|
[1]
|
Salehi, M., Aulinger, B.A. and D’Alessio, D.A. (2008) Targeting Β-Cell Mass in Type 2 Diabetes: Promise and Limitations of New Drugs Based on Incretins. Endocrine Reviews, 29, 367-379. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
纪立农, 邹大进, 洪天配, 等. GLP-1受体激动剂临床应用专家指导意见[J]. 中国糖尿病杂志, 2018, 26(5): 353-361.
|
|
[3]
|
Andersen, A., Lund, A., Knop, F.K. and Vilsbøll, T. (2018) Glucagon-Like Peptide 1 in Health and Disease. Nature Reviews Endocrinology, 14, 390-403. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Nauck, M.A., Niedereichholz, U., Ettler, R., Holst, J.J., Ørskov, C., Ritzel, R., et al. (1997) Glucagon-Like Peptide 1 Inhibition of Gastric Emptying Outweighs Its Insulinotropic Effects in Healthy Humans. American Journal of Physiology-Endocrinology and Metabolism, 273, E981-E988. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wiciński, M., Socha, M., Malinowski, B., Wódkiewicz, E., Walczak, M., Górski, K., et al. (2019) Liraglutide and Its Neuroprotective Properties—Focus on Possible Biochemical Mechanisms in Alzheimer’s Disease and Cerebral Ischemic Events. International Journal of Molecular Sciences, 20, Article 1050. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Liu, W., Jalewa, J., Sharma, M., Li, G., Li, L. and Hölscher, C. (2015) Neuroprotective Effects of Lixisenatide and Liraglutide in the 1-Methyl-4-Phenyl-1, 2, 3, 6-Tetrahydropyridine Mouse Model of Parkinson’s Disease. Neuroscience, 303, 42-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Dixit, T.S., Sharma, A.N., Lucot, J.B. and Elased, K.M. (2013) Antipsychotic-Like Effect of GLP-1 Agonist Liraglutide but Not DPP-IV Inhibitor Sitagliptin in Mouse Model for Psychosis. Physiology & Behavior, 114, 38-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Eguchi, Y., Kitajima, Y., Hyogo, H., Takahashi, H., Kojima, M., Ono, M., et al. (2014) Pilot Study of Liraglutide Effects in Non‐Alcoholic Steatohepatitis and Non‐Alcoholic Fatty Liver Disease with Glucose Intolerance in Japanese Patients (LEAN‐J). Hepatology Research, 45, 269-278. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Hansen, J., Brock, B., Bøtker, H.E., Gjedde, A., Rungby, J. and Gejl, M. (2014) Impact of Glucagon-Like Peptide-1 on Myocardial Glucose Metabolism Revisited. Reviews in Endocrine and Metabolic Disorders, 15, 219-231. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Sassoon, D.J., Tune, J.D., Mather, K.J., Noblet, J.N., Eagleson, M.A., Conteh, A.M., et al. (2017) Glucagon-Like Peptide 1 Receptor Activation Augments Cardiac Output and Improves Cardiac Efficiency in Obese Swine after Myocardial Infarction. Diabetes, 66, 2230-2240. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
American Diabetes Association (2020) 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2021. Diabetes Care, 44, S111-S124. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Rieg, T. and Vallon, V. (2018) Development of SGLT1 and SGLT2 Inhibitors. Diabetologia, 61, 2079-2086. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Perry, R.J. and Shulman, G.I. (2020) Sodium-Glucose Cotransporter-2 Inhibitors: Understanding the Mechanisms for Therapeutic Promise and Persisting Risks. Journal of Biological Chemistry, 295, 14379-14390. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Scheen, A.J. (2020) Sodium-Glucose Cotransporter Type 2 Inhibitors for the Treatment of Type 2 Diabetes Mellitus. Nature Reviews Endocrinology, 16, 556-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Marx, N., Davies, M.J., Grant, P.J., Mathieu, C., Petrie, J.R., Cosentino, F., et al. (2021) Guideline Recommendations and the Positioning of Newer Drugs in Type 2 Diabetes Care. The Lancet Diabetes & Endocrinology, 9, 46-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
中华医学会糖尿病分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华糖尿病杂志, 2021, 13(4): 315-409.
