[1]
|
陈宣亮, 曾军, 李刚团, 等. 高马赫数飞行器飞/发性能一体化评估方法初步研究[J]. 燃气涡轮试验与研究, 2022, 35(1): 16-22.
|
[2]
|
美国超音速客机研制历程[J]. 科学大观园, 2016(12): 33-35.
|
[3]
|
Abdulrahman, G.A.Q., Qasem, N.A.A., Imteyaz, B., Abdallah, A.M. and Habib, M.A. (2023) A Review of Aircraft Subsonic and Supersonic Combustors. Aerospace Science and Technology, 132, Article ID: 108067. https://doi.org/10.1016/j.ast.2022.108067
|
[4]
|
朱铮, 韩寒, 刘长明. 飞机乘员生命保障系统的研发过程[J]. 中国个体防护装备, 2016(3): 48-50.
|
[5]
|
程归, 杨广, 郭宏伟, 等. 高超声速变体飞行器关键技术研究综述[J]. 航空科学技术, 2024, 35(5): 28-44.
|
[6]
|
Ding, Y., Yue, X., Chen, G. and Si, J. (2022) Review of Control and Guidance Technology on Hypersonic Vehicle. Chinese Journal of Aeronautics, 35, 1-18. https://doi.org/10.1016/j.cja.2021.10.037
|
[7]
|
Duan, H. and Li, P. (2012) Progress in Control Approaches for Hypersonic Vehicle. Science China Technological Sciences, 55, 2965-2970. https://doi.org/10.1007/s11431-012-5036-x
|
[8]
|
Corda, S., et al. (1998) Flight Testing the Linear Aerospike SR-71 Experiment (LASRE). NASA.
|
[9]
|
Corda, S., et al. (2000) The SR-71 Test Bed Aircraft: A Facility for High-Speed Flight Research. NASA.
|
[10]
|
邵文毅. 非均匀湍流路径下大气分层特性研究[D]: [硕士学位论文]. 成都: 中国科学院研究生院(光电技术研究所), 2016.
|
[11]
|
Schiffner, I. and Srinivasan, M.V. (2016) Budgerigar Flight in a Varying Environment: Flight at Distinct Speeds? Biology Letters, 12, Article ID: 20160221. https://doi.org/10.1098/rsbl.2016.0221
|
[12]
|
Dai, Y., Zhang, P., Ito, K., Noda, K. and Senge, M. (2020) Clarification of the Necessary Meteorological Conditions to Control Ralstonia Solanacearum via Soil Solarization. Paddy and Water Environment, 18, 667-676. https://doi.org/10.1007/s10333-020-00809-4
|
[13]
|
蓝小华, 曹艳杰, 任启涛, 等. 飞行员心肺储备功能与抗荷耐力关系的研究进展[J]. 心脏杂志, 2023, 35(2): 196-199.
|
[14]
|
专题报道: 国外载人航天新进展[J]. 中国航天, 2024(4): 6.
|
[15]
|
韩学平, 梁丽萍, 于立华, 等. 飞行员缺氧训练监测要求与技术的探讨[J]. 空军医学杂志, 2019, 35(1): 18-19, 56.
|
[16]
|
吴建兵. 飞行人员缺氧体验训练效果观察及训练方法的探讨[D]: [硕士学位论文]. 西安: 第四军医大学, 2008.
|
[17]
|
Nikhare, C., Weiss, M. and Hodgson, P.D. (2009) FEA Comparison of High and Low Pressure Tube Hydroforming of TRIP Steel. Computational Materials Science, 47, 146-152. https://doi.org/10.1016/j.commatsci.2009.06.024
|
[18]
|
王刘杰, 徐水红, 王东阳, 等. 航天爆炸减压舱的设计与实现[J]. 航天医学与医学工程, 2021, 34(2): 161-165.
|
[19]
|
卢剑锋, 杨鹏, 王桂友, 等. 低压迅速减压舱减压平衡的研究[J]. 真空科学与技术学报, 2020, 40(9): 801-807.
