工业废水中重金属去除法研究综述
Review on the Removal of Heavy Metal from Industrial Wastewater
DOI: 10.12677/aep.2024.144105, PDF, HTML, XML,   
作者: 林美琪:临沂职业学院应急管理学院,山东 临沂
关键词: 重金属工业废水水处理Heavy Metals Industrial Wastewater Water Treatment
摘要: 随着工业化加速,工业废水处理,特别是重金属离子的去除,已成为环保领域的关键课题。主要源于电镀、采矿、冶炼和制药等行业,其中的重金属如锌、铜、铬、汞和镉,因其不易生物降解且能在生物体内累积,对人类健康构成严重威胁。因此,研发高效且经济的重金属处理技术至关重要。处理此类废水通常依赖减毒技术以满足监管标准。文章详述了近期工业废水重金属去除系统的进展,包括其优势、挑战和机遇,重点评估了传统物理化学方法在去除过程中的应用,探讨了它们的优点和局限性。
Abstract: As industrialization accelerates, the treatment of industrial wastewater, particularly the removal of heavy metal ions, has become a key issue in the field of environmental protection. This issue primarily originates from industries such as electroplating, mining, smelting, and pharmaceuticals, where heavy metals such as zinc, copper, chromium, mercury, and cadmium pose a severe threat to human health due to their resistance to biodegradation and their ability to accumulate in living organisms. Therefore, developing efficient and economical heavy metal treatment technologies is crucial. The treatment of such wastewater typically relies on detoxification technologies to meet regulatory standards. This article details recent progress in industrial wastewater heavy metal removal systems, including their advantages, challenges, and opportunities, with a focus on evaluating the application of traditional physicochemical methods in the removal process and discussing their strengths and limitations.
文章引用:林美琪. 工业废水中重金属去除法研究综述[J]. 环境保护前沿, 2024, 14(4): 791-800. https://doi.org/10.12677/aep.2024.144105

1. 介绍

生态系统由微生物、植物和动物等生物成分构成,形成一个独立的实体,与非生物和物理化学环境相互作用。生态系统的稳定性和其内在联系的研究广泛深入;研究表明,物种多样性增加可增强生态系统的抵抗力,使其更能抵御变化或压力[1]。然而,复杂生态系统通常被认为比动态稳定的系统更易受人类干扰。鉴于不同生态系统类型的反应各异,准确评估重金属污染对生态系统的影响颇具挑战。

化工行业中具破坏性的活动,如工业排放大量含有镉、铜、镍、铬、砷、锌和铅等重金属的废水。由于重金属在水中的高溶解性,生物体能吸收这些物质。一旦污水中的重金属进入食物链,其便可能会在人体内积累,当金属浓度超过允许限值时,会导致人体发生一系列健康问题[2]。因此,在排放前处理含有重金属的废水至关重要,以避免环境污染和危害人身体健康。传统方法如吸附、膜分离、化学沉淀和电化学等[3]-[5]。虽有效,但存在局限,如选择性差、金属去除有限、能耗高和大量污泥产生。为提高经济性和水质,仍然需要致力于开发新方法,以达到减少能源需求,同时提升水回收率和产量。

针对这些挑战,水合物技术展现出处理溶解矿物和重金属废水的潜力[6] [7]。气体水合物,如甲烷、丙烷和氮气的晶体结构,其独特的笼状结构允许客体分子(如重金属)被水分子包裹,表现出易操作、低毒性和选择性优势。利用天然气水合物进行海水淡化已引起广泛关注[7]。水合物的形成仅需水和水合物原料,资源易得,且在脱盐过程中,每立方米水合物可产生大量淡水和气体,显示出巨大的处理潜力。

本文综述了工业废水中重金属处理的传统技术和新技术,并根据其应用情况评价了其优点和局限性。基于这种方法,我们讨论了连续处理方法及其进展和局限性,见图1。本文还综述了天然气水合物脱盐新技术的研究进展、基于反应器设计、机理和重金属离子分离、水回收以及天然气水合物工艺应用的机遇和挑战。对商业化过程和用于去除重金属和产生更高水回收率的各种水合物成型器进行了最新进展。

1.1. 废水

随着城市化、工业和农业活动的快速发展[8] [9],金属离子污染废水的排放量显著增长。废水主要分为工业废水和生活废水两类。生活废水源自家庭,源自非生产过程的固体和液体废物,可能含有污水、细菌、病毒、危险物质、卫生废物、洗涤剂、无毒生物和垃圾[10]。然而,工业废水排放,尤其是未经处理的部分,是水污染的主要源头。工业废水中常见的污染物包括染料、芳烃、农药、重金属(如镉、铜、镍、铬、砷、锌和铅)以及油类[11]-[16],这些污染物一旦进入环境,对人类健康和生态系统构成严重威胁[17]

Figure 1. Technology for removing heavy metals from industrial wastewater

1. 去除工业废水中重金属的技术

1.2. 重金属

重金属元素的定义是:密度大于5.0 g/cm3,原子量在63.5至200.6 g/mol范围内的元素[18],它们因其高密度,即使微量也具有潜在危险。近年来,废水中的重金属已成为严重的环境问题,即使低浓度也对生态系统和人类健康构成显著威胁,因其特性,如不可生物降解、蓄积、适应性和持久性[19]-[23]。例如,从氨基黑染料中去除的重金属,如钴,由于其负自由能值,去除过程表现出自发性。催化剂表面积的增大和与污染物的接触增强,钴的掺杂导致高达90%的降解[3]。另一方面,选择利用废弃生物质材料的生物吸附,是因为其成本低、简单、可生物降解和环境友好[4]。Khan等人[5]证实了整合和优化处理方法以有效应对清洁挑战的必要性。