|
|
[17]
|
Liu, X., Zhang, N., Chen, R., Zhao, J. and Yu, P. (2015) Efficacy and Safety of Sodium-Glucose Cotransporter 2 Inhibitors in Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials for 1 to 2 Years. Journal of Diabetes and its Complications, 29, 1295-1303. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Donnan, J.R., Grandy, C.A., Chibrikov, E., Marra, C.A., Aubrey-Bassler, K., Johnston, K., et al. (2019) Comparative Safety of the Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A Systematic Review and Meta-Analysis. BMJ Open, 9, e022577. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Seino, Y., Sasaki, T., Fukatsu, A., Sakai, S. and Samukawa, Y. (2014) Efficacy and Safety of Luseogliflozin Monotherapy in Japanese Patients with Type 2 Diabetes Mellitus: A 12-Week, Randomized, Placebo-Controlled, Phase II Study. Current Medical Research and Opinion, 30, 1219-1230. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Seino, Y., Sasaki, T., Fukatsu, A., Ubukata, M., Sakai, S. and Samukawa, Y. (2014) Dose-finding Study of Luseogliflozin in Japanese Patients with Type 2 Diabetes Mellitus: A 12-Week, Randomized, Double-Blind, Placebo-Controlled, Phase II Study. Current Medical Research and Opinion, 30, 1231-1244. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Seino, Y., Sasaki, T., Fukatsu, A., Ubukata, M., Sakai, S. and Samukawa, Y. (2014) Efficacy and Safety of Luseogliflozin as Monotherapy in Japanese Patients with Type 2 Diabetes Mellitus: A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Study. Current Medical Research and Opinion, 30, 1245-1255. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zelniker, T.A., Wiviott, S.D., Raz, I., Im, K., Goodrich, E.L., Bonaca, M.P., et al. (2019) SGLT2 Inhibitors for Primary and Secondary Prevention of Cardiovascular and Renal Outcomes in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cardiovascular Outcome Trials. The Lancet, 393, 31-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ninčević, V., Omanović Kolarić, T., Roguljić, H., Kizivat, T., Smolić, M. and Bilić Ćurčić, I. (2019) Renal Benefits of SGLT 2 Inhibitors and GLP-1 Receptor Agonists: Evidence Supporting a Paradigm Shift in the Medical Management of Type 2 Diabetes. International Journal of Molecular Sciences, 20, Article 5831. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chilton, R.J. (2019) Effects of Sodium‐Glucose Cotransporter‐2 Inhibitors on the Cardiovascular and Renal Complications of Type 2 Diabetes. Diabetes, Obesity and Metabolism, 22, 16-29. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ferrannini, E. and Solini, A. (2012) SGLT2 Inhibition in Diabetes Mellitus: Rationale and Clinical Prospects. Nature Reviews Endocrinology, 8, 495-502. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wilding, J.P.H., Norwood, P., T’joen, C., Bastien, A., List, J.F. and Fiedorek, F.T. (2009) A Study of Dapagliflozin in Patients with Type 2 Diabetes Receiving High Doses of Insulin Plus Insulin Sensitizers: Applicability of a Novel Insulin-Independent Treatment. Diabetes Care, 32, 1656-1662. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
McGill, J.B. (2014) The SGLT2 Inhibitor Empagliflozin for the Treatment of Type 2 Diabetes Mellitus: A Bench to Bedside Review. Diabetes Therapy, 5, 43-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Li, S., Sanna, S., Maschio, A., Busonero, F., Usala, G., Mulas, A., et al. (2007) The GLUT9 Gene Is Associated with Serum Uric Acid Levels in Sardinia and Chianti Cohorts. PLOS Genetics, 3, e194. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chino, Y., Samukawa, Y., Sakai, S., Nakai, Y., Yamaguchi, J., Nakanishi, T., et al. (2014) SGLT2 Inhibitor Lowers Serum Uric Acid through Alteration of Uric Acid Transport Activity in Renal Tubule by Increased Glycosuria. Biopharmaceutics & Drug Disposition, 35, 391-404. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Hussain, M., Elahi, A., Hussain, A., Iqbal, J., Akhtar, L. and Majid, A. (2021) Sodium-Glucose Cotransporter-2 (SGLT-2) Attenuates Serum Uric Acid (SUA) Level in Patients with Type 2 Diabetes. Journal of Diabetes Research, 2021, Article ID: 9973862. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Khosla, U.M., Zharikov, S., Finch, J.L., Nakagawa, T., Roncal, C., Mu, W., et al. (2005) Hyperuricemia Induces Endothelial Dysfunction. Kidney International, 67, 1739-1742. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Davies, M.J., Trujillo, A., Vijapurkar, U., Damaraju, C.V. and Meininger, G. (2015) Effect of Canagliflozin on Serum Uric Acid in Patients with Type 2 Diabetes Mellitus. Diabetes, Obesity and Metabolism, 17, 426-429. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Najafi, S., Bahrami, M., Butler, A.E. and Sahebkar, A. (2022) The Effect of Glucagon-Like Peptide-1 Receptor Agonists on Serum Uric Acid Concentration: A Systematic Review and Meta-Analysis. British Journal of Clinical Pharmacology, 88, 3627-3637.