|
[20]
|
Llop, M.F. and Jand, N. (2003) The Influence of Low Pressure Operation on Fluidization Quality. Chemical Engineering Journal, 95, 25-31. https://doi.org/10.1016/s1385-8947(03)00079-2
|
[21]
|
He, Y., Wang, X., Li, N., He, M., He, D. and Wang, K. (2017) Cooling Ceiling Assisted by Desk Fans for Comfort in Hot-Humid Environment. Building and Environment, 122, 23-34. https://doi.org/10.1016/j.buildenv.2017.05.037
|
[22]
|
Chen, G., Xu, P., Mi, G. and Zhu, J. (2019) Compressive Strength and Cracking of Composite Concrete in Hot-Humid Environments Based on Microscopic Quantitative Analysis. Construction and Building Materials, 225, 441-451. https://doi.org/10.1016/j.conbuildmat.2019.07.170
|
[23]
|
Aditya, S., Bahutala, M.B., Hibatullah, D.N., Pourazad, P., Wahyono, T., Qumar, M., et al. (2023) Evaluation of Milk Yield and Composition, Feed Intake, Chewing Activities, and Clinical Variables in Dairy Cows under Hot-Humid Climate of Tropical Zone. Journal of Thermal Biology, 114, Article ID: 103608. https://doi.org/10.1016/j.jtherbio.2023.103608
|
[24]
|
杨春明. 波音737-800飞机座舱高度速率指示摆动故障分析[J]. 航空维修与工程, 2017(11): 83-85.
|
[25]
|
窦艳玲, 冯怀志, 刘涛, 等. 飞机座舱压力高度突变对机组人员的中耳功能及听力的影响[J]. 西南国防医药, 2018, 28(10): 970-971.
|
[26]
|
白杰, 陈希远, 杨建忠, 等. 飞机座舱失压模拟仿真研究[J]. 中国民航大学学报, 2014, 32(6): 1-6.
|
[27]
|
陈希远. 飞机座舱环控事故分析与模拟仿真系统研究[D]: [硕士学位论文]. 天津: 中国民航大学, 2014.
|
[28]
|
刘伟. MA600座舱空调系统的常见故障解析[J]. 科技创新与应用, 2016(29): 53-54.
|
[29]
|
Zhang, T., Dong, J. and Liu, S. (2022) Modeling and Measuring the Leaked-Air Rate into the Insulation Layer of a Single-Aisle Aircraft Cabin. Buildings, 12, Article 652. https://doi.org/10.3390/buildings12050652
|
[30]
|
李建海, 何青洋, 孙艳丽. 基于GL Studio的航空虚拟仪表设计[J]. 计算机与数字工程, 2017, 45(5): 999-1002.
|
[31]
|
朱君强. 某型飞机座舱温度调节系统故障分析及预防维护措施[J]. 设备管理与维修, 2024(6): 85-87.
|
[32]
|
杨智, 龙正伟, 汪光文. 民用飞机座舱温度场仿真分析与研究[J]. 制冷与空调(四川), 2020, 34(3): 312-315, 325.
|
[33]
|
邓林. 关于空客A330飞机座舱温度控制系统原理及故障处理分析[J]. 科学技术创新, 2020(30): 28-29.
|
[34]
|
周毕云, 丁立, 张静, 等. 高空飞行密闭服的结构和关键技术分析[J]. 科技导报, 2023, 41(21): 6-13.
|
[35]
|
姚彦龙, 谢凡. 高马赫数飞机全剖面航程性能估算方法[J]. 飞机设计, 2021, 41(3): 23-29.
|
[36]
|
Wang, J. (2021) Aeroengine High-Attitude/Low Mach Number Oscillations: Mechanism and Prevention Design. International Journal of Aerospace Engineering, 2021, Article ID: 8881951. https://doi.org/10.1155/2021/8881951
|
[37]
|
刘小勇, 王明福, 刘建文, 等. 超燃冲压发动机研究回顾与展望[J]. 航空学报, 2024, 45(5): 218-244.
