GLP-1RA及SGLT-2i对糖尿病患者的血尿酸的影响如何?
How Did the GLP-1RA and SGLT-2i Affect Serum Uric Acid in Diabetic Patients?
DOI: 10.12677/acm.2024.1482223, PDF, HTML, XML,   
作者: 李白嘎力:内蒙古民族大学第二临床医学院内分泌科,内蒙古 呼伦贝尔;张春香*:内蒙古林业总医院内分泌科,内蒙古 呼伦贝尔
关键词: GLP-1RASGLT-2i糖尿病血尿酸GLP-1RA SGLT-2i Diabetes Mellitus Serum Uric Acid
摘要: GLP-1RA及SGLT-2i是ADA和中华医学会糖尿病学分会推荐的新型降糖药物,具有低血糖风险小、兼具心血管保护及降低体重等代谢获益的特点。高尿酸血症是2型糖尿病的独立危险因素,在临床实践中,人们一直在关注预防SUA的升高。据估计,患者SUA每升高1 mg/dl,发生T2DM的风险就会增加17%。国内外学者研究结果提示SGLT-2i能兼顾降糖的同时降低SUA水平;最近国外研究显示GLP-1RA还可以降低SUA水平,但仍存在矛盾。国内学者对此研究报告甚少。还需要更多的研究填补此领域的空白,为更好地预防2型糖尿的发生及发展作出贡献。
Abstract: GLP-1RA and SGLT-2i are new hypoglycemic drugs recommended by ADA and Diabetes Branch of Chinese Medical Association, which have the characteristics of low risk of hypoglycemia, metabolic benefits such as cardiovascular protection and weight reduction. Hyperuricemia is an independent risk factor for type 2 diabetes, and much attention has been paid to the prevention of elevated SUA in clinical practice. It is estimated that every 1 mg/dl elevation of patient SUA causes a 17% increase in the risk of developing T2DM. The results of domestic and foreign scholars suggest that SGLT-2i can reduce SUA level while lowering glucose; recent foreign studies show that GLP-1RA can also reduce SUA level, but there are still contradictions. Domestic scholars have few reports on this. More studies are needed to fill the gap in this field to contribute to better prevention of the occurrence and development of type 2 diabetes mellitus.
文章引用:李白嘎力, 张春香. GLP-1RA及SGLT-2i对糖尿病患者的血尿酸的影响如何?[J]. 临床医学进展, 2024, 14(8): 359-366. https://doi.org/10.12677/acm.2024.1482223

1. 引言

糖尿病(DM)是全球的一个主要公共卫生问题。世界卫生组织报告说,有4.22亿人患有糖尿病,主要是在低收入和中等收入国家,每年导致160万人死亡。2型糖尿病(Type 2 diabetes, T2D)是一种以慢性高血糖为特征的内分泌系统疾病,是世界上发病率高、死亡率高、致残率高的疾病之一。近30多年来,我国糖尿病患病率显著增加。1980年全国14省市30万人的流行病学资料显示,糖尿病的患病率为0.67%。2015至2017年中华医学会内分泌学分会在全国31个省进行的甲状腺、碘营养状态和糖尿病的流行病学调查显示,我国18岁及以上人群糖尿病患病率为11.2%。以2型糖尿病(T2DM)为主,1型糖尿病(T1DM)和其他类型糖尿病少见,男性高于女性(2015至2017年全国调查结果为12.1%和10.3%)。在2015至2017年全国46家三级医院招募的30岁及以上的17,349例新诊断糖尿病患者中,T1DM (经典T1DM和成人隐匿型自身免疫性糖尿病)占5.8%,非T1DM (T2DM和其他特殊类型糖尿病)占94.2%。糖尿病人群中T2DM占90%以上。据估计,与非糖尿病患者相比,糖尿病患者的医疗保健支出增加了一倍。糖尿病对一些国家、医疗保健系统和个人产生了重大的经济影响(国际糖尿病联合会,2020年)。

2. 降糖药物

2.1. 胰高血糖素样肽-1受体激动剂(GLP-1RA)

胰高血糖素样肽-1受体激动剂(glucagon-like peptide-1 receptor agonist, GLP-1RA)是T2DM治疗领域的一类新型降糖药,可显著改善T2DM的一些关键性病理生理缺陷[1],并具有减少心血管死亡、改善动脉粥样硬化、减轻体质量、降低收缩压、改善血脂谱等降糖外获益[2]。GLP-1RA通过激活GLP-1受体以葡萄糖浓度依赖的方式刺激胰岛素分泌和抑制胰高糖素分泌,同时增加肌肉和脂肪组织葡萄糖摄取,抑制肝脏葡萄糖的生成而发挥降糖作用,并可抑制胃排空,抑制食欲[3] [4]。GLP-1RA除了减肥、降低血糖水平的好处外已被证明对多个器官有直接的保护作用,还包括大脑、胰腺b细胞功能、肝脏和心脏。大脑皮层中的胰高血糖素样肽-1受体似乎通过抗凋亡作用、神经元更新、抗氧化作用、抗炎作用以及限制b淀粉样蛋白和新原纤维缠结积累对脑缺血、帕金森病甚至精神病具有保护作用[5]-[7]。GLP-1RA的使用也可以改善非酒精性脂肪性肝炎患者的肝功能和组织学特征[8]。此外,GLP-1RA治疗可降低心脏b1-肾上腺受体的表达,将心肌表盘能量来源从脂肪酸变为葡萄糖,从而改善心功能[9] [10]

