[1]
|
Salehi, M., Aulinger, B.A. and D’Alessio, D.A. (2008) Targeting Β-Cell Mass in Type 2 Diabetes: Promise and Limitations of New Drugs Based on Incretins. Endocrine Reviews, 29, 367-379. https://doi.org/10.1210/er.2007-0031
|
[2]
|
纪立农, 邹大进, 洪天配, 等. GLP-1受体激动剂临床应用专家指导意见[J]. 中国糖尿病杂志, 2018, 26(5): 353-361.
|
[3]
|
Andersen, A., Lund, A., Knop, F.K. and Vilsbøll, T. (2018) Glucagon-Like Peptide 1 in Health and Disease. Nature Reviews Endocrinology, 14, 390-403. https://doi.org/10.1038/s41574-018-0016-2
|
[4]
|
Nauck, M.A., Niedereichholz, U., Ettler, R., Holst, J.J., Ørskov, C., Ritzel, R., et al. (1997) Glucagon-Like Peptide 1 Inhibition of Gastric Emptying Outweighs Its Insulinotropic Effects in Healthy Humans. American Journal of Physiology-Endocrinology and Metabolism, 273, E981-E988. https://doi.org/10.1152/ajpendo.1997.273.5.e981
|
[5]
|
Wiciński, M., Socha, M., Malinowski, B., Wódkiewicz, E., Walczak, M., Górski, K., et al. (2019) Liraglutide and Its Neuroprotective Properties—Focus on Possible Biochemical Mechanisms in Alzheimer’s Disease and Cerebral Ischemic Events. International Journal of Molecular Sciences, 20, Article 1050. https://doi.org/10.3390/ijms20051050
|
[6]
|
Liu, W., Jalewa, J., Sharma, M., Li, G., Li, L. and Hölscher, C. (2015) Neuroprotective Effects of Lixisenatide and Liraglutide in the 1-Methyl-4-Phenyl-1, 2, 3, 6-Tetrahydropyridine Mouse Model of Parkinson’s Disease. Neuroscience, 303, 42-50. https://doi.org/10.1016/j.neuroscience.2015.06.054
|
[7]
|
Dixit, T.S., Sharma, A.N., Lucot, J.B. and Elased, K.M. (2013) Antipsychotic-Like Effect of GLP-1 Agonist Liraglutide but Not DPP-IV Inhibitor Sitagliptin in Mouse Model for Psychosis. Physiology & Behavior, 114, 38-41. https://doi.org/10.1016/j.physbeh.2013.03.008
|
[8]
|
Eguchi, Y., Kitajima, Y., Hyogo, H., Takahashi, H., Kojima, M., Ono, M., et al. (2014) Pilot Study of Liraglutide Effects in Non‐Alcoholic Steatohepatitis and Non‐Alcoholic Fatty Liver Disease with Glucose Intolerance in Japanese Patients (LEAN‐J). Hepatology Research, 45, 269-278. https://doi.org/10.1111/hepr.12351
|
[9]
|
Hansen, J., Brock, B., Bøtker, H.E., Gjedde, A., Rungby, J. and Gejl, M. (2014) Impact of Glucagon-Like Peptide-1 on Myocardial Glucose Metabolism Revisited. Reviews in Endocrine and Metabolic Disorders, 15, 219-231. https://doi.org/10.1007/s11154-014-9286-8
|
[10]
|
Sassoon, D.J., Tune, J.D., Mather, K.J., Noblet, J.N., Eagleson, M.A., Conteh, A.M., et al. (2017) Glucagon-Like Peptide 1 Receptor Activation Augments Cardiac Output and Improves Cardiac Efficiency in Obese Swine after Myocardial Infarction. Diabetes, 66, 2230-2240. https://doi.org/10.2337/db16-1206
|
[11]
|
American Diabetes Association (2020) 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2021. Diabetes Care, 44, S111-S124. https://doi.org/10.2337/dc21-s009
|
[12]
|
Rieg, T. and Vallon, V. (2018) Development of SGLT1 and SGLT2 Inhibitors. Diabetologia, 61, 2079-2086. https://doi.org/10.1007/s00125-018-4654-7
|
[13]
|
Perry, R.J. and Shulman, G.I. (2020) Sodium-Glucose Cotransporter-2 Inhibitors: Understanding the Mechanisms for Therapeutic Promise and Persisting Risks. Journal of Biological Chemistry, 295, 14379-14390. https://doi.org/10.1074/jbc.rev120.008387
|
[14]
|
Scheen, A.J. (2020) Sodium-Glucose Cotransporter Type 2 Inhibitors for the Treatment of Type 2 Diabetes Mellitus. Nature Reviews Endocrinology, 16, 556-577. https://doi.org/10.1038/s41574-020-0392-2
|
[15]
|
Marx, N., Davies, M.J., Grant, P.J., Mathieu, C., Petrie, J.R., Cosentino, F., et al. (2021) Guideline Recommendations and the Positioning of Newer Drugs in Type 2 Diabetes Care. The Lancet Diabetes & Endocrinology, 9, 46-52. https://doi.org/10.1016/s2213-8587(20)30343-0
|
[16]
|
中华医学会糖尿病分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华糖尿病杂志, 2021, 13(4): 315-409.