|
[38]
|
杨庶, 钱云霄, 杨婷. 高超声速飞行器线性变参数一体化式控制律设计[J]. 上海交通大学学报, 2022, 56(11): 1427-1437.
|
[39]
|
程云鹏, 闫晓东, 程锋. 基于气动性能分析的高超声速滑翔飞行器轨迹估计[J]. 西北工业大学学报, 2019, 37(6): 1102-1110.
|
[40]
|
王运涛, 张玉伦, 王光学, 等. 三角翼布局气动特性及流动机理研究[J]. 空气动力学学报, 2013, 31(5): 554-558.
|
[41]
|
严共鸣, 赵德春, 杨安元. 基于飞机抗荷调压器性能检测的气压管路系统设计[J]. 液压气动与密封, 2014, 34(10): 34-36.
|
[42]
|
王云, 王晨宇, 刘长明. 飞机乘员个体生命保障系统的方案选择[J]. 中国个体防护装备, 2016(1): 45-48.
|
[43]
|
杨国甫, 林贵平, 吴宝民, 等. 一种改善飞行员抗荷服性能的新方法[J]. 北京航空航天大学学报, 2006, 32(1): 1-3, 17.
|
[44]
|
肖华军. 航空供氧装备与防护生理学的发展历程[J]. 解放军医学杂志, 2004, 29(10): 833-835.
|
[45]
|
刘春杰. 高G载荷下飞行员紧急弹射时颈部动力学响应与损伤研究[D]: [硕士学位论文]. 天津: 天津理工大学, 2022.
|
[46]
|
常巍, 彭智勇, 李川涛, 等. 高过载失能生理预警指标和告警技术研究进展[J]. 海军军医大学学报, 2022, 43(2): 194-200.
|
[47]
|
包晓宁, 赵培林, 张保中, 等. 先进战斗机生命保障系统[J]. 航空学报, 2020, 41(6): 246-258.
|
[48]
|
王昌机. 高超声速飞行器循环相变热防护系统的传热机理与性能研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2022.
|
[49]
|
王少萍. 大型飞机机载系统预测与健康管理关键技术[J]. 航空学报, 2014, 35(6): 1459-1472.
|
[50]
|
李文娟, 马存宝, 贺尔铭. 综合飞行器健康管理系统组成框架及关键技术研究[J]. 航空工程进展, 2011, 2(3): 330-334.
|
[51]
|
许星鑫, 甘俊杰. 浅谈飞机乘员个体生命保障系统的方案选择[J]. 现代制造技术与装备, 2018(11): 161, 163.
|
[52]
|
Borst, C., Grootendorst, F.H., Brouwer, D.I.K., Bedoya, C., Mulder, M. and van Paassen, M.M. (2014) Design and Evaluation of a Safety Augmentation System for Aircraft. Journal of Aircraft, 51, 12-22. https://doi.org/10.2514/1.c031500
|
[53]
|
Fang, D., Li, W., Cheng, T., Qu, Z., Chen, Y., Wang, R., et al. (2021) Review on Mechanics of Ultra-High-Temperature Materials. Acta Mechanica Sinica, 37, 1347-1370. https://doi.org/10.1007/s10409-021-01146-3
|
[54]
|
毛富洲, 银锐明, 李鹏飞, 等. 天线罩用高温透波陶瓷材料的研究进展[J]. 硬质合金, 2022, 39(2): 149-155.
|
[55]
|
张鹏, 朱强, 秦鹤勇, 等. 航空发动机用耐高温材料的研究进展[J]. 材料导报, 2014, 28(11): 27-31, 37.