2.2. 钠–葡萄糖协同转运蛋白2抑制剂(SGLT-2i)

SGLT-2抑制剂是一类近年受到高度重视的新型口服降糖药物[11]-[15],可抑制肾脏对葡萄糖的重吸收,降低肾糖阈,从而促进尿糖的排出[16]。对血糖控制有中等作用,低血糖和体重增加的风险低[17] [18]。SGLT2抑制剂通过不依赖胰岛素的机制降低血糖,降低血清胰岛素,改善胰岛素抵抗[19]-[21]。目前的证据表明,SGLT-2抑制剂可改善了心血管终点,包括全因死亡率、心血管死亡率、心力衰竭(HF)和动脉粥样硬化大血管事件[22]。此外,SGLT-2抑制剂在肾脏并发症的进展方面显示出惊人的影响,如降低血清肌酐、减少蛋白尿和减少肾脏疾病引起的死亡[23] [24]。钠–葡萄糖共转运体2(SGLT2)是一种高容量、低亲和力的葡萄糖转运体,存在于肾脏近端凸流小管,是葡萄糖重吸收的大部分原因。除了降低血糖水平,SGLT2抑制剂也被报道可以降低血清尿酸水平[25]。包括一部分高尿酸血症患者。此外,20%~30%的高尿酸血症患者使用SGLT-2i能够达到正常的血清尿酸水平(<6 mg/dl)。SGLT2抑制剂降低血清尿酸的机制尚不清楚,然而,推测它可能与肾脏SLC2A9 (GLUT9)转运体有关。SLC2A9基因编码一种促进葡萄糖转运体,有两个剪接变体,在肾元近端小管的顶端膜高表达,肾元是肾脏尿酸处理的关键部位,发现同时运输尿酸和d-葡萄糖。SGLT2抑制剂治疗导致尿中葡萄糖排泄增加,最终可能导致增加尿酸的变化管细胞的顶端膜导致增加尿酸从血液释放到尿液,从而降低血清尿酸水平[26]-[28]。在表达SLC2A9b的非洲爪蟾卵母细胞中,高葡萄糖浓度反式刺激尿酸外排的证据支持了这一潜在机制[29]

3. 高尿酸血症的危害

尿酸是嘌呤代谢的副产品,由黄嘌呤的氧化作用产生[30] [31]。血清尿酸水平升高可能是由于饮食摄入、细胞物质分解增加或肾脏消除减少的结果,并可导致高尿酸血症[32]。高尿酸血症和糖尿病是相互依赖的,在糖尿病患者中,高尿酸血症比在非糖尿病人群中更为普遍,糖尿病可被认为是高尿酸血症的独立危险因素[33]。特别是,据报道,在糖代谢受损的早期阶段,SUA水平升高,从而预测2型糖尿病(T2DM)的发病[34]-[37];这也得到了meta分析的支持[38] [39]。此外,有证据表明,高尿酸血症与糖尿病的大血管和微血管并发症相关[37] [40]-[45]。在过去的几十年里,越来越多的证据表明,SUA水平在“糖尿病前期”中已经升高,提示SUA在T2DM的发病机制中发挥了作用[46] [47]。在此背景下,已提出了高尿酸血症可能影响葡萄糖代谢和CV健康的几种机制[48]。更具体地说,高尿酸血症增加氧化应激,降低一氧化氮(NO)的可用性,导致内皮功能障碍和胰岛素抵抗(因为胰岛素需要NO来摄取葡萄糖) [49] [50]。研究发现,与任何其他已知的危险因素无关,血清尿酸水平较高的个体未来发生2型糖尿病的风险较高[36]

其他几个对成年人的研究也发现了高尿血症与动脉粥样硬化有关[51]-[53]。通过系统回顾和荟萃分析,研究了血清尿酸作为心血管疾病的独立危险因素的作用,并显示高尿酸血症确实增加了心血管疾病的风险和死亡率[54]。一些研究已经确定高尿酸血症是代谢综合征、糖尿病和高血压发展的预测因子[55]。糖尿病和高尿酸血症的患者发生严重痛风、肾结石和血管并发症的风险增加[56] [57]。此外,研究已经确定了糖尿病患者的血清尿酸水平与死亡风险之间的关联。这项汇总分析显示,血清尿酸每增加0.1 mmol/L,糖尿病并发症就会增加28%,而糖尿病导致的死亡风险就会增加9% [57]。考虑到与高尿酸血症相关的各种疾病,降低血清尿酸可能有利于糖尿病患者,他们可能有更高的微血管和心血管疾病的风险。