|
[17]
|
Liu, X., Zhang, N., Chen, R., Zhao, J. and Yu, P. (2015) Efficacy and Safety of Sodium-Glucose Cotransporter 2 Inhibitors in Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials for 1 to 2 Years. Journal of Diabetes and its Complications, 29, 1295-1303. https://doi.org/10.1016/j.jdiacomp.2015.07.011
|
[18]
|
Donnan, J.R., Grandy, C.A., Chibrikov, E., Marra, C.A., Aubrey-Bassler, K., Johnston, K., et al. (2019) Comparative Safety of the Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A Systematic Review and Meta-Analysis. BMJ Open, 9, e022577. https://doi.org/10.1136/bmjopen-2018-022577
|
[19]
|
Seino, Y., Sasaki, T., Fukatsu, A., Sakai, S. and Samukawa, Y. (2014) Efficacy and Safety of Luseogliflozin Monotherapy in Japanese Patients with Type 2 Diabetes Mellitus: A 12-Week, Randomized, Placebo-Controlled, Phase II Study. Current Medical Research and Opinion, 30, 1219-1230. https://doi.org/10.1185/03007995.2014.901943
|
[20]
|
Seino, Y., Sasaki, T., Fukatsu, A., Ubukata, M., Sakai, S. and Samukawa, Y. (2014) Dose-finding Study of Luseogliflozin in Japanese Patients with Type 2 Diabetes Mellitus: A 12-Week, Randomized, Double-Blind, Placebo-Controlled, Phase II Study. Current Medical Research and Opinion, 30, 1231-1244. https://doi.org/10.1185/03007995.2014.909390
|
[21]
|
Seino, Y., Sasaki, T., Fukatsu, A., Ubukata, M., Sakai, S. and Samukawa, Y. (2014) Efficacy and Safety of Luseogliflozin as Monotherapy in Japanese Patients with Type 2 Diabetes Mellitus: A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Study. Current Medical Research and Opinion, 30, 1245-1255. https://doi.org/10.1185/03007995.2014.912983
|
[22]
|
Zelniker, T.A., Wiviott, S.D., Raz, I., Im, K., Goodrich, E.L., Bonaca, M.P., et al. (2019) SGLT2 Inhibitors for Primary and Secondary Prevention of Cardiovascular and Renal Outcomes in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cardiovascular Outcome Trials. The Lancet, 393, 31-39. https://doi.org/10.1016/s0140-6736(18)32590-x
|
[23]
|
Ninčević, V., Omanović Kolarić, T., Roguljić, H., Kizivat, T., Smolić, M. and Bilić Ćurčić, I. (2019) Renal Benefits of SGLT 2 Inhibitors and GLP-1 Receptor Agonists: Evidence Supporting a Paradigm Shift in the Medical Management of Type 2 Diabetes. International Journal of Molecular Sciences, 20, Article 5831. https://doi.org/10.3390/ijms20235831
|
[24]
|
