[1]
|
Stein, J.D., Khawaja, A.P. and Weizer, J.S. (2021) Glaucoma in Adults—Screening, Diagnosis, and Management. JAMA, 325, 164-174. https://doi.org/10.1001/jama.2020.21899
|
[2]
|
Jonas, J.B., Aung, T., Bourne, R.R., Bron, A.M., Ritch, R. and Panda-Jonas, S. (2017) Glaucoma. The Lancet, 390, 2183-2193. https://doi.org/10.1016/s0140-6736(17)31469-1
|
[3]
|
Danford, I.D., Verkuil, L.D., Choi, D.J., Collins, D.W., Gudiseva, H.V., Uyhazi, K.E., et al. (2017) Characterizing the “Poagome”: A Bioinformatics-Driven Approach to Primary Open-Angle Glaucoma. Progress in Retinal and Eye Research, 58, 89-114. https://doi.org/10.1016/j.preteyeres.2017.02.001
|
[4]
|
Wang, X., Wang, T., Lam, E., Alvarez, D. and Sun, Y. (2023) Ocular Vascular Diseases: From Retinal Immune Privilege to Inflammation. International Journal of Molecular Sciences, 24, Article 12090. https://doi.org/10.3390/ijms241512090
|
[5]
|
Detrick, B. and Hooks, J.J. (2010) Immune Regulation in the Retina. Immunologic Research, 47, 153-161. https://doi.org/10.1007/s12026-009-8146-1
|
[6]
|
Chen, M., Luo, C., Zhao, J., Devarajan, G. and Xu, H. (2019) Immune Regulation in the Aging Retina. Progress in Retinal and Eye Research, 69, 159-172. https://doi.org/10.1016/j.preteyeres.2018.10.003
|
[7]
|
Bell, K., und Hohenstein-Blaul, N.v.T., Teister, J. and Grus, F. (2018) Modulation of the Immune System for the Treatment of Glaucoma. Current Neuropharmacology, 16, 942-958. https://doi.org/10.2174/1570159x15666170720094529
|
[8]
|
Kunkl, M., Frascolla, S., Amormino, C., Volpe, E. and Tuosto, L. (2020) T Helper Cells: The Modulators of Inflammation in Multiple Sclerosis. Cells, 9, Article 482. https://doi.org/10.3390/cells9020482
|
[9]
|
Lindestam Arlehamn, C.S., Garretti, F., Sulzer, D. and Sette, A. (2019) Roles for the Adaptive Immune System in Parkinson’s and Alzheimer’s Diseases. Current Opinion in Immunology, 59, 115-120. https://doi.org/10.1016/j.coi.2019.07.004
|
[10]
|
Gramlich, O.W., Ding, Q.J., Zhu, W., Cook, A., Anderson, M.G. and Kuehn, M.H. (2015) Adoptive Transfer of Immune Cells from Glaucomatous Mice Provokes Retinal Ganglion Cell Loss in Recipients. Acta Neuropathologica Communications, 3, Article No. 56. https://doi.org/10.1186/s40478-015-0234-y
|
[11]
|
Chen, H., Cho, K., Vu, T.H.K., Shen, C., Kaur, M., Chen, G., et al. (2018) Commensal Microflora-Induced T Cell Responses Mediate Progressive Neurodegeneration in Glaucoma. Nature Communications, 9, Article No. 3209. https://doi.org/10.1038/s41467-018-05681-9
|
[12]
|
Gramlich, O.W., Godwin, C.R., Heuss, N.D., Gregerson, D.S. and Kuehn, M.H. (2020) T and B Lymphocyte Deficiency in Rag1−/− Mice Reduces Retinal Ganglion Cell Loss in Experimental Glaucoma. Investigative Opthalmology & Visual Science, 61, Article 18. https://doi.org/10.1167/iovs.61.14.18
|
[13]
|
Yang, X., Zeng, Q., Göktas, E., Gopal, K., Al-Aswad, L., Blumberg, D.M., et al. (2019) T-Lymphocyte Subset Distribution and Activity in Patients with Glaucoma. Investigative Opthalmology & Visual Science, 60, 877-888. https://doi.org/10.1167/iovs.18-26129
|
[14]
|
Bell, K., Holz, A., Ludwig, K., Pfeiffer, N. and Grus, F.H. (2016) Elevated Regulatory T Cell Levels in Glaucoma Patients in Comparison to Healthy Controls. Current Eye Research, 42, 562-567. https://doi.org/10.1080/02713683.2016.1205629
|
[15]
|