4. 国内外进展

国外文献报道,GLP-1RA已被证明可以在输注后立即降低SUA浓度,可能是由GLP-1ra诱导的近端小管中钠氢离交换蛋白-3 (NHE-3)抑制剂和/或随后的尿碱化介导的[58] [59]。然而,长期使用GLP-1RA治疗后,还有相互矛盾的结果报道,学者提出,在长期治疗期间肾小管水平的快速耐受性和/或代偿机制的诱导使T2DM患者的尿酸水平的影响不明显,只有短效作用的GLP-1RA具有持续的利钠和尿碱化作用[59]。虽然一些研究报告了降低SUA的作用[60]-[62],其认为是通过抑制肾近端小管的Na+/H+交换3型来增加尿酸的绝对排泄,但其他研究报告了GLP-1RA治疗前后对SUA浓度没有显著影响[63]-[65],可能是应用GLP-1RA使eGFR有微小但不显著的下降,eGFR的暂时性下降可能是肾血流动力学改变的急性后果,并随着时间的推移逐渐消失。比如Kurir等人调查了肥胖男性2型糖尿病患者应用GLP-1RA的结果,发现GLP-1RA给药前后的SUA水平无显著差异[63];Liakos等人和中山等人报道了类似的结果[66] [67]。Sara Najafi等人研究数据分析表明GLP-1RA可显著降低糖尿病患者和肥胖个体的SUA浓度。然而,与安慰剂相比,这些减少并不显著[68]

值得注意的是,越来越多国内外学者研究证据显示,SGLT-2抑制剂可以降低T2DM患者中升高的SUA水平,并被认为是T2DM患者中极有前途的一种治疗选择[69]-[71]。其机制认为有一下三方面:1) SGLT-2i可能通过阻断肾小管尿酸转运体,如尿酸转运蛋白1 (URAT1)来改善尿葡萄糖排泄,URAT1在葡萄糖重吸收时增加UA的分泌,导致UA排泄增加和SUA减少。此外,SGLT-2i通过降低血清胰岛素水平来抑制URAT1对UA的重吸收。2) SGLT-2i抑制细胞内葡萄糖进入近端肾小管细胞,恢复DNA-依赖性去乙酰化酶(SIRT1)的产生,而DNA-依赖性去乙酰化酶抑制尿酸代谢中的主要酶黄嘌呤氧化酶(OX),导致UA水平降低。DNA-依赖性去乙酰化酶也可能刺激UA的肠道排泄。3) SGLT-2i可以极大地抑制炎症小体的激活、IL-1和NOD样受体热蛋白结构域相关蛋白3 (NLRP3)的产生以及NLRP3的激活,从而减轻高尿酸血症。SGLT2i可以通过RAAS,下调黄嘌呤氧化酶的活性,抑制炎症反应,减少SUA的形成。2型糖尿病患者可以受益于SGLT-2抑制剂引起的高尿酸血症发生率。大量的临床试验和基础研究已经建立了2型糖尿病和高尿酸血症之间的关系。考虑到与高尿酸血症相关的全身性疾病,降低2型糖尿病患者的血清尿酸无疑是有益的[72]

5. 结论

GLP-1RA及SGLT-2i是ADA和中华医学会糖尿病学分会推荐的新型降糖药物,具有低血糖风险小、兼具心血管保护及降低体重等代谢获益的特点。高尿酸血症是2型糖尿病的独立危险因素,在临床实践中,人们一直在关注预防SUA的升高。据估计,患者SUA每升高1 mg/dl,发生T2DM的风险就会增加17%。国内外学者研究结果提示SGLT-2i能兼顾降糖的同时降低SUA水平;最近国外研究显示GLP-1RA还可以降低SUA水平,但仍存在矛盾。国内学者对此研究报告甚少。还需要更多的研究填补此领域的空白,为更好地预防2型糖尿的发生及发展作出贡献。