Chilton, R.J. (2019) Effects of Sodium‐Glucose Cotransporter‐2 Inhibitors on the Cardiovascular and Renal Complications of Type 2 Diabetes. Diabetes, Obesity and Metabolism, 22, 16-29. https://doi.org/10.1111/dom.13854
|
[25]
|
Ferrannini, E. and Solini, A. (2012) SGLT2 Inhibition in Diabetes Mellitus: Rationale and Clinical Prospects. Nature Reviews Endocrinology, 8, 495-502. https://doi.org/10.1038/nrendo.2011.243
|
[26]
|
Wilding, J.P.H., Norwood, P., T’joen, C., Bastien, A., List, J.F. and Fiedorek, F.T. (2009) A Study of Dapagliflozin in Patients with Type 2 Diabetes Receiving High Doses of Insulin Plus Insulin Sensitizers: Applicability of a Novel Insulin-Independent Treatment. Diabetes Care, 32, 1656-1662. https://doi.org/10.2337/dc09-0517
|
[27]
|
McGill, J.B. (2014) The SGLT2 Inhibitor Empagliflozin for the Treatment of Type 2 Diabetes Mellitus: A Bench to Bedside Review. Diabetes Therapy, 5, 43-63. https://doi.org/10.1007/s13300-014-0063-1
|
[28]
|
Li, S., Sanna, S., Maschio, A., Busonero, F., Usala, G., Mulas, A., et al. (2007) The GLUT9 Gene Is Associated with Serum Uric Acid Levels in Sardinia and Chianti Cohorts. PLOS Genetics, 3, e194. https://doi.org/10.1371/journal.pgen.0030194
|
[29]
|
Chino, Y., Samukawa, Y., Sakai, S., Nakai, Y., Yamaguchi, J., Nakanishi, T., et al. (2014) SGLT2 Inhibitor Lowers Serum Uric Acid through Alteration of Uric Acid Transport Activity in Renal Tubule by Increased Glycosuria. Biopharmaceutics & Drug Disposition, 35, 391-404. https://doi.org/10.1002/bdd.1909
|
[30]
|
Hussain, M., Elahi, A., Hussain, A., Iqbal, J., Akhtar, L. and Majid, A. (2021) Sodium-Glucose Cotransporter-2 (SGLT-2) Attenuates Serum Uric Acid (SUA) Level in Patients with Type 2 Diabetes. Journal of Diabetes Research, 2021, Article ID: 9973862. https://doi.org/10.1155/2021/9973862
|
[31]
|
Khosla, U.M., Zharikov, S., Finch, J.L., Nakagawa, T., Roncal, C., Mu, W., et al. (2005) Hyperuricemia Induces Endothelial Dysfunction. Kidney International, 67, 1739-1742. https://doi.org/10.1111/j.1523-1755.2005.00273.x
|
[32]
|
Davies, M.J., Trujillo, A., Vijapurkar, U., Damaraju, C.V. and Meininger, G. (2015) Effect of Canagliflozin on Serum Uric Acid in Patients with Type 2 Diabetes Mellitus. Diabetes, Obesity and Metabolism, 17, 426-429. https://doi.org/10.1111/dom.12439
|
[33]
|
Najafi, S., Bahrami, M., Butler, A.E. and Sahebkar, A. (2022) The Effect of Glucagon-Like Peptide-1 Receptor Agonists on Serum Uric Acid Concentration: A Systematic Review and Meta-Analysis. British Journal of Clinical Pharmacology, 88, 3627-3637.