|
[56]
|
Fang, J., Zhang, T., Cen, Z. and Tsoutsanis, E. (2024) Multi-Electric Aero Engine Control and Hardware-In-The-Loop Verification with Starter Generator Coordination. Aerospace, 11, Article 271. https://doi.org/10.3390/aerospace11040271
|
[57]
|
黄红岩, 苏力军, 雷朝帅, 等. 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020, 41(12): 6-40.
|
[58]
|
Soualhi, A., Lamraoui, M., Elyousfi, B. and Razik, H. (2022) PHM SURVEY: Implementation of Prognostic Methods for Monitoring Industrial Systems. Energies, 15, Article 6909. https://doi.org/10.3390/en15196909
|
[59]
|
Zhai, J., Li, Z., Chen, B. and Gao, B. (2023). Prognostics and Health Management (PHM) System Based on a Large-Scale Civil Aircraft Engine System. 2023 IEEE 8th International Conference on Smart Cloud (SmartCloud), Tokyo, 16-18 September 2023, 57-62. https://doi.org/10.1109/smartcloud58862.2023.00018
|
[60]
|
Fu, S. and Avdelidis, N.P. (2024) Health Management of Aircraft Fuel Systems: A Practical Prognostic Perspective. Proceedings of the 11th European Workshop on Structural Health Monitoring (EWSHM 2024), Potsdam, 10-13 June 2024, 29-33. https://doi.org/10.58286/29733
|
[61]
|
Jia, W., Haimin, L. and Xiao, W. (2019). Application and Design of PHM in Aircraft’s Integrated Modular Mission System. 2019 Prognostics and System Health Management Conference (PHM-Qingdao), Qingdao, 25-27 October 2019, 1-6. https://doi.org/10.1109/phm-qingdao46334.2019.8942896
|
[62]
|
Yan, H., Zuo, H., Tang, J., Wang, R. and Ma, X. (2020). Predictive Maintenance Framework of the Aircraft System Based on PHM Information. 2020 Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling (APARM), Vancouver, 20-23 August 2020, 1-6. https://doi.org/10.1109/aparm49247.2020.9209454
|
[63]
|
Rodrigues, L.R., Gomes, J.P.P., Ferri, F.A.S., Medeiros, I.P., Galvao, R.K.H. and Nascimento Junior, C.L. (2015) Use of PHM Information and System Architecture for Optimized Aircraft Maintenance Planning. IEEE Systems Journal, 9, 1197-1207. https://doi.org/10.1109/jsyst.2014.2343752
|
[64]
|
Ofsthun, S. (2002) Integrated Vehicle Health Management for Aerospace Platforms. IEEE Instrumentation & Measurement Magazine, 5, 21-24. https://doi.org/10.1109/mim.2002.1028368
|
[65]
|
Fox, J.J. and Glass, B.J. (2000) Impact of Integrated Vehicle Health Management (IVHM) Technologies on Ground Operations for Reusable Launch Vehicles (RLVs) and Spacecraft. 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484), Big Sky, 25 March 2000, 179-186.
|
[66]
|
Sudolsky, M.D. (2007). IVHM Solutions Using Commercially-Available Aircraft Condition Monitoring Systems. 2007 IEEE Aerospace Conference, [Location], [Date], [Page]. https://doi.org/10.1109/aero.2007.352922
|
[67]
|
Zhang, G., Wang, J., Lv, Z., Yang, Y., Su, H., Yao, Q., et al. (2015). A Integrated Vehicle Health Management Framework for Aircraft—A Preliminary Report. 2015 IEEE Conference on Prognostics and Health Management (PHM), Austin, 22-25 June 2015, 1-8. https://doi.org/10.1109/icphm.2015.7245034
|
[68]
|
朱孝赉, 成器, 宋静晖. 与载人空间站的生命保障系统相结合的新型推进系统的探讨[J]. 航天控制, 1988(2): 10-13.
|
[69]
|
周航, 李运泽, 王胜男, 等. 基于冷热电一体化的舱外航天服生命保障系统性能[J]. 航空动力学报, 2014, 29(3): 541-548.
|