|
|
[34]
|
King, C., Lanaspa, M.A., Jensen, T., Tolan, D.R., Sánchez-Lozada, L.G. and Johnson, R.J. (2018) Uric Acid as a Cause of the Metabolic Syndrome. In: Treviño-Becerra, A. and Iseki, K., Eds., Contributions to Nephrology, S. Karger AG, 88-102. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Katsiki, N., Papanas, N., Fonseca, V., Maltezos, E. and Mikhailidis, D. (2013) Uric Acid and Diabetes: Is There a Link? Current Pharmaceutical Design, 19, 4930-4937. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Bhole, V., Choi, J.W.J., Woo Kim, S., de Vera, M. and Choi, H. (2010) Serum Uric Acid Levels and the Risk of Type 2 Diabetes: A Prospective Study. The American Journal of Medicine, 123, 957-961. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Kodama, S., Saito, K., Yachi, Y., Asumi, M., Sugawara, A., Totsuka, K., et al. (2009) Association between Serum Uric Acid and Development of Type 2 Diabetes. Diabetes Care, 32, 1737-1742. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Xu, Y., Xu, K., Bai, J., Liu, Y., Yu, R., Liu, C., et al. (2016) Elevation of Serum Uric Acid and Incidence of Type 2 Diabetes: A Systematic Review and Meta‐Analysis. Chronic Diseases and Translational Medicine, 2, 81-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Lv, Q., Meng, X., He, F., Chen, S., Su, H., Xiong, J., et al. (2013) High Serum Uric Acid and Increased Risk of Type 2 Diabetes: A Systemic Review and Meta-Analysis of Prospective Cohort Studies. PLOS ONE, 8, e56864. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Yan, D., Wang, J., Jiang, F., Zhang, R., Wang, T., Wang, S., et al. (2016) A Causal Relationship between Uric Acid and Diabetic Macrovascular Disease in Chinese Type 2 Diabetes Patients: A Mendelian Randomization Analysis. International Journal of Cardiology, 214, 194-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Kushiyama, A. (2014) Linking Uric Acid Metabolism to Diabetic Complications. World Journal of Diabetes, 5, 787-795. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Papanas, N., Demetriou, M., Katsiki, N., Papatheodorou, K., Papazoglou, D., Gioka, T., et al. (2011) Increased Serum Levels of Uric Acid Are Associated with Sudomotor Dysfunction in Subjects with Type 2 Diabetes Mellitus. Experimental Diabetes Research, 2011, Article ID: 346051. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Papanas, N., Katsiki, N., Papatheodorou, K., Demetriou, M., Papazoglou, D., Gioka, T., et al. (2011) Peripheral Neuropathy Is Associated with Increased Serum Levels of Uric Acid in Type 2 Diabetes Mellitus. Angiology, 62, 291-295. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Pafili, K., Katsiki, N., Mikhailidis, D.P. and Papanas, N. (2014) Serum Uric Acid as a Predictor of Vascular Complications in Diabetes: An Additional Case for Neuropathy. Acta Diabetologica, 51, 893-894. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Xiong, Q., Liu, J. and Xu, Y. (2019) Effects of Uric Acid on Diabetes Mellitus and Its Chronic Complications. International Journal of Endocrinology, 2019, Article ID: 9691345. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
van der Schaft, N., Brahimaj, A., Wen, K., Franco, O.H. and Dehghan, A. (2017) The Association between Serum Uric Acid and the Incidence of Prediabetes and Type 2 Diabetes Mellitus: The Rotterdam Study. PLOS ONE, 12, e0179482. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Binh, T.Q., Tran Phuong, P., Thanh Chung, N., Nhung, B.T., Tung, D.D., Quang Thuyen, T., et al. (2019) First Report on Association of Hyperuricemia with Type 2 Diabetes in a Vietnamese Population. International Journal of Endocrinology, 2019, Article ID: 5275071. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Wang, H., Zhang, H., Sun, L. and Guo, W. (2018) Roles of Hyperuricemia in Metabolic Syndrome and Cardiac-Kidney-Vascular System Diseases. American Journal of Translational Research, 10, 2749-2463.