NOTES

*通讯作者。

参考文献

[1] Salehi, M., Aulinger, B.A. and D’Alessio, D.A. (2008) Targeting Β-Cell Mass in Type 2 Diabetes: Promise and Limitations of New Drugs Based on Incretins. Endocrine Reviews, 29, 367-379.
https://doi.org/10.1210/er.2007-0031
[2] 纪立农, 邹大进, 洪天配, 等. GLP-1受体激动剂临床应用专家指导意见[J]. 中国糖尿病杂志, 2018, 26(5): 353-361.
[3] Andersen, A., Lund, A., Knop, F.K. and Vilsbøll, T. (2018) Glucagon-Like Peptide 1 in Health and Disease. Nature Reviews Endocrinology, 14, 390-403.
https://doi.org/10.1038/s41574-018-0016-2
[4] Nauck, M.A., Niedereichholz, U., Ettler, R., Holst, J.J., Ørskov, C., Ritzel, R., et al. (1997) Glucagon-Like Peptide 1 Inhibition of Gastric Emptying Outweighs Its Insulinotropic Effects in Healthy Humans. American Journal of Physiology-Endocrinology and Metabolism, 273, E981-E988.
https://doi.org/10.1152/ajpendo.1997.273.5.e981
[5] Wiciński, M., Socha, M., Malinowski, B., Wódkiewicz, E., Walczak, M., Górski, K., et al. (2019) Liraglutide and Its Neuroprotective Properties—Focus on Possible Biochemical Mechanisms in Alzheimer’s Disease and Cerebral Ischemic Events. International Journal of Molecular Sciences, 20, Article 1050.
https://doi.org/10.3390/ijms20051050
[6] Liu, W., Jalewa, J., Sharma, M., Li, G., Li, L. and Hölscher, C. (2015) Neuroprotective Effects of Lixisenatide and Liraglutide in the 1-Methyl-4-Phenyl-1, 2, 3, 6-Tetrahydropyridine Mouse Model of Parkinson’s Disease. Neuroscience, 303, 42-50.
https://doi.org/10.1016/j.neuroscience.2015.06.054
[7] Dixit, T.S., Sharma, A.N., Lucot, J.B. and Elased, K.M. (2013) Antipsychotic-Like Effect of GLP-1 Agonist Liraglutide but Not DPP-IV Inhibitor Sitagliptin in Mouse Model for Psychosis. Physiology & Behavior, 114, 38-41.
https://doi.org/10.1016/j.physbeh.2013.03.008
[8] Eguchi, Y., Kitajima, Y., Hyogo, H., Takahashi, H., Kojima, M., Ono, M., et al. (2014) Pilot Study of Liraglutide Effects in Non‐Alcoholic Steatohepatitis and Non‐Alcoholic Fatty Liver Disease with Glucose Intolerance in Japanese Patients (LEAN‐J). Hepatology Research, 45, 269-278.
https://doi.org/10.1111/hepr.12351
[9] Hansen, J., Brock, B., Bøtker, H.E., Gjedde, A., Rungby, J. and Gejl, M. (2014) Impact of Glucagon-Like Peptide-1 on Myocardial Glucose Metabolism Revisited. Reviews in Endocrine and Metabolic Disorders, 15, 219-231.
https://doi.org/10.1007/s11154-014-9286-8
[10] Sassoon, D.J., Tune, J.D., Mather, K.J., Noblet, J.N., Eagleson, M.A., Conteh, A.M., et al. (2017) Glucagon-Like Peptide 1 Receptor Activation Augments Cardiac Output and Improves Cardiac Efficiency in Obese Swine after Myocardial Infarction. Diabetes, 66, 2230-2240.
https://doi.org/10.2337/db16-1206
[11] American Diabetes Association (2020) 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2021. Diabetes Care, 44, S111-S124.
https://doi.org/10.2337/dc21-s009
[12] Rieg, T. and Vallon, V. (2018) Development of SGLT1 and SGLT2 Inhibitors. Diabetologia, 61, 2079-2086.
https://doi.org/10.1007/s00125-018-4654-7
[13] Perry, R.J. and Shulman, G.I. (2020) Sodium-Glucose Cotransporter-2 Inhibitors: Understanding the Mechanisms for Therapeutic Promise and Persisting Risks. Journal of Biological Chemistry, 295, 14379-14390.
https://doi.org/10.1074/jbc.rev120.008387
[14] Scheen, A.J. (2020) Sodium-Glucose Cotransporter Type 2 Inhibitors for the Treatment of Type 2 Diabetes Mellitus. Nature Reviews Endocrinology, 16, 556-577.
https://doi.org/10.1038/s41574-020-0392-2
[15] Marx, N., Davies, M.J., Grant, P.J., Mathieu, C., Petrie, J.R., Cosentino, F., et al. (2021) Guideline Recommendations and the Positioning of Newer Drugs in Type 2 Diabetes Care. The Lancet Diabetes & Endocrinology, 9, 46-52.
https://doi.org/10.1016/s2213-8587(20)30343-0
[16] 中华医学会糖尿病分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华糖尿病杂志, 2021, 13(4): 315-409.