|
[34]
|
King, C., Lanaspa, M.A., Jensen, T., Tolan, D.R., Sánchez-Lozada, L.G. and Johnson, R.J. (2018) Uric Acid as a Cause of the Metabolic Syndrome. In: Treviño-Becerra, A. and Iseki, K., Eds., Contributions to Nephrology, S. Karger AG, 88-102. https://doi.org/10.1159/000484283
|
[35]
|
Katsiki, N., Papanas, N., Fonseca, V., Maltezos, E. and Mikhailidis, D. (2013) Uric Acid and Diabetes: Is There a Link? Current Pharmaceutical Design, 19, 4930-4937. https://doi.org/10.2174/1381612811319270016
|
[36]
|
Bhole, V., Choi, J.W.J., Woo Kim, S., de Vera, M. and Choi, H. (2010) Serum Uric Acid Levels and the Risk of Type 2 Diabetes: A Prospective Study. The American Journal of Medicine, 123, 957-961. https://doi.org/10.1016/j.amjmed.2010.03.027
|
[37]
|
Kodama, S., Saito, K., Yachi, Y., Asumi, M., Sugawara, A., Totsuka, K., et al. (2009) Association between Serum Uric Acid and Development of Type 2 Diabetes. Diabetes Care, 32, 1737-1742. https://doi.org/10.2337/dc09-0288
|
[38]
|
Xu, Y., Xu, K., Bai, J., Liu, Y., Yu, R., Liu, C., et al. (2016) Elevation of Serum Uric Acid and Incidence of Type 2 Diabetes: A Systematic Review and Meta‐Analysis. Chronic Diseases and Translational Medicine, 2, 81-91. https://doi.org/10.1016/j.cdtm.2016.09.003
|
[39]
|
Lv, Q., Meng, X., He, F., Chen, S., Su, H., Xiong, J., et al. (2013) High Serum Uric Acid and Increased Risk of Type 2 Diabetes: A Systemic Review and Meta-Analysis of Prospective Cohort Studies. PLOS ONE, 8, e56864. https://doi.org/10.1371/journal.pone.0056864
|
[40]
|
Yan, D., Wang, J., Jiang, F., Zhang, R., Wang, T., Wang, S., et al. (2016) A Causal Relationship between Uric Acid and Diabetic Macrovascular Disease in Chinese Type 2 Diabetes Patients: A Mendelian Randomization Analysis. International Journal of Cardiology, 214, 194-199. https://doi.org/10.1016/j.ijcard.2016.03.206
|
[41]
|
Kushiyama, A. (2014) Linking Uric Acid Metabolism to Diabetic Complications. World Journal of Diabetes, 5, 787-795. https://doi.org/10.4239/wjd.v5.i6.787
|
[42]
|
Papanas, N., Demetriou, M., Katsiki, N., Papatheodorou, K., Papazoglou, D., Gioka, T., et al. (2011) Increased Serum Levels of Uric Acid Are Associated with Sudomotor Dysfunction in Subjects with Type 2 Diabetes Mellitus. Experimental Diabetes Research, 2011, Article ID: 346051. https://doi.org/10.1155/2011/346051
|
[43]
|
Papanas, N., Katsiki, N., Papatheodorou, K., Demetriou, M., Papazoglou, D., Gioka, T., et al. (2011) Peripheral Neuropathy Is Associated with Increased Serum Levels of Uric Acid in Type 2 Diabetes Mellitus. Angiology, 62, 291-295. https://doi.org/10.1177/0003319710394164
|
[44]
|
Pafili, K., Katsiki, N., Mikhailidis, D.P. and Papanas, N. (2014) Serum Uric Acid as a Predictor of Vascular Complications in Diabetes: An Additional Case for Neuropathy. Acta Diabetologica, 51, 893-894. https://doi.org/10.1007/s00592-014-0631-x
|
[45]
|
Xiong, Q., Liu, J. and Xu, Y. (2019) Effects of Uric Acid on Diabetes Mellitus and Its Chronic Complications. International Journal of Endocrinology, 2019, Article ID: 9691345. https://doi.org/10.1155/2019/9691345
|
[46]
|
van der Schaft, N., Brahimaj, A., Wen, K., Franco, O.H. and Dehghan, A. (2017) The Association between Serum Uric Acid and the Incidence of Prediabetes and Type 2 Diabetes Mellitus: The Rotterdam Study. PLOS ONE, 12, e0179482. https://doi.org/10.1371/journal.pone.0179482
|
[47]
|
Binh, T.Q., Tran Phuong, P., Thanh Chung, N., Nhung, B.T., Tung, D.D., Quang Thuyen, T., et al. (2019) First Report on Association of Hyperuricemia with Type 2 Diabetes in a Vietnamese Population. International Journal of Endocrinology, 2019, Article ID: 5275071. https://doi.org/10.1155/2019/5275071
|
[48]
|
Wang, H., Zhang, H., Sun, L. and Guo, W. (2018) Roles of Hyperuricemia in Metabolic Syndrome and Cardiac-Kidney-Vascular System Diseases. American Journal of Translational Research, 10, 2749-2463.