1.3. 各种重金属及其影响

当重金属(如Ag+、Hg2+、Cd2+、As3+和Pb2+)以其离子形式与人体中的生物粒子混合时,就会产生危险的化学物质;识别这些相互作用也很重要。当重金属浓度超过耐受极限时,它们变得毒性并改变细胞代谢[24]。由于对人类健康的多种负面影响以及随之而来的对海洋生物的损害,一些监管机构对重金属的处置设定了可接受的限度和严格的规定。此外,由于废水的严重后果,研究人员已集中于开发改进的处理技术[25][26]-[28]总结了几种重金属的健康影响。这些重金属对人类以及生活在水体中的动植物都构成了重大危险。这些物质可能会被人体吸收,导致健康问题,如器官损伤、癌症、神经系统损伤,在最坏的情况下,还会导致死亡。上面提到的重金属可以在任何时候积聚,其速度比它们被排出的速度要快,对人类和环境极其危险。重金属即使浓度较低,也对水生环境有严重影响,这些金属不会自然降解,它抑制了以前存在于废物水道中的微生物的活动。

2. 废水中重金属去除常规技术

废水中的污染物排放需严格遵循规定,高效率的去除策略是排放标准的关键。工业部门在减排、节约用水和能源消耗方面面临着多重挑战[29]。为保障环境安全,研究者开发了多种废水处理方案,这些技术各有其优缺点。常见的处理技术包括沉淀、过滤[30]、电渗析、离子交换、超临界流体萃取、吸附[31]、微生物系统[32]、电化学工艺、生物反应器和先进的氧化工艺。这些方法构成了去除重金属的坚实基础和创新领域。当前,废水处理技术主要分为物理、化学和生物三大类别[33]。每种方法都有其独特的优缺点,通过组合不同的处理程序,可以实现对重金属的有效去除。

2.1. 混凝/絮凝

重金属形成不溶性化合物,如硫化物、氢氧化物和碳酸盐,通常通过凝血法处理[34]-[37]。凝血是指悬浮液的不稳定导致颗粒聚集成团,而絮凝则是促使不稳定颗粒聚集形成更大颗粒的过程[38]。为了去除这些胶体,研究者们采用凝血处理来提升密度。凝血效果受凝血剂类型、pH值、用量、混合物、温度和碱度的影响。在搅拌作用下,我们加入絮凝剂,促进不稳定的颗粒凝聚成更大的颗粒团。采用过滤、拉伸和浮选等单元操作来分离较大的颗粒。如Chang等人[39]将壳聚糖和巯基乙酸结合生产了一种新型大分子絮凝剂,称为巯基乙酰,可以消除浊度和重金属,效率为98%。在一项重金属研究中去除如Cd2+ (40%)、Pb2+ (78%)、Ni2+ (62%)、Cr2+ (22%)、Hg2+ (81%)和Se2+ (44%) [40]。在聚合物硫酸铁存在下,Sb5+ (96%)和Sb3+ (98%) [41]的去除率随初始浓度和剂量而变化,这可能与废水中存在磷酸盐和腐殖酸有关。胶体颗粒被混凝剂中和,使金属不稳定,并通过污泥沉淀下来,当胶体粒子被困在金属表面时,就会发生沉淀。但是由于在分离过程中使用化学物质而产生大量的污泥是该方法[42]的主要缺点之一。

所产生的污泥中可能含有重金属,如镍、镉、铅、铬和锌[43]。污泥管理的关键选项包括回收、再利用和资源化。尽管凝固/絮凝在去除废水中重金属方面有效,但它也会产生副产品,如絮凝沉淀物,这些被视为二级污染物,且可能对人类健康和生态系统构成潜在危害。重复使用的溶剂在处理过程中也可能带来环境风险。因此,需要谨慎处理这些副产品,以减少其负面影响。

2.2. 离子交换

离子交换是一种高效的重金属去除技术,通过用一种离子替换废水中的重金属离子,产生的污泥量相对较少。离子交换树脂在这一过程中起关键作用,它们根据化学特性选择性地吸附金属离子。树脂分为合成和天然两种类型,用于替换废水中的阳离子。合成树脂,如用于软化水处理,主要通过交联聚合物基质吸附金属离子,如砷[44]-[46]。然而,合成树脂的缺点是易积聚污垢,尤其是在处理高浓度金属溶液时[47]-[49]。阳离子交换树脂是常见的类型,由极酸性和极弱碱性树脂组成。天然沸石,如沸石,因其阳离子交换能力在去除重金属,尤其是铬(Cr)时表现出色,尽管它们对Cr (VI)化合物的直接交换有限,因为其带负电框架的排斥作用[50]。Ibrahim等人[51]的研究利用埃及高岭土制成的沸石成功地从工业废水中去除镍(Ni)及Cu、Cd、Pb和Zn等重金属,证明了其高效率,可达98%的去除率。阴离子交换树脂适用于处理低污染水平的废水,因为它们的官能团、组成和基质结构适合这类废水。科诺诺娃等人使用阳离子和阴离子交换器处理有害金属,如Cr (VI)和Mn [52]。然而,离子交换树脂的再生需要化学试剂,可能导致二次污染,并且运营成本较高,不适用于大规模的废水处理。