[17] Liu, X., Zhang, N., Chen, R., Zhao, J. and Yu, P. (2015) Efficacy and Safety of Sodium-Glucose Cotransporter 2 Inhibitors in Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials for 1 to 2 Years. Journal of Diabetes and its Complications, 29, 1295-1303.
https://doi.org/10.1016/j.jdiacomp.2015.07.011
[18] Donnan, J.R., Grandy, C.A., Chibrikov, E., Marra, C.A., Aubrey-Bassler, K., Johnston, K., et al. (2019) Comparative Safety of the Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A Systematic Review and Meta-Analysis. BMJ Open, 9, e022577.
https://doi.org/10.1136/bmjopen-2018-022577
[19] Seino, Y., Sasaki, T., Fukatsu, A., Sakai, S. and Samukawa, Y. (2014) Efficacy and Safety of Luseogliflozin Monotherapy in Japanese Patients with Type 2 Diabetes Mellitus: A 12-Week, Randomized, Placebo-Controlled, Phase II Study. Current Medical Research and Opinion, 30, 1219-1230.
https://doi.org/10.1185/03007995.2014.901943
[20] Seino, Y., Sasaki, T., Fukatsu, A., Ubukata, M., Sakai, S. and Samukawa, Y. (2014) Dose-finding Study of Luseogliflozin in Japanese Patients with Type 2 Diabetes Mellitus: A 12-Week, Randomized, Double-Blind, Placebo-Controlled, Phase II Study. Current Medical Research and Opinion, 30, 1231-1244.
https://doi.org/10.1185/03007995.2014.909390
[21] Seino, Y., Sasaki, T., Fukatsu, A., Ubukata, M., Sakai, S. and Samukawa, Y. (2014) Efficacy and Safety of Luseogliflozin as Monotherapy in Japanese Patients with Type 2 Diabetes Mellitus: A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Study. Current Medical Research and Opinion, 30, 1245-1255.
https://doi.org/10.1185/03007995.2014.912983
[22] Zelniker, T.A., Wiviott, S.D., Raz, I., Im, K., Goodrich, E.L., Bonaca, M.P., et al. (2019) SGLT2 Inhibitors for Primary and Secondary Prevention of Cardiovascular and Renal Outcomes in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cardiovascular Outcome Trials. The Lancet, 393, 31-39.
https://doi.org/10.1016/s0140-6736(18)32590-x
[23] Ninčević, V., Omanović Kolarić, T., Roguljić, H., Kizivat, T., Smolić, M. and Bilić Ćurčić, I. (2019) Renal Benefits of SGLT 2 Inhibitors and GLP-1 Receptor Agonists: Evidence Supporting a Paradigm Shift in the Medical Management of Type 2 Diabetes. International Journal of Molecular Sciences, 20, Article 5831.
https://doi.org/10.3390/ijms20235831
[24] Chilton, R.J. (2019) Effects of Sodium‐Glucose Cotransporter‐2 Inhibitors on the Cardiovascular and Renal Complications of Type 2 Diabetes. Diabetes, Obesity and Metabolism, 22, 16-29.
https://doi.org/10.1111/dom.13854
[25] Ferrannini, E. and Solini, A. (2012) SGLT2 Inhibition in Diabetes Mellitus: Rationale and Clinical Prospects. Nature Reviews Endocrinology, 8, 495-502.
https://doi.org/10.1038/nrendo.2011.243
[26] Wilding, J.P.H., Norwood, P., T’joen, C., Bastien, A., List, J.F. and Fiedorek, F.T. (2009) A Study of Dapagliflozin in Patients with Type 2 Diabetes Receiving High Doses of Insulin Plus Insulin Sensitizers: Applicability of a Novel Insulin-Independent Treatment. Diabetes Care, 32, 1656-1662.
https://doi.org/10.2337/dc09-0517
[27] McGill, J.B. (2014) The SGLT2 Inhibitor Empagliflozin for the Treatment of Type 2 Diabetes Mellitus: A Bench to Bedside Review. Diabetes Therapy, 5, 43-63.
https://doi.org/10.1007/s13300-014-0063-1
[28] Li, S., Sanna, S., Maschio, A., Busonero, F., Usala, G., Mulas, A., et al. (2007) The GLUT9 Gene Is Associated with Serum Uric Acid Levels in Sardinia and Chianti Cohorts. PLOS Genetics, 3, e194.
https://doi.org/10.1371/journal.pgen.0030194
[29] Chino, Y., Samukawa, Y., Sakai, S., Nakai, Y., Yamaguchi, J., Nakanishi, T., et al. (2014) SGLT2 Inhibitor Lowers Serum Uric Acid through Alteration of Uric Acid Transport Activity in Renal Tubule by Increased Glycosuria. Biopharmaceutics & Drug Disposition, 35, 391-404.