|
|
[49]
|
Ndrepepa, G. (2018) Uric Acid and Cardiovascular Disease. Clinica Chimica Acta, 484, 150-163. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Nakagawa, T., Hu, H., Zharikov, S., Tuttle, K.R., Short, R.A., Glushakova, O., et al. (2006) A Causal Role for Uric Acid in Fructose-Induced Metabolic Syndrome. American Journal of Physiology-Renal Physiology, 290, F625-F631. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zhang, Z., Bian, L. and Choi, Y. (2011) Serum Uric Acid: A Marker of Metabolic Syndrome and Subclinical Atherosclerosis in Korean Men. Angiology, 63, 420-428. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Mutluay, R., Deger, S.M., Bahadir, E., Durmaz, A.O., Çitil, R. and Sindel, S. (2012) Uric Acid Is an Important Predictor for Hypertensive Early Atherosclerosis. Advances in Therapy, 29, 276-286. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Fukui, M., Tanaka, M., Shiraishi, E., Harusato, I., Hosoda, H., Asano, M., et al. (2008) Serum Uric Acid Is Associated with Microalbuminuria and Subclinical Atherosclerosis in Men with Type 2 Diabetes Mellitus. Metabolism, 57, 625-629. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Kim, S.Y., Guevara, J.P., Kim, K.M., Choi, H.K., Heitjan, D.F. and Albert, D.A. (2010) Hyperuricemia and Coronary Heart Disease: A Systematic Review and Meta‐Analysis. Arthritis Care & Research, 62, 170-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Krishnan, E., Pandya, B.J., Chung, L., Hariri, A. and Dabbous, O. (2012) Hyperuricemia in Young Adults and Risk of Insulin Resistance, Prediabetes, and Diabetes: A 15-Year Follow-Up Study. American Journal of Epidemiology, 176, 108-116. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Ito, H., Abe, M., Mifune, M., Oshikiri, K., Antoku, S., Takeuchi, Y., et al. (2011) Hyperuricemia Is Independently Associated with Coronary Heart Disease and Renal Dysfunction in Patients with Type 2 Diabetes Mellitus. PLOS ONE, 6, e27817. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Xu, Y., Zhu, J., Gao, L., Liu, Y., Shen, J., Shen, C., et al. (2013) Hyperuricemia as an Independent Predictor of Vascular Complications and Mortality in Type 2 Diabetes Patients: A Meta-Analysis. PLOS ONE, 8, e78206. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Li, H.C., Du, Z., Barone, S., Rubera, I., McDonough, A.A., Tauc, M., et al. (2013) Proximal Tubule Specific Knockout of the Na+/H+ Exchanger NHE3: Effects on Bicarbonate Absorption and Ammonium Excretion. Journal of Molecular Medicine, 91, 951-963. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Tonneijck, L., Muskiet, M.H.A., Smits, M.M., Bjornstad, P., Kramer, M.H.H., Diamant, M., et al. (2018) Effect of Immediate and Prolonged GLP‐1 Receptor Agonist Administration on Uric Acid and Kidney Clearance: Post‐hoc Analyses of Four Clinical Trials. Diabetes, Obesity and Metabolism, 20, 1235-1245. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Chou, C. and Chuang, S. (2020) Journal of Diabetes Investigation, 11, 1524-1531. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Acosta-Calero, C., Arnas-Leon, C., Santana-Suarez, A.D., Nivelo-Rivadeneira, M., Kuzior, A., Quintana-Arroyo, S., et al. (2017) Dulaglutide Added on Empagliflozin Improves Blood Pressure, Body Weight, Glycemic Control and Albuminuria in Obese Diabetic Patients. Endocrine Abstracts, 49, EP621. [Google Scholar] [CrossRef]