2.3. 浮选

浮选是一种有效的液固分离技术,通过向废水样品中引入微小气泡,重金属离子会吸附在气泡上,从而促使气泡从水中分离。这一过程依赖于表面活性剂或集电器的使用,它们能去除水溶液中的非活性离子,通常通过添加与目标金属离子相反电荷的离子。一旦气泡上升到水面,携带的疏水金属粒子便被收集。浮选技术因其产生的污泥量少、分离效率高,对废水处理具有显著贡献。它特别适用于处理化学和物理性质各异的金属[53]。浮选过程的关键参数,如气泡速度、气泡大小和形成频率,对优化浮选效果至关重要。然而,由于浮选设备需要持续运行,其维护和操作成本相对较高[54]。浮选方法还包括离子浮选、溶解空气浮选(DAF)和沉淀浮选等多种形式。

当废水中金属离子浓度低[55]时,离子浮选效率低。离子浮选过程以其低能耗、小型化设备需求、减少污泥量和选择性处理能力而受到青睐。微气泡在沉淀浮选中起关键作用,这种过程本质上是化学反应,沉淀时间只需几分钟[56],显著提高了操作效率和工艺紧凑性,同时具有成本效益。合成化学表面活性剂因其高容量、优异的选择性和易于生产而被广泛使用,但它们的成本和潜在毒性是需要考虑的因素。相比之下,生物表面活性剂虽然环保,但其去除效率较低,需要大量使用且过程较长。纳米颗粒作为新兴的分离介质,显示出合成和生物表面活性剂结合的潜力[57],为浮选技术的改进提供了新的可能性。

2.4. 膜过滤

膜过滤是一种压力驱动的重金属离子分离技术,其效果取决于溶液的浓度、离子大小、pH值和施加的压力。通过化学处理膜,可以提升过滤效率。膜通常由多孔材料制成,适用于废水中的重金属去除,如聚合物和陶瓷膜。陶瓷膜因其化学稳定性和疏水性,在工业废水处理中更具优势,但成本高且易损坏是其主要缺点。反渗透技术能高效去除无机盐和大部分有机物,但存在膜污染和降解问题,需要定期更换膜。

尽管存在优势,膜污染和频繁更换的问题不容忽视。膜污染源于DOM和OM的溶解,预处理对减少其影响至关重要,从而提升分离效率[58]-[60]。传统压力驱动技术(如纳滤、超滤)通过反渗透和微过滤从废水中分离重金属,但微过滤因去除能力有限,常被忽视,主要用于改变进料或配合化学预处理。这些方法能处理大量废水,但产生大量污泥,处理效率和后续处理成为挑战。为了提高膜的分离性能,需要抑制污垢和结垢,但这会增加额外成本,包括膜的预处理和定期清洗。

2.5. 化学沉淀

化学沉淀作为一种经济高效的重金属去除手段,在多个工业领域中广泛应用。通过调整溶液的pH值,化学物质促使金属离子形成不溶性沉淀,这些沉淀物不再溶解于溶液。沉积过程导致金属离子的分离。对于Cu (II)、Zn (II)、Mn (II)、Cd (II)等有害金属,化学沉淀是首选的去除方法。Tanong等人[61]的研究表明,碳酸钠的添加能完全沉淀Mn和Ni离子,并将pH值提升至9,有助于废水处理。然而,这种方法在处理低浓度金属离子时效果有限,主要适用于高浓度废水。由于沉淀产生的污泥含水量高,处理和处置困难,被视为有害废物。沉淀后的水可以重复利用或进一步处理至水库。然而,化学沉淀过程需要大量化学物质,尽管操作简便、成本低,但其废弃物管理问题需要关注。这种技术在工业应用中因其操作简单和成本效益广泛采用。

硫化物和氢氧化物沉淀是两种常用的化学沉淀技术。氢氧化物沉淀因其成本低、操作简便且pH可调,被广泛应用[62]。通过在废水中搅拌并加入氢氧化物,金属离子形成不溶的氢氧化物沉淀。然而,这种方法的缺点是需要大量沉淀物,且较高的pH值可能是个潜在环境和安全问题。硫化物沉淀法在去除效率和降低溶解固体方面表现出优于氢氧化物法的优势,特别在处理危险重金属离子如砷时,Cu2+的去除率高达96%。硫化物浓度的高低影响废水特性:较低的硫化物与废水中锌浓度成正比,而较高的硫化物可能导致残留硫化物产生不良气味,甚至释放出有毒且有异味的硫化氢气体。因此,硫化物参与法在应用时需考虑这些环境和健康影响。

2.6. 电化学处理

电化学处理(EC)作为一种独特的废水处理手段,涉及在水中施加电流,促使溶解污染物失去稳定性。这些离子在溶液中保持电荷,通过电凝系统与相反电荷的离子结合,导致它们变得不稳定并随之形成稳定的沉淀。这种技术因其简便、快速、成本低、易于操作和环保而受到青睐。通过电荷中和,电化学混凝剂能有效去除溶液中的污染物或重金属离子。电化学处理作为一种备选方案,其优势在于其灵活性。然而,其效率受电极材料和操作条件的影响,如传质速率、电流密度以及出水流量等参数。