|
[49]
|
Ndrepepa, G. (2018) Uric Acid and Cardiovascular Disease. Clinica Chimica Acta, 484, 150-163. https://doi.org/10.1016/j.cca.2018.05.046
|
[50]
|
Nakagawa, T., Hu, H., Zharikov, S., Tuttle, K.R., Short, R.A., Glushakova, O., et al. (2006) A Causal Role for Uric Acid in Fructose-Induced Metabolic Syndrome. American Journal of Physiology-Renal Physiology, 290, F625-F631. https://doi.org/10.1152/ajprenal.00140.2005
|
[51]
|
Zhang, Z., Bian, L. and Choi, Y. (2011) Serum Uric Acid: A Marker of Metabolic Syndrome and Subclinical Atherosclerosis in Korean Men. Angiology, 63, 420-428. https://doi.org/10.1177/0003319711423806
|
[52]
|
Mutluay, R., Deger, S.M., Bahadir, E., Durmaz, A.O., Çitil, R. and Sindel, S. (2012) Uric Acid Is an Important Predictor for Hypertensive Early Atherosclerosis. Advances in Therapy, 29, 276-286. https://doi.org/10.1007/s12325-012-0006-z
|
[53]
|
Fukui, M., Tanaka, M., Shiraishi, E., Harusato, I., Hosoda, H., Asano, M., et al. (2008) Serum Uric Acid Is Associated with Microalbuminuria and Subclinical Atherosclerosis in Men with Type 2 Diabetes Mellitus. Metabolism, 57, 625-629. https://doi.org/10.1016/j.metabol.2007.12.005
|
[54]
|
Kim, S.Y., Guevara, J.P., Kim, K.M., Choi, H.K., Heitjan, D.F. and Albert, D.A. (2010) Hyperuricemia and Coronary Heart Disease: A Systematic Review and Meta‐Analysis. Arthritis Care & Research, 62, 170-180. https://doi.org/10.1002/acr.20065
|
[55]
|
Krishnan, E., Pandya, B.J., Chung, L., Hariri, A. and Dabbous, O. (2012) Hyperuricemia in Young Adults and Risk of Insulin Resistance, Prediabetes, and Diabetes: A 15-Year Follow-Up Study. American Journal of Epidemiology, 176, 108-116. https://doi.org/10.1093/aje/kws002
|
[56]
|
Ito, H., Abe, M., Mifune, M., Oshikiri, K., Antoku, S., Takeuchi, Y., et al. (2011) Hyperuricemia Is Independently Associated with Coronary Heart Disease and Renal Dysfunction in Patients with Type 2 Diabetes Mellitus. PLOS ONE, 6, e27817. https://doi.org/10.1371/journal.pone.0027817
|
[57]
|
Xu, Y., Zhu, J., Gao, L., Liu, Y., Shen, J., Shen, C., et al. (2013) Hyperuricemia as an Independent Predictor of Vascular Complications and Mortality in Type 2 Diabetes Patients: A Meta-Analysis. PLOS ONE, 8, e78206. https://doi.org/10.1371/journal.pone.0078206
|
[58]
|
Li, H.C., Du, Z., Barone, S., Rubera, I., McDonough, A.A., Tauc, M., et al. (2013) Proximal Tubule Specific Knockout of the Na+/H+ Exchanger NHE3: Effects on Bicarbonate Absorption and Ammonium Excretion. Journal of Molecular Medicine, 91, 951-963. https://doi.org/10.1007/s00109-013-1015-3
|
[59]
|
Tonneijck, L., Muskiet, M.H.A., Smits, M.M., Bjornstad, P., Kramer, M.H.H., Diamant, M., et al. (2018) Effect of Immediate and Prolonged GLP‐1 Receptor Agonist Administration on Uric Acid and Kidney Clearance: Post‐hoc Analyses of Four Clinical Trials. Diabetes, Obesity and Metabolism, 20, 1235-1245. https://doi.org/10.1111/dom.13223
|
[60]
|
Chou, C. and Chuang, S. (2020) Journal of Diabetes Investigation, 11, 1524-1531. https://doi.org/10.1111/jdi.13314
|
[61]
|
Acosta-Calero, C., Arnas-Leon, C., Santana-Suarez, A.D., Nivelo-Rivadeneira, M., Kuzior, A., Quintana-Arroyo, S., et al. (2017) Dulaglutide Added on Empagliflozin Improves Blood Pressure, Body Weight, Glycemic Control and Albuminuria in Obese Diabetic Patients. Endocrine Abstracts, 49, EP621. https://doi.org/10.1530/endoabs.49.ep621