https://doi.org/10.1002/bdd.1909
[30] Hussain, M., Elahi, A., Hussain, A., Iqbal, J., Akhtar, L. and Majid, A. (2021) Sodium-Glucose Cotransporter-2 (SGLT-2) Attenuates Serum Uric Acid (SUA) Level in Patients with Type 2 Diabetes. Journal of Diabetes Research, 2021, Article ID: 9973862.
https://doi.org/10.1155/2021/9973862
[31] Khosla, U.M., Zharikov, S., Finch, J.L., Nakagawa, T., Roncal, C., Mu, W., et al. (2005) Hyperuricemia Induces Endothelial Dysfunction. Kidney International, 67, 1739-1742.
https://doi.org/10.1111/j.1523-1755.2005.00273.x
[32] Davies, M.J., Trujillo, A., Vijapurkar, U., Damaraju, C.V. and Meininger, G. (2015) Effect of Canagliflozin on Serum Uric Acid in Patients with Type 2 Diabetes Mellitus. Diabetes, Obesity and Metabolism, 17, 426-429.
https://doi.org/10.1111/dom.12439
[33] Najafi, S., Bahrami, M., Butler, A.E. and Sahebkar, A. (2022) The Effect of Glucagon-Like Peptide-1 Receptor Agonists on Serum Uric Acid Concentration: A Systematic Review and Meta-Analysis. British Journal of Clinical Pharmacology, 88, 3627-3637.
[34] King, C., Lanaspa, M.A., Jensen, T., Tolan, D.R., Sánchez-Lozada, L.G. and Johnson, R.J. (2018) Uric Acid as a Cause of the Metabolic Syndrome. In: Treviño-Becerra, A. and Iseki, K., Eds., Contributions to Nephrology, S. Karger AG, 88-102.
https://doi.org/10.1159/000484283
[35] Katsiki, N., Papanas, N., Fonseca, V., Maltezos, E. and Mikhailidis, D. (2013) Uric Acid and Diabetes: Is There a Link? Current Pharmaceutical Design, 19, 4930-4937.
https://doi.org/10.2174/1381612811319270016
[36] Bhole, V., Choi, J.W.J., Woo Kim, S., de Vera, M. and Choi, H. (2010) Serum Uric Acid Levels and the Risk of Type 2 Diabetes: A Prospective Study. The American Journal of Medicine, 123, 957-961.
https://doi.org/10.1016/j.amjmed.2010.03.027
[37] Kodama, S., Saito, K., Yachi, Y., Asumi, M., Sugawara, A., Totsuka, K., et al. (2009) Association between Serum Uric Acid and Development of Type 2 Diabetes. Diabetes Care, 32, 1737-1742.
https://doi.org/10.2337/dc09-0288
[38] Xu, Y., Xu, K., Bai, J., Liu, Y., Yu, R., Liu, C., et al. (2016) Elevation of Serum Uric Acid and Incidence of Type 2 Diabetes: A Systematic Review and Meta‐Analysis. Chronic Diseases and Translational Medicine, 2, 81-91.
https://doi.org/10.1016/j.cdtm.2016.09.003
[39] Lv, Q., Meng, X., He, F., Chen, S., Su, H., Xiong, J., et al. (2013) High Serum Uric Acid and Increased Risk of Type 2 Diabetes: A Systemic Review and Meta-Analysis of Prospective Cohort Studies. PLOS ONE, 8, e56864.
https://doi.org/10.1371/journal.pone.0056864
[40] Yan, D., Wang, J., Jiang, F., Zhang, R., Wang, T., Wang, S., et al. (2016) A Causal Relationship between Uric Acid and Diabetic Macrovascular Disease in Chinese Type 2 Diabetes Patients: A Mendelian Randomization Analysis. International Journal of Cardiology, 214, 194-199.
https://doi.org/10.1016/j.ijcard.2016.03.206
[41] Kushiyama, A. (2014) Linking Uric Acid Metabolism to Diabetic Complications. World Journal of Diabetes, 5, 787-795.
https://doi.org/10.4239/wjd.v5.i6.787
[42] Papanas, N., Demetriou, M., Katsiki, N., Papatheodorou, K., Papazoglou, D., Gioka, T., et al. (2011) Increased Serum Levels of Uric Acid Are Associated with Sudomotor Dysfunction in Subjects with Type 2 Diabetes Mellitus. Experimental Diabetes Research, 2011, Article ID: 346051.
https://doi.org/10.1155/2011/346051
[43] Papanas, N., Katsiki, N., Papatheodorou, K., Demetriou, M., Papazoglou, D., Gioka, T., et al. (2011) Peripheral Neuropathy Is Associated with Increased Serum Levels of Uric Acid in Type 2 Diabetes Mellitus. Angiology, 62, 291-295.
https://doi.org/10.1177/0003319710394164