Liu等[63]报道了以氧化石墨烯和碳为电极对金属离子Cu2+ (97.7%)、Cd2+ (97.3%)和Pb2+ (98.5%)的去除效率。Yang等人[64]认为,在硫酸钾的存在下,Cr6+的还原速度更快,去除率为93.7%。由于更严格的环境限制或规定,电化学处理的使用变得越来越困难。这种方法对各种污染物都很有效,包括那些不能从其副产品中分离出来的污染物。它需要一个大的设施和一个稳定的电源供应来运行。此外,由于电极只持续的时间很短,因此在应用该方法时,传质率不足,温度限制也在不断增加。电凝、电解浮选、电沉积、电去离子化和电渗析是其中的一些电化学方法。使用该技术的关键困难是大容量污泥生产和后处理要求,这些成本效益高。

2.7. 吸附

吸附是离子从溶液到固相相变的转移,吸附反应和沉淀反应都包括在术语“吸附”过程中。吸附法是最近成为另一种含重金属废水的处理方法。吸附包括质量从液体向固体转移到表面,产生化学或物理过程机制。生物可降解吸附剂的兴起尤为引人注目,它们通常基于低成本资源,如工业废弃物、农业副产品、天然材料或经过改性的生物聚合物。这些新型吸附剂已被成功研发并用于净化重金属污染的废水,体现了其在环保领域的潜力。一般来说,固体吸附剂的吸附包括三个主要阶段:1) 杂质从本体到吸附剂表面的传输;2) 吸附在颗粒表面的吸附;3) 颗粒吸附剂内部的通道。

由于吸附和解吸是可逆过程,吸附剂在解吸后可以重复使用。在选择吸附剂时,成本效益和适用性是首要考虑的关键因素。吸附效率受吸附剂的极性、高比表面积和广泛的孔径分布[65] [66]的影响。然而,该技术面临的主要挑战包括吸附剂的再生介质选择和对pH值的精确控制。吸附过程的一个关键难题是同时处理多种离子的能力,以及保持吸附剂在长时间使用后的稳定性和循环性能。

2.8. 气体水合物基消除重金属离子的机理

在废水处理领域,气体水合物技术因其经济高效的特点,受到了科学家们的广泛关注。该技术显著降低了生产成本,并大幅提升了废水处理的效能,特别是在处理重金属污染方面表现出色。此外,气体水合物处理技术的低风险、操作简便性和高度选择性,使其不仅局限于重金属的去除,还广泛应用于废水处理的多个环节。该技术通过生成气体水合物,不仅实现了水质的净化,还简化了从工业废料中回收有害金属的流程,促进了废物的资源化利用。因此,气体水合物技术不仅有助于减少废水排放,更在资源回收和环境保护方面展现出巨大的潜力。

这种技术通常有两个基本要求,生产水合物,即水和气体,其中气体分子被封闭在由氢键形成的水笼中。为了更好地理解盐存在时水合物形成的机理,必须考虑水在体相和气液界面上的氢键作用。气体分子并不以化学方式与水合物笼结合,而是通过范德瓦尔斯相互作用与水笼相互作用较弱。当1 m3的水合物被解离时,在标准温度和压力下可产生高达164 m3的气体和0.8 m3的纯水。此外,该水合物构成约85%的水和15%摩尔的气体,这意味着生产处理水的巨大能量,可进一步用于工业或家庭使用。

在水合物形成过程中,金属离子被排到废水中,水合物内部仅包含水和气体,从而避免了大量金属离子残留。这个过程有助于从废水中去除盐分,不产生污泥,为淡水生产提供了机会。当水合物减压时,它会轻易地分解为液态水和气体。通过离心或挤压等单元操作,可以分离出水合晶体,作为后处理步骤[67]。利用热刺激或减压,可以分解水合物,释放出无盐的水,同时回收并再利用气体。与传统方法相比,气体水合物脱盐技术的优点包括高水回收率、低能耗、无需预处理、维护需求少,最重要的是能完全排除金属离子。其安装简便、成本效益高且对环境友好,是水合物解离后产生的水用于淡水生产的显著优势。

3. 结论

过去二十年,环境法规日益严格,推动了对处理污水中高浓度重金属的技术提升,一系列传统方法应运而生,以净化废水。本文概述了气体水合物在脱盐和去除重金属离子中的应用,包括对新型反应器的设计和优化,以及提升其形成和解离效率的研究。尽管基于水合物的原理在重金属分离中颇具优势,如可持续性和高效性,但动力学慢、热力学条件和有效分离仍是挑战。为了改进,需要选择合适的水合物和促进剂,同时开发成本效益高的后处理技术,以提高水回收率并提升工艺效率。