|
[62]
|
Molero, I.G., Vallejo, R., Dominguez, M. and Garcia-Arnes, J. (2013) Efficacy and Safety of Liraglutide in Morbid Obese Patients in First Year of Commercialization in Spain. Endocrine Abstracts, 32, P485. https://doi.org/10.1530/endoabs.32.p485
|
[63]
|
Tičinović Kurir, T. (2020) Adropin – Potential Link in Cardiovascular Protection for Obese Male Type 2 Diabetes Mellitus Patients Treated with Liraglutide. Acta Clinica Croatica, 59, 344-350. https://doi.org/10.20471/acc.2020.59.02.19
|
[64]
|
Kuchay, M.S., Krishan, S., Mishra, S.K., Choudhary, N.S., Singh, M.K., Wasir, J.S., et al. (2020) Effect of Dulaglutide on Liver Fat in Patients with Type 2 Diabetes and NAFLD: Randomised Controlled Trial (D-LIFT Trial). Diabetologia, 63, 2434-2445. https://doi.org/10.1007/s00125-020-05265-7
|
[65]
|
González-Ortiz, M., Martínez-Abundis, E., Robles-Cervantes, J.A. and Ramos-Zavala, M.G. (2011) Effect of Exenatide on Fat Deposition and a Metabolic Profile in Patients with Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 9, 31-34. https://doi.org/10.1089/met.2010.0025
|
[66]
|
Liakos, A., Lambadiari, V., Bargiota, A., Kitsios, K., Avramidis, I., Kotsa, K., et al. (2018) Effect of Liraglutide on Ambulatory Blood Pressure in Patients with Hypertension and Type 2 Diabetes: A Randomized, Double‐Blind, Placebo‐Controlled Trial. Diabetes, Obesity and Metabolism, 21, 517-524. https://doi.org/10.1111/dom.13541
|
[67]
|
Nakaguchi, H., Kondo, Y., Kyohara, M., Konishi, H., Oiwa, K. and Terauchi, Y. (2020) Effects of Liraglutide and Empagliflozin Added to Insulin Therapy in Patients with Type 2 Diabetes: A Randomized Controlled Study. Journal of Diabetes Investigation, 11, 1542-1550. https://doi.org/10.1111/jdi.13270
|
[68]
|
Najafi, S., Bahrami, M., Butler, A.E. and Sahebkar, A. (2022) The Effect of Glucagon‐Like Peptide‐1 Receptor Agonists on Serum Uric Acid Concentration: A Systematic Review and Meta‐Analysis. British Journal of Clinical Pharmacology, 88, 3627-3637. https://doi.org/10.1111/bcp.15344
|
[69]
|
Bailey, C.J. (2019) Uric Acid and the Cardio‐Renal Effects of SGLT2 Inhibitors. Diabetes, Obesity and Metabolism, 21, 1291-1298. https://doi.org/10.1111/dom.13670
|
[70]
|
Madaan, T., Akhtar, M. and Najmi, A.K. (2016) Sodium Glucose Cotransporter 2 (SGLT2) Inhibitors: Current Status and Future Perspective. European Journal of Pharmaceutical Sciences, 93, 244-252. https://doi.org/10.1016/j.ejps.2016.08.025
|
[71]
|
Kahathuduwa, C.N., Thomas, D.M., Siu, C. and Allison, D.B. (2018) Unaccounted for Regression to the Mean Renders Conclusion of Article Titled “Uric Acid Lowering in Relation to HbA1c Reductions with the SGLT2 Inhibitor Tofogliflozin” Unsubstantiated. Diabetes, Obesity and Metabolism, 20, 2039-2040. https://doi.org/10.1111/dom.13323
|
[72]
|
Dong, M., Chen, H., Wen, S., Yuan, Y., Yang, L., Xu, D., et al. (2023) The Mechanism of Sodium-Glucose Cotransporter-2 Inhibitors in Reducing Uric Acid in Type 2 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity, 16, 437-445. https://doi.org/10.2147/dmso.s399343
|