|
[1]
|
倪青. 高尿酸血症和痛风病证结合诊疗指南(2021-01-20) [J]. 世界中医药, 2021, 16(2): 183-189.
|
|
[2]
|
Kyu, H.H., Abate, D., Abate, K.H., Abay, S.M., Abbafati, C., Abbasi, N., et al. (2018) Global, Regional, and National Disability-Adjusted Life-Years (DALYs) for 359 Diseases and Injuries and Healthy Life Expectancy (HALE) for 195 Countries and Territories, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 392, 1859-1922. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Danve, A. and Neogi, T. (2020) Rising Global Burden of Gout: Time to Act. Arthritis & Rheumatology, 72, 1786-1788. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Song, J., Jin, C., Shan, Z., Teng, W. and Li, J. (2022) Prevalence and Risk Factors of Hyperuricemia and Gout: A Cross-Sectional Survey from 31 Provinces in Mainland of China. Journal of Translational Internal Medicine, 10, 134-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Gao, Q., Cheng, X., Merriman, T.R., Wang, C., Cui, L., Zhang, H., et al. (2021) Trends in the Manifestations of 9754 Gout Patients in a Chinese Clinical Center: A 10-Year Observational Study. Joint Bone Spine, 88, Article ID: 105078. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhu, B., Wang, Y., Zhou, W., Jin, S., Shen, Z., Zhang, H., et al. (2022) Trend Dynamics of Gout Prevalence among the Chinese Population, 1990-2019: A Joinpoint and Age-Period-Cohort Analysis. Frontiers in Public Health, 10, Article 1008598. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Torres, J., Mehandru, S., Colombel, J. and Peyrin-Biroulet, L. (2017) Crohn’s Disease. The Lancet, 389, 1741-1755. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Rogler, G., Singh, A., Kavanaugh, A. and Rubin, D.T. (2021) Extraintestinal Manifestations of Inflammatory Bowel Disease: Current Concepts, Treatment, and Implications for Disease Management. Gastroenterology, 161, 1118-1132. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Burgess, S., Scott, R.A., Timpson, N.J., Davey Smith, G. and Thompson, S.G. (2015) Using Published Data in Mendelian Randomization: A Blueprint for Efficient Identification of Causal Risk Factors. European Journal of Epidemiology, 30, 543-552. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, Y., Yan, S., Li, X., Huang, Q., Luo, L., Wang, Y., et al. (2022) Causal Association between Periodontitis and Type 2 Diabetes: A Bidirectional Two-Sample Mendelian Randomization Analysis. Frontiers in Genetics, 12, Article 792396. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Boef, A.G.C., Dekkers, O.M. and le Cessie, S. (2015) Mendelian Randomization Studies: A Review of the Approaches Used and the Quality of Reporting. International Journal of Epidemiology, 44, 496-511. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Davies, N.M., Holmes, M.V. and Davey Smith, G. (2018) Reading Mendelian Randomisation Studies: A Guide, Glossary, and Checklist for Clinicians. BMJ, 362, k601. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Verbanck, M., Chen, C., Neale, B. and Do, R. (2018) Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and Diseases. Nature Genetics, 50, 693-698. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Luo, J., Xu, Z., Noordam, R., van Heemst, D. and Li-Gao, R. (2021) Depression and Inflammatory Bowel Disease: A Bidirectional Two-Sample Mendelian Randomization Study. Journal of Crohn’s and Colitis, 16, 633-642. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhang, Y., Liu, Z., Choudhury, T., Cornelis, M.C. and Liu, W. (2020) Habitual Coffee Intake and Risk for Nonalcoholic Fatty Liver Disease: A Two-Sample Mendelian Randomization Study. European Journal of Nutrition, 60, 1761-1767. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. International Journal of Epidemiology, 44, 512-525. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Chen, X., Kong, J., Diao, X., Cai, J., Zheng, J., Xie, W., et al. (2020) Depression and Prostate Cancer Risk: A Mendelian Randomization Study. Cancer Medicine, 9, 9160-9167. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yao, X., Zhang, C., Xing, Y., Xue, G., Zhang, Q., Pan, F., et al. (2017) Remodelling of the Gut Microbiota by Hyperactive NLRP3 Induces Regulatory T Cells to Maintain Homeostasis. Nature Communications, 8, Article No. 1896. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Neudecker, V., Haneklaus, M., Jensen, O., Khailova, L., Masterson, J.C., Tye, H., et al. (2017) Myeloid-derived Mir-223 Regulates Intestinal Inflammation via Repression of the NLRP3 Inflammasome. Journal of Experimental Medicine, 214, 1737-1752. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Mao, L., Kitani, A., Similuk, M., Oler, A.J., Albenberg, L., Kelsen, J., et al. (2018) Loss-of-Function CARD8 Mutation Causes NLRP3 Inflammasome Activation and Crohn’s Disease. Journal of Clinical Investigation, 128, 1793-1806. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wan, X., Xu, C., Lin, Y., Lu, C., Li, D., Sang, J., et al. (2016) Uric Acid Regulates Hepatic Steatosis and Insulin Resistance through the NLRP3 Inflammasome-Dependent Mechanism. Journal of Hepatology, 64, 925-932. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Abderrazak, A., Syrovets, T., Couchie, D., El Hadri, K., Friguet, B., Simmet, T., et al. (2015) NLRP3 Inflammasome: From a Danger Signal Sensor to a Regulatory Node of Oxidative Stress and Inflammatory Diseases. Redox Biology, 4, 296-307. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yin, W., Zhou, Q., OuYang, S., Chen, Y., Gong, Y. and Liang, Y. (2019) Uric Acid Regulates NLRP3/IL-1β Signaling Pathway and Further Induces Vascular Endothelial Cells Injury in Early CKD through ROS Activation and K+ Efflux. BMC Nephrology, 20, Article No. 319. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wark, G., Samocha-Bonet, D., Ghaly, S. and Danta, M. (2020) The Role of Diet in the Pathogenesis and Management of Inflammatory Bowel Disease: A Review. Nutrients, 13, Article 135. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wang, J., Chen, Y., Zhong, H., Chen, F., Regenstein, J., Hu, X., et al. (2021) The Gut Microbiota as a Target to Control Hyperuricemia Pathogenesis: Potential Mechanisms and Therapeutic Strategies. Critical Reviews in Food Science and Nutrition, 62, 3979-3989. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Sivaprakasam, S., Prasad, P.D. and Singh, N. (2016) Benefits of Short-Chain Fatty Acids and Their Receptors in Inflammation and Carcinogenesis. Pharmacology & Therapeutics, 164, 144-151. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hou, T., Dai, H., Wang, Q., Hou, Y., Zhang, X., Lin, H., et al. (2023) Dissecting the Causal Effect between Gut Microbiota, DHA, and Urate Metabolism: A Large-Scale Bidirectional Mendelian Randomization. Frontiers in Immunology, 14, Article 1148591. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Herbert, J., Teeter, E., Burstiner, L.S., Doka, R., Royer, A., Owings, A.H., et al. (2022) Urinary Manifestations in African American and Caucasian Inflammatory Bowel Disease Patients: A Retrospective Cohort Study. BMC Urology, 22, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Fagagnini, S., Heinrich, H., Rossel, J., Biedermann, L., Frei, P., Zeitz, J., et al. (2017) Risk Factors for Gallstones and Kidney Stones in a Cohort of Patients with Inflammatory Bowel Diseases. PLOS ONE, 12, e0185193. [Google Scholar] [CrossRef] [PubMed]
|