参考文献

[1] Rosado, D., Usero, J. and Morillo, J. (2016) Assessment of Heavy Metals Bioavailability and Toxicity toward Vibrio Fischeri in Sediment of the Huelva Estuary. Chemosphere, 153, 10-17.
https://doi.org/10.1016/j.chemosphere.2016.03.040
[2] Azetsu-Scott, K., Yeats, P., Wohlgeschaffen, G., Dalziel, J., Niven, S. and Lee, K. (2007) Precipitation of Heavy Metals in Produced Water: Influence on Contaminant Transport and Toxicity. Marine Environmental Research, 63, 146-167.
https://doi.org/10.1016/j.marenvres.2006.08.001
[3] Ali, I., Alharbi, O.M.L., Alothman, Z.A. and Badjah, A.Y. (2018) Kinetics, Thermodynamics, and Modeling of Amido Black Dye Photodegradation in Water Using Co/TiO2 Nanoparticles. Photochemistry and Photobiology, 94, 935-941.
https://doi.org/10.1111/php.12937
[4] Ali, I., Alharbi, O.M.L., ALOthman, Z.A., Alwarthan, A. and Al-Mohaimeed, A.M. (2019) Preparation of a Carboxymethylcellulose-Iron Composite for Uptake of Atorvastatin in Water. International Journal of Biological Macromolecules, 132, 244-253.
https://doi.org/10.1016/j.ijbiomac.2019.03.211
[5] Khan, N.A., Ahmed, S., Farooqi, I.H., Ali, I., Vambol, V., Changani, F., et al. (2020) Occurrence, Sources and Conventional Treatment Techniques for Various Antibiotics Present in Hospital Wastewaters: A Critical Review. TrAC Trends in Analytical Chemistry, 129, Article ID: 115921.
https://doi.org/10.1016/j.trac.2020.115921
[6] Igunnu, E.T. and Chen, G.Z. (2012) Produced Water Treatment Technologies. International Journal of Low-Carbon Technologies, 9, 157-177.
https://doi.org/10.1093/ijlct/cts049
[7] Sloan Jr., E.D. and Koh, C.A. (2007) Clathrate Hydrates of Natural Gases. 3rd Edition, CRC Press.
[8] Gonçalves, A.L., Pires, J.C.M. and Simões, M. (2017) A Review on the Use of Microalgal Consortia for Wastewater Treatment. Algal Research, 24, 403-415.
https://doi.org/10.1016/j.algal.2016.11.008
[9] Renuka, N., Sood, A., Ratha, S.K., Prasanna, R. and Ahluwalia, A.S. (2013) Evaluation of Microalgal Consortia for Treatment of Primary Treated Sewage Effluent and Biomass Pro-duction. Journal of Applied Phycology, 25, 1529-1537.
https://doi.org/10.1007/s10811-013-9982-x
[10] Tee, P.F., Abdullah, M.O., Tan, I.A.W., Rashid, N.K.A., Amin, M.A.M., Nolasco-Hipolito, C., et al. (2016) Review on Hybrid Energy Systems for Wastewater Treatment and Bio-Energy Production. Renewable and Sustainable Energy Reviews, 54, 235-246.
https://doi.org/10.1016/j.rser.2015.10.011
[11] Wan Ngah, W.S., Teong, L.C. and Hanafiah, M.A.K.M. (2011) Adsorption of Dyes and Heavy Metal Ions by Chitosan Composites: A Review. Carbohydrate Polymers, 83, 1446-1456.
https://doi.org/10.1016/j.carbpol.2010.11.004
[12] Quero, G.M., Cassin, D., Botter, M., Perini, L. and Luna, G.M. (2015) Patterns of Benthic Bacterial Diversity in Coastal Areas Contaminated by Heavy Metals, Polycyclic Aromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs). Frontiers in Microbiology, 6, Article No. 1053.
https://doi.org/10.3389/fmicb.2015.01053
[13] Finizio, A., Azimonti, G. and Villa, S. (2011) Occurrence of Pesticides in Surface Water Bodies: A Critical Analysis of the Italian National Pesticide Survey Programs. Journal of Environmental Monitoring, 13, 49-57.
https://doi.org/10.1039/c0em00192a
[14] Gupta, V.K. and Suhas, (2009) Application of Low-Cost Adsorbents for Dye Removal—A Review. Journal of Environmental Management, 90, 2313-2342.
https://doi.org/10.1016/j.jenvman.2008.11.017
[15] Gong, Y., Zhao, X., Cai, Z., O’Reilly, S.E., Hao, X. and Zhao, D. (2014) A Review of Oil, Dispersed Oil and Sediment Interactions in the Aquatic Environment: Influence on the Fate, Transport and Remediation of Oil Spills. Marine Pollution Bulletin, 79, 16-33.
https://doi.org/10.1016/j.marpolbul.2013.12.024
[16] Johnson, R.F., Manjreker, T.G. and Halligan, J.E. (1973) Removal of Oil from Water Surfaces by Sorption on Unstructured Fibers. Environmental Science & Technology, 7, 439-443.
https://doi.org/10.1021/es60077a003
[17] Xu, P., Zeng, G.M., Huang, D.L., Feng, C.L., Hu, S., Zhao, M.H., et al. (2012) Use of Iron Oxide Nanomaterials in Wastewater Treatment: A Review. Science of the Total Envi-ronment, 424, 1-10.