[44] Pafili, K., Katsiki, N., Mikhailidis, D.P. and Papanas, N. (2014) Serum Uric Acid as a Predictor of Vascular Complications in Diabetes: An Additional Case for Neuropathy. Acta Diabetologica, 51, 893-894.
https://doi.org/10.1007/s00592-014-0631-x
[45] Xiong, Q., Liu, J. and Xu, Y. (2019) Effects of Uric Acid on Diabetes Mellitus and Its Chronic Complications. International Journal of Endocrinology, 2019, Article ID: 9691345.
https://doi.org/10.1155/2019/9691345
[46] van der Schaft, N., Brahimaj, A., Wen, K., Franco, O.H. and Dehghan, A. (2017) The Association between Serum Uric Acid and the Incidence of Prediabetes and Type 2 Diabetes Mellitus: The Rotterdam Study. PLOS ONE, 12, e0179482.
https://doi.org/10.1371/journal.pone.0179482
[47] Binh, T.Q., Tran Phuong, P., Thanh Chung, N., Nhung, B.T., Tung, D.D., Quang Thuyen, T., et al. (2019) First Report on Association of Hyperuricemia with Type 2 Diabetes in a Vietnamese Population. International Journal of Endocrinology, 2019, Article ID: 5275071.
https://doi.org/10.1155/2019/5275071
[48] Wang, H., Zhang, H., Sun, L. and Guo, W. (2018) Roles of Hyperuricemia in Metabolic Syndrome and Cardiac-Kidney-Vascular System Diseases. American Journal of Translational Research, 10, 2749-2463.
[49] Ndrepepa, G. (2018) Uric Acid and Cardiovascular Disease. Clinica Chimica Acta, 484, 150-163.
https://doi.org/10.1016/j.cca.2018.05.046
[50] Nakagawa, T., Hu, H., Zharikov, S., Tuttle, K.R., Short, R.A., Glushakova, O., et al. (2006) A Causal Role for Uric Acid in Fructose-Induced Metabolic Syndrome. American Journal of Physiology-Renal Physiology, 290, F625-F631.
https://doi.org/10.1152/ajprenal.00140.2005
[51] Zhang, Z., Bian, L. and Choi, Y. (2011) Serum Uric Acid: A Marker of Metabolic Syndrome and Subclinical Atherosclerosis in Korean Men. Angiology, 63, 420-428.
https://doi.org/10.1177/0003319711423806
[52] Mutluay, R., Deger, S.M., Bahadir, E., Durmaz, A.O., Çitil, R. and Sindel, S. (2012) Uric Acid Is an Important Predictor for Hypertensive Early Atherosclerosis. Advances in Therapy, 29, 276-286.
https://doi.org/10.1007/s12325-012-0006-z
[53] Fukui, M., Tanaka, M., Shiraishi, E., Harusato, I., Hosoda, H., Asano, M., et al. (2008) Serum Uric Acid Is Associated with Microalbuminuria and Subclinical Atherosclerosis in Men with Type 2 Diabetes Mellitus. Metabolism, 57, 625-629.
https://doi.org/10.1016/j.metabol.2007.12.005
[54] Kim, S.Y., Guevara, J.P., Kim, K.M., Choi, H.K., Heitjan, D.F. and Albert, D.A. (2010) Hyperuricemia and Coronary Heart Disease: A Systematic Review and Meta‐Analysis. Arthritis Care & Research, 62, 170-180.
https://doi.org/10.1002/acr.20065
[55] Krishnan, E., Pandya, B.J., Chung, L., Hariri, A. and Dabbous, O. (2012) Hyperuricemia in Young Adults and Risk of Insulin Resistance, Prediabetes, and Diabetes: A 15-Year Follow-Up Study. American Journal of Epidemiology, 176, 108-116.
https://doi.org/10.1093/aje/kws002
[56] Ito, H., Abe, M., Mifune, M., Oshikiri, K., Antoku, S., Takeuchi, Y., et al. (2011) Hyperuricemia Is Independently Associated with Coronary Heart Disease and Renal Dysfunction in Patients with Type 2 Diabetes Mellitus. PLOS ONE, 6, e27817.
https://doi.org/10.1371/journal.pone.0027817
[57] Xu, Y., Zhu, J., Gao, L., Liu, Y., Shen, J., Shen, C., et al. (2013) Hyperuricemia as an Independent Predictor of Vascular Complications and Mortality in Type 2 Diabetes Patients: A Meta-Analysis. PLOS ONE, 8, e78206.
https://doi.org/10.1371/journal.pone.0078206
[58] Li, H.C., Du, Z., Barone, S., Rubera, I., McDonough, A.A., Tauc, M., et al. (2013) Proximal Tubule Specific Knockout of the Na+/H+ Exchanger NHE3: Effects on Bicarbonate Absorption and Ammonium Excretion. Journal of Molecular Medicine, 91, 951-963.
https://doi.org/10.1007/s00109-013-1015-3
