for surface streamflow observations. Remote sensing (Basel), 2018, 10(12): 2010. https://doi.org/10.3390/rs10122010
|
[58]
|
KHALID, M., PENARD, L. and MEMIN, E. Optical flow for image-based river velocity estimation. Flow Measurement and Instrumentation, 2019, 65: 110-121. https://doi.org/10.1016/j.flowmeasinst.2018.11.009
|
[59]
|
Lu, J., Yang, H., Zhang, Q. H. and Yin, Z. P. A field-segmentation-based variational optical flow method for PIV measurements of nonuniform flows. Experiments in Fluids, 2019, 60: 142. https://doi.org/10.1007/s00348-019-2787-1
|
[60]
|
王剑平, 朱芮, 张果, 等. 帧差与快速密集光流结合的图像法测流研究[J]. 工程科学与技术, 2022, 54(4): 195-207.
|
[61]
|
HEAS, P., HERZET, C., MEMIN, E., HEITZ, D. and MININNI, P. D. Bayesian estimation of turbulent motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35: 1343-1356. https://doi.org/10.1109/Tpami.2012.232
|
[62]
|
王万良, 邱虹, 郑建炜. 基于压缩感知图像分析的河流表面流速估计方法[J]. 水力发电学报, 2018, 37(5): 69-79.
|
[63]
|
王万良, 杨胜兰, 赵燕伟, 等. 基于条件边界平衡生成对抗网络的河流表面流速估测[J]. 浙江大学学报(工学版), 2019, 53(11): 2118-2128.
|
[64]
|
ANSARI, S., RENNIE, C. D., JAMIESON, E. C., SEIDOU, O. and CLARK, S. P. RivQNet: Deep learning based river discharge estimation using close-range water surface imagery. Water Resources Research, 2023, 59(2): e2021WR031841. https://doi.org/10.1029/2021wr031841
|
[65]
|
WATANABE, K., FUJITA, I., IGUCHI, M. and HASEGAWA, M. Improving accuracy and robustness of space-time image velocimetry (STIV) with deep learning. Water, 2021, 13(15): 2079. https://doi.org/10.3390/w13152079
|
[66]
|
COZ, J. L., JODEAU, M., HAUET, A., MARCHAND, B. and BOURSICAUD, R. L. Image-based velocity and discharge measurements in field and laboratory river engineering studies using the free Fudaa-LSPIV software. In Proceedings of the International Conference on Fluvial Hydraulics (pp. 1961-1967). CRC Press.
|
[67]
|
FUJITA, I., DEGUCHI, T., DOI, K., OGINO, D., NOTOYA, Y. and TATEGUCHI, S. Development of KU-STIV: Software to measure surface velocity distribution and discharge from river surface images. In Proceedings of the 37th IAHR World Congress (pp. 5284-5292). IAHR & USAINS HOLDING SDN BHD.
|
[68]
|
赋设备“智慧”——视见“水情”——武汉大学智慧水业研究所所长刘炳义教授谈AiFlow视觉测流产品[J]. 中国水利, 2021(12): 114-118.
|
[69]
|
王俊, 刘东生, 陈松生, 等. 河流流量测验误差的理论与实践[M]. 武汉: 长江出版社, 2018.
|
[70]
|
HADAD, T., GURKA, R. Effects of particle size, concentration and surface coating on turbulent flow properties obtained using PIV/PTV. Experimental Thermal and Fluid Science, 2013, 45: 203-212. https://doi.org/10.1016/j.expthermflusci.2012.11.006
|
[71]
|
MUSTE, M., SCHONE, J. and CREUTIN, J. D. Measurement of free-surface flow velocity using controlled surface waves. Flow Measurement and Instrumentation, 2005, 16: 47-55. https://doi.org/10.1016/j.flowmeasinst.2004.08.003
|
[72]
|
ZHANG, Z., LI, H., YUAN, Z., DONG, R. and WANG, J. Sensitivity analysis of image filter for space-time image velocimetry in frequency domain. Chinese Journal of Scientific Instrument, 2022, 43: 43-53. https://doi.org/10.19650/j.cnki.cjsi.J2108875
|
[73]
|
DETERT, M. How to avoid and correct biased riverine surface image velocimetry. Water Resources Research, 2021, 57(2): e2020WR027833. https://doi.org/10.1029/2020WR027833
|
[74]
|
FUJITA, I., NOTOYA, Y. and SHIMONO, M. Development of UAV-based river surface velocity measurement by STIV based on high-accurate image stabilization techniques. In The Proceedings of the 36th IAHR World Congress (pp. 6602-6611). IAHR.
|
[75]
|
LIU, W. C., HUANG, W. C. and YOUNG, C. C. Uncertainty analysis for image-based streamflow measurement: The influence of ground control points. Water, 2023, 15(1): 123. https://doi.org/10.3390/w15010123
|
[76]
|
LE COZ, J., RENARD, B., VANSUYT, V., JODEAU, M. and HAUET, A. Estimating the uncertainty of video-based flow velocity and discharge measurements due to the conversion of field to image coordinates. Hydrological Processes, 2021, 35(5): e14169. https://doi.org/10.1002/hyp.14169
|
[77]
|
ZHANG, Z., ZHAO, L. J., LIU, B. Y., JIANG, T. S. and CHENG, Z. Free-surface velocity measurement using direct sensor orientation-based STIV. Micromachines-Basel, 2022, 13(8): 1167. https://doi.org/10.3390/mi13081167
|