https://doi.org/10.1016/j.scitotenv.2012.02.023
[18] Srivastava, N.K. and Majumder, C.B. (2008) Novel Biofiltration Methods for the Treatment of Heavy Metals from Industrial Wastewater. Journal of Hazardous Materials, 151, 1-8.
https://doi.org/10.1016/j.jhazmat.2007.09.101
[19] Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A.P., et al. (2021) Technological Trends in Heavy Metals Removal from Industrial Wastewater: A Review. Journal of Environmental Chemical Engineering, 9, Article ID: 105688.
https://doi.org/10.1016/j.jece.2021.105688
[20] Tran, T., Leu, H., Chiu, K. and Lin, C. (2017) Electrochemical Treatment of Heavy Metal-Containing Wastewater with the Removal of COD and Heavy Metal Ions. Journal of the Chinese Chemical Society, 64, 493-502.
https://doi.org/10.1002/jccs.201600266
[21] Bielen, A., Šimatović, A., Kosić-Vukšić, J., Senta, I., Ahel, M., Babić, S., et al. (2017) Negative Environmental Impacts of Antibiotic-Contaminated Effluents from Pharmaceutical Industries. Water Research, 126, 79-87.
https://doi.org/10.1016/j.watres.2017.09.019
[22] Lokhande, R.S., Singare, P.U. and Pimple, D.S. (2012) Toxicity Study of Heavy Metals Pollutants in Waste Water Effluent Samples Collected from Taloja Industrial Estate of Mumbai. Resources and Environment, 1, 13-19.
https://doi.org/10.5923/j.ije.20110101.01
[23] Hima, K.A., Srinivasa, R.R., Vijaya, S.S., Jayakumar, S.B., Suryanarayana, V. and Venkateshwar, P. (2007) Biosorption: An Eco-Friendly Alternative for Heavy Metal Removal. African Journal of Biotechnology, 6, 2924-2931.
https://doi.org/10.5897/ajb2007.000-2461
[24] Madu, P.C., Akpaiyo, G.D. and Ikoku, P. (2011) Biosorption of Cr3+, Pb2+, and Cd2+ Ions from Aqueous Solution Using Modified and Unmodified Millet Chaff. Journal of Chemical and Pharmaceutical Research, 3, 467-477.
[25] Dhir, B., Sharmila, P. and Saradhi, P.P. (2009) Potential of Aquatic Macrophytes for Removing Contaminants from the Environment. Critical Reviews in Environmental Science and Technology, 39, 754-781.
https://doi.org/10.1080/10643380801977776
[26] Nurchi, V.M., Crisponi, G. and Villaescusa, I. (2010) Chemical Equilibria in Wastewaters during Toxic Metal Ion Removal by Agricultural Biomass. Coordination Chemistry Reviews, 254, 2181-2192.
https://doi.org/10.1016/j.ccr.2010.05.022
[27] Simate, G.S., Maledi, N., Ochieng, A., Ndlovu, S., Zhang, J. and Walubita, L.F. (2016) Coal-Based Adsorbents for Water and Wastewater Treatment. Journal of Environmental Chemical Engineering, 4, 2291-2312.
https://doi.org/10.1016/j.jece.2016.03.051
[28] Ali, H., Khan, E. and Sajad, M.A. (2013) Phytoremediation of Heavy Metals—Concepts and Applications. Chemosphere, 91, 869-881.
https://doi.org/10.1016/j.chemosphere.2013.01.075
[29] Guieysse, B. and Norvill, Z.N. (2014) Sequential Chem-ical-Biological Processes for the Treatment of Industrial Wastewaters: Review of Recent Progresses and Critical As-sessment. Journal of Hazardous Materials, 267, 142-152.
https://doi.org/10.1016/j.jhazmat.2013.12.016
[30] Boamah, P.O., Huang, Y., Hua, M., Zhang, Q., Wu, J., Onumah, J., et al. (2015) Sorption of Heavy Metal Ions onto Carboxylate Chitosan Derivatives—A Mini-Review. Ecotoxicology and Environmental Safety, 116, 113-120.
https://doi.org/10.1016/j.ecoenv.2015.01.012
[31] Lesmana, S.O., Febriana, N., Soetaredjo, F.E., Sunarso, J. and Ismadji, S. (2009) Studies on Potential Applications of Biomass for the Separation of Heavy Metals from Water and Wastewater. Biochemical Engineering Journal, 44, 19-41.
https://doi.org/10.1016/j.bej.2008.12.009
[32] Ahmed, M.J.K. and Ahmaruzzaman, M. (2016) A Review on Po-tential Usage of Industrial Waste Materials for Binding Heavy Metal Ions from Aqueous Solutions. Journal of Water Process Engineering, 10, 39-47.
https://doi.org/10.1016/j.jwpe.2016.01.014
[33] Ruihua, L., Lin, Z., Tao, T. and Bo, L. (2011) Phosphorus Re-moval Performance of Acid Mine Drainage from Wastewater. Journal of Hazardous Materials, 190, 669-676.
https://doi.org/10.1016/j.jhazmat.2011.03.097
[34] Nguyen, T.A.H., Ngo, H.H., Guo, W.S., Zhang, J., Liang, S., Yue, Q.Y., et al. (2013) Applicability of Agricultural Waste and By-Products for Adsorptive Removal of Heavy Metals from Wastewater. Bioresource Technology, 148, 574-585.