[59] Tonneijck, L., Muskiet, M.H.A., Smits, M.M., Bjornstad, P., Kramer, M.H.H., Diamant, M., et al. (2018) Effect of Immediate and Prolonged GLP‐1 Receptor Agonist Administration on Uric Acid and Kidney Clearance: Post‐hoc Analyses of Four Clinical Trials. Diabetes, Obesity and Metabolism, 20, 1235-1245.
https://doi.org/10.1111/dom.13223
[60] Chou, C. and Chuang, S. (2020) Journal of Diabetes Investigation, 11, 1524-1531.
https://doi.org/10.1111/jdi.13314
[61] Acosta-Calero, C., Arnas-Leon, C., Santana-Suarez, A.D., Nivelo-Rivadeneira, M., Kuzior, A., Quintana-Arroyo, S., et al. (2017) Dulaglutide Added on Empagliflozin Improves Blood Pressure, Body Weight, Glycemic Control and Albuminuria in Obese Diabetic Patients. Endocrine Abstracts, 49, EP621.
https://doi.org/10.1530/endoabs.49.ep621
[62] Molero, I.G., Vallejo, R., Dominguez, M. and Garcia-Arnes, J. (2013) Efficacy and Safety of Liraglutide in Morbid Obese Patients in First Year of Commercialization in Spain. Endocrine Abstracts, 32, P485.
https://doi.org/10.1530/endoabs.32.p485
[63] Tičinović Kurir, T. (2020) Adropin – Potential Link in Cardiovascular Protection for Obese Male Type 2 Diabetes Mellitus Patients Treated with Liraglutide. Acta Clinica Croatica, 59, 344-350.
https://doi.org/10.20471/acc.2020.59.02.19
[64] Kuchay, M.S., Krishan, S., Mishra, S.K., Choudhary, N.S., Singh, M.K., Wasir, J.S., et al. (2020) Effect of Dulaglutide on Liver Fat in Patients with Type 2 Diabetes and NAFLD: Randomised Controlled Trial (D-LIFT Trial). Diabetologia, 63, 2434-2445.
https://doi.org/10.1007/s00125-020-05265-7
[65] González-Ortiz, M., Martínez-Abundis, E., Robles-Cervantes, J.A. and Ramos-Zavala, M.G. (2011) Effect of Exenatide on Fat Deposition and a Metabolic Profile in Patients with Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 9, 31-34.
https://doi.org/10.1089/met.2010.0025
[66] Liakos, A., Lambadiari, V., Bargiota, A., Kitsios, K., Avramidis, I., Kotsa, K., et al. (2018) Effect of Liraglutide on Ambulatory Blood Pressure in Patients with Hypertension and Type 2 Diabetes: A Randomized, Double‐Blind, Placebo‐Controlled Trial. Diabetes, Obesity and Metabolism, 21, 517-524.
https://doi.org/10.1111/dom.13541
[67] Nakaguchi, H., Kondo, Y., Kyohara, M., Konishi, H., Oiwa, K. and Terauchi, Y. (2020) Effects of Liraglutide and Empagliflozin Added to Insulin Therapy in Patients with Type 2 Diabetes: A Randomized Controlled Study. Journal of Diabetes Investigation, 11, 1542-1550.
https://doi.org/10.1111/jdi.13270
[68] Najafi, S., Bahrami, M., Butler, A.E. and Sahebkar, A. (2022) The Effect of Glucagon‐Like Peptide‐1 Receptor Agonists on Serum Uric Acid Concentration: A Systematic Review and Meta‐Analysis. British Journal of Clinical Pharmacology, 88, 3627-3637.
https://doi.org/10.1111/bcp.15344
[69] Bailey, C.J. (2019) Uric Acid and the Cardio‐Renal Effects of SGLT2 Inhibitors. Diabetes, Obesity and Metabolism, 21, 1291-1298.
https://doi.org/10.1111/dom.13670
[70] Madaan, T., Akhtar, M. and Najmi, A.K. (2016) Sodium Glucose Cotransporter 2 (SGLT2) Inhibitors: Current Status and Future Perspective. European Journal of Pharmaceutical Sciences, 93, 244-252.
https://doi.org/10.1016/j.ejps.2016.08.025
[71] Kahathuduwa, C.N., Thomas, D.M., Siu, C. and Allison, D.B. (2018) Unaccounted for Regression to the Mean Renders Conclusion of Article Titled “Uric Acid Lowering in Relation to HbA1c Reductions with the SGLT2 Inhibitor Tofogliflozin” Unsubstantiated. Diabetes, Obesity and Metabolism, 20, 2039-2040.
https://doi.org/10.1111/dom.13323
[72] Dong, M., Chen, H., Wen, S., Yuan, Y., Yang, L., Xu, D., et al. (2023) The Mechanism of Sodium-Glucose Cotransporter-2 Inhibitors in Reducing Uric Acid in Type 2 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity, 16, 437-445.
https://doi.org/10.2147/dmso.s399343