|
|
[62]
|
Molero, I.G., Vallejo, R., Dominguez, M. and Garcia-Arnes, J. (2013) Efficacy and Safety of Liraglutide in Morbid Obese Patients in First Year of Commercialization in Spain. Endocrine Abstracts, 32, P485. [Google Scholar] [CrossRef]
|
|
[63]
|
Tičinović Kurir, T. (2020) Adropin – Potential Link in Cardiovascular Protection for Obese Male Type 2 Diabetes Mellitus Patients Treated with Liraglutide. Acta Clinica Croatica, 59, 344-350. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Kuchay, M.S., Krishan, S., Mishra, S.K., Choudhary, N.S., Singh, M.K., Wasir, J.S., et al. (2020) Effect of Dulaglutide on Liver Fat in Patients with Type 2 Diabetes and NAFLD: Randomised Controlled Trial (D-LIFT Trial). Diabetologia, 63, 2434-2445. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
González-Ortiz, M., Martínez-Abundis, E., Robles-Cervantes, J.A. and Ramos-Zavala, M.G. (2011) Effect of Exenatide on Fat Deposition and a Metabolic Profile in Patients with Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 9, 31-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Liakos, A., Lambadiari, V., Bargiota, A., Kitsios, K., Avramidis, I., Kotsa, K., et al. (2018) Effect of Liraglutide on Ambulatory Blood Pressure in Patients with Hypertension and Type 2 Diabetes: A Randomized, Double‐Blind, Placebo‐Controlled Trial. Diabetes, Obesity and Metabolism, 21, 517-524. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Nakaguchi, H., Kondo, Y., Kyohara, M., Konishi, H., Oiwa, K. and Terauchi, Y. (2020) Effects of Liraglutide and Empagliflozin Added to Insulin Therapy in Patients with Type 2 Diabetes: A Randomized Controlled Study. Journal of Diabetes Investigation, 11, 1542-1550. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Najafi, S., Bahrami, M., Butler, A.E. and Sahebkar, A. (2022) The Effect of Glucagon‐Like Peptide‐1 Receptor Agonists on Serum Uric Acid Concentration: A Systematic Review and Meta‐Analysis. British Journal of Clinical Pharmacology, 88, 3627-3637. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Bailey, C.J. (2019) Uric Acid and the Cardio‐Renal Effects of SGLT2 Inhibitors. Diabetes, Obesity and Metabolism, 21, 1291-1298. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Madaan, T., Akhtar, M. and Najmi, A.K. (2016) Sodium Glucose Cotransporter 2 (SGLT2) Inhibitors: Current Status and Future Perspective. European Journal of Pharmaceutical Sciences, 93, 244-252. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Kahathuduwa, C.N., Thomas, D.M., Siu, C. and Allison, D.B. (2018) Unaccounted for Regression to the Mean Renders Conclusion of Article Titled “Uric Acid Lowering in Relation to HbA1c Reductions with the SGLT2 Inhibitor Tofogliflozin” Unsubstantiated. Diabetes, Obesity and Metabolism, 20, 2039-2040. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Dong, M., Chen, H., Wen, S., Yuan, Y., Yang, L., Xu, D., et al. (2023) The Mechanism of Sodium-Glucose Cotransporter-2 Inhibitors in Reducing Uric Acid in Type 2 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity, 16, 437-445. [Google Scholar] [CrossRef] [PubMed]
|