https://doi.org/10.1016/j.biortech.2013.08.124
[35] Farooq, U., Kozinski, J.A., Khan, M.A. and Athar, M. (2010) Biosorption of Heavy Metal Ions Using Wheat Based Biosorbents—A Review of the Recent Literature. Bioresource Technology, 101, 5043-5053.
https://doi.org/10.1016/j.biortech.2010.02.030
[36] Ahmaruzzaman, M. (2009) Role of Fly Ash in the Removal of Organic Pollutants from Wastewater. Energy & Fuels, 23, 1494-1511.
https://doi.org/10.1021/ef8002697
[37] Visa, M. (2016) Synthesis and Characterization of New Zeolite Materials Obtained from Fly Ash for Heavy Metals Removal in Advanced Wastewater Treatment. Powder Technology, 294, 338-347.
https://doi.org/10.1016/j.powtec.2016.02.019
[38] Ghernaout, D., Al-Ghonamy, A.I., Boucherit, A., Ghernaout, B., Naceur, M.W., Messaoudene, N.A. and Elboughdiri, N.A. (2015) Brownian Motion and Coagulation Process. American Journal of Environmental Protection, 4, 1-15.
[39] Chang, Q., Zhang, M. and Wang, J. (2009) Removal of Cu2+ and Turbidity from Wastewater by Mercaptoacetyl Chitosan. Journal of Hazardous Materials, 169, 621-625.
https://doi.org/10.1016/j.jhazmat.2009.03.144
[40] Sakhi, D., Rakhila, Y., Elmchaouri, A., Abouri, M., Souabi, S. and Jada, A. (2019) Optimization of Coagulation Flocculation Process for the Removal of Heavy Metals from Real Textile Wastewater. In: Ezziyyani, M., Eds., Advances in Intelligent Systems and Computing, Springer International Publishing, 257-266.
https://doi.org/10.1007/978-3-030-11881-5_22
[41] Guo, W., Fu, Z., Wang, H., Liu, S., Wu, F. and Giesy, J.P. (2018) Removal of Antimonate (SB(V)) and Antimonite (SB(III)) from Aqueous Solutions by Coagula-tion-Flocculation-Sedimentation (CFS): Dependence on Influencing Factors and Insights into Removal Mechanisms. Science of the Total Environment, 644, 1277-1285.
https://doi.org/10.1016/j.scitotenv.2018.07.034
[42] Yan, L., Yin, H., Zhang, S., Leng, F., Nan, W. and Li, H. (2010) Biosorption of Inorganic and Organic Arsenic from Aqueous Solution by Acidithiobacillus Ferrooxidans By-3. Journal of Hazardous Materials, 178, 209-217.
https://doi.org/10.1016/j.jhazmat.2010.01.065
[43] Łukasiewicz, E. (2016) Post-Coagulation Sludge Management for Water and Wastewater Treatment with Focus on Limiting Its Impact on the Environment. Economic and Environ-mental Studies, 16, 831-841.
[44] Ahmad, T., Ahmad, K. and Alam, M. (2016) Sustainable Management of Water Treatment Sludge through 3‘R’ Concept. Journal of Cleaner Production, 124, 1-13.
https://doi.org/10.1016/j.jclepro.2016.02.073
[45] Bilal, M., Shah, J.A., Ashfaq, T., Gardazi, S.M.H., Tahir, A.A., Pervez, A., et al. (2013) Waste Biomass Adsorbents for Copper Removal from Industrial Wastewater—A Review. Journal of Hazardous Materials, 263, 322-333.
https://doi.org/10.1016/j.jhazmat.2013.07.071
[46] Hubicki, Z. and Koodynsk, D. (2012) Selective Removal of Heavy Metal Ions from Waters and Waste Waters Using Ion Exchange Methods. In: Kilislioğlu, A., Ed., Ion Exchange Technologies, InTech, 193-240.
https://doi.org/10.5772/51040
[47] An, B., Liang, Q. and Zhao, D. (2011) Removal of Arsenic(v) from Spent Ion Exchange Brine Using a New Class of Starch-Bridged Magnetite Nanoparticles. Water Research, 45, 1961-1972.
https://doi.org/10.1016/j.watres.2011.01.004
[48] Barakat, M.A. (2011) New Trends in Removing Heavy Metals from Industrial Wastewater. Arabian Journal of Chemistry, 4, 361-377.
https://doi.org/10.1016/j.arabjc.2010.07.019
[49] Motsi, T., Rowson, N.A. and Simmons, M.J.H. (2009) Adsorp-tion of Heavy Metals from Acid Mine Drainage by Natural Zeolite. International Journal of Mineral Processing, 92, 42-48.
https://doi.org/10.1016/j.minpro.2009.02.005
[50] Figueiredo, H. and Quintelas, C. (2014) Tailored Zeolites for the Removal of Metal Oxyanions: Overcoming Intrinsic Limitations of Zeolites. Journal of Hazardous Materials, 274, 287-299.
https://doi.org/10.1016/j.jhazmat.2014.04.012
[51] Ibrahim, H.S., Jamil, T.S. and Hegazy, E.Z. (2010) Application of Zeolite Prepared from Egyptian Kaolin for the Removal of Heavy Metals: II. Isotherm Models. Journal of Hazardous Materials, 182, 842-847.
https://doi.org/10.1016/j.jhazmat.2010.06.118
[52] Kononova, O.N., Bryuzgina, G.L., Apchitaeva, O.V. and Kononov, Y.S. (2019) Ion Exchange Recovery of Chromium (VI) and Manganese (II) from Aqueous Solutions. Arabian Journal of Chemistry, 12, 2713-2720.
https://doi.org/10.1016/j.arabjc.2015.05.021
[53] Mahmoud, M.R., Lazaridis, N.K. and Matis, K.A. (2015) Study of Flotation Conditions for Cadmium(II) Removal from Aqueous Solutions. Process Safety and Environmental Protec-tion, 94, 203-211.
https://doi.org/10.1016/j.psep.2014.06.012
[54] Patil, D.S., Chavan, S.M. and Oubagaranadin, J.U.K. (2016) A Review of Technologies for Manganese Removal from Wastewaters. Journal of Environmental Chemical Engineering, 4, 468-487.
https://doi.org/10.1016/j.jece.2015.11.028
[55] Hoseinian, F.S., Rezai, B., Kowsari, E., Chinnappan, A. and Ramakrishna, S. (2020) Synthesis and Characterization of a Novel Nanocollector for the Removal of Nickel Ions from Synthetic Wastewater Using Ion Flotation. Separation and Purification Technology, 240, Article ID: 116639.
https://doi.org/10.1016/j.seppur.2020.116639
[56] Mahne, E.J. and Pinfold, T.A. (1968) Precipitate Flotation I. Removal of Nickel from Dilute Aqueous Solutions and Its Separation from Cobalt. Journal of Applied Chemistry, 18, 52-54.
https://doi.org/10.1002/jctb.5010180205
[57] Peng, W., Chang, L., Li, P., Han, G., Huang, Y. and Cao, Y. (2019) An Overview on the Surfactants Used in Ion Flotation. Journal of Molecular Liquids, 286, Article ID: 110955.
https://doi.org/10.1016/j.molliq.2019.110955
[58] Lyu, S., Chen, W., Zhang, W., Fan, Y. and Jiao, W. (2016) Wastewater Reclamation and Reuse in China: Opportunities and Challenges. Journal of Environmental Sciences, 39, 86-96.
https://doi.org/10.1016/j.jes.2015.11.012
[59] Li, W., Zheng, P., Guo, J., Ji, J., Zhang, M., Zhang, Z., et al. (2014) Characteristics of Self-Alkalization in High-Rate Denitrifying Automatic Circulation (DAC) Reactor Fed with Methanol and Sodium Acetate. Bioresource Technology, 154, 44-50.
https://doi.org/10.1016/j.biortech.2013.11.097
[60] Hashim, M.A., Mukhopadhyay, S., Sahu, J.N. and Sengupta, B. (2011) Remediation Technologies for Heavy Metal Contaminated Groundwater. Journal of Environmental Management, 92, 2355-2388.
https://doi.org/10.1016/j.jenvman.2011.06.009
[61] Tanong, K., Tran, L., Mercier, G. and Blais, J. (2017) Re-covery of Zn (II), Mn (II), Cd (II) and Ni (II) from the Unsorted Spent Batteries Using Solvent Extraction, Electrodeposition and Precipitation Methods. Journal of Cleaner Production, 148, 233-244.
https://doi.org/10.1016/j.jclepro.2017.01.158
[62] Elabbas, S., Ouazzani, N., Mandi, L., Berrekhis, F., Perdicakis, M., Pontvianne, S., et al. (2016) Treatment of Highly Concentrated Tannery Wastewater Using Electrocoagulation: In-fluence of the Quality of Aluminium Used for the Electrode. Journal of Hazardous Materials, 319, 69-77.
https://doi.org/10.1016/j.jhazmat.2015.12.067
[63] Liu, C., Wu, T., Hsu, P., Xie, J., Zhao, J., Liu, K., et al. (2019) Direct/Alternating Current Electrochemical Method for Removing and Recovering Heavy Metal from Water Using Graphene Oxide Electrode. ACS Nano, 13, 6431-6437.
https://doi.org/10.1021/acsnano.8b09301
[64] Yang, X., Liu, L., Zhang, M., Tan, W., Qiu, G. and Zheng, L. (2019) Improved Removal Capacity of Magnetite for Cr(VI) by Electrochemical Reduction. Journal of Hazardous Materials, 374, 26-34.
https://doi.org/10.1016/j.jhazmat.2019.04.008
[65] Ewecharoen, A., Thiravetyan, P., Wendel, E. and Bertagnolli, H. (2009) Nickel Adsorption by Sodium Polyacrylate-Grafted Activated Carbon. Journal of Hazardous Materials, 171, 335-339.
https://doi.org/10.1016/j.jhazmat.2009.06.008
[66] Nallakukkala, S. and Lal, B. (2021) Seawater and Produced Water Treatment via Gas Hydrate: Review. Journal of Environmental Chemical Engineering, 9, Article ID: 105053.
https://doi.org/10.1016/j.jece.2021.105053
[67] Babu, P., Nambiar, A., He, T., Karimi, I.A., Lee, J.D., Englezos, P., et al. (2018) A Review of Clathrate Hydrate Based Desalination to Strengthen Energy-Water Nexus. ACS Sustainable Chemistry & Engineering, 6, 8093-8107.
https://doi.org/10.1021/acssuschemeng.8b01616