Wong, M., Huang, P., Li, W., Li, Y., Zhang, S.S. and Zhang, C. (2015) T-Helper1/t-Helper2 Cytokine Imbalance in the Iris of Patients with Glaucoma. PLOS ONE, 10, e0122184. https://doi.org/10.1371/journal.pone.0122184
|
[16]
|
He, C., Xiu, W., Chen, Q., Peng, K., Zhu, X., Wang, Z., et al. (2023) Gut-Licensed β7 + CD4 + T Cells Contribute to Progressive Retinal Ganglion Cell Damage in Glaucoma. Science Translational Medicine, 15, eadg1656. https://doi.org/10.1126/scitranslmed.adg1656
|
[17]
|
Yu, L., Chen, Y., Xu, X., Dong, Q., Xiu, W., Chen, Q., et al. (2021) Alterations in Peripheral B Cell Subsets Correlate with the Disease Severity of Human Glaucoma. Journal of Inflammation Research, 14, 4827-4838. https://doi.org/10.2147/jir.s329084
|
[18]
|
Gramlich, O.W., Beck, S., von Thun und Hohenstein-Blaul, N., Boehm, N., Ziegler, A., Vetter, J.M., et al. (2013) Enhanced Insight into the Autoimmune Component of Glaucoma: Igg Autoantibody Accumulation and Pro-Inflammatory Conditions in Human Glaucomatous Retina. PLOS ONE, 8, e57557. https://doi.org/10.1371/journal.pone.0057557
|
[19]
|
Shoenfeld, Y. and Toubi, E. (2005) Protective Autoantibodies: Role in Homeostasis, Clinical Importance, and Therapeutic Potential. Arthritis & Rheumatism, 52, 2599-2606. https://doi.org/10.1002/art.21252
|
[20]
|
Schwartz, M. (2001) Physiological Approaches to Neuroprotection: Boosting of Protective Autoimmunity. Survey of Ophthalmology, 45, S256-S260. https://doi.org/10.1016/s0039-6257(01)00208-9
|
[21]
|
Grus, F.H., Joachim, S.C., Hoffmann, E.M., et al. (2004) Complex Autoantibody Repertoires in Patients with Glaucoma. Molecular Vision, 10, 132-137.
|
[22]
|
Boehm, N., Wolters, D., Thiel, U., Lossbrand, U., Wiegel, N., Pfeiffer, N., et al. (2012) New Insights into Autoantibody Profiles from Immune Privileged Sites in the Eye: A Glaucoma Study. Brain, Behavior, and Immunity, 26, 96-102. https://doi.org/10.1016/j.bbi.2011.07.241
|
[23]
|
Tezel, G., Thornton, I.L., Tong, M.G., Luo, C., Yang, X., Cai, J., et al. (2012) Immunoproteomic Analysis of Potential Serum Biomarker Candidates in Human Glaucoma. Investigative Opthalmology & Visual Science, 53, 8222-8231. https://doi.org/10.1167/iovs.12-10076
|
[24]
|
Grus, F.H., Joachim, S.C., Bruns, K., Lackner, K.J., Pfeiffer, N. and Wax, M.B. (2006) Serum Autoantibodies to α-Fodrin Are Present in Glaucoma Patients from Germany and the United States. Investigative Opthalmology & Visual Science, 47, 968-976. https://doi.org/10.1167/iovs.05-0685
|
[25]
|
Joachim, S.C., Reichelt, J., Berneiser, S., Pfeiffer, N. and Grus, F.H. (2008) Sera of Glaucoma Patients Show Autoantibodies against Myelin Basic Protein and Complex Autoantibody Profiles against Human Optic Nerve Antigens. Graefe’s Archive for Clinical and Experimental Ophthalmology, 246, 573-580. https://doi.org/10.1007/s00417-007-0737-8
|
[26]
|
Joachim, S.C., Bruns, K., Lackner, K.J., Pfeiffer, N. and Grus, F.H. (2007) Antibodies to α B-Crystallin, Vimentin, and Heat Shock Protein 70 in Aqueous Humor of Patients with Normal Tension Glaucoma and IgG Antibody Patterns against Retinal Antigen in Aqueous Humor. Current Eye Research, 32, 501-509. https://doi.org/10.1080/02713680701375183
|
[27]
|
Bell, K., Wilding, C., Funke, S., Pfeiffer, N. and Grus, F.H. (2015) Protective Effect of 14-3-3 Antibodies on Stressed Neuroretinal Cells via the Mitochondrial Apoptosis Pathway. BMC Ophthalmology, 15, Article No. 64. https://doi.org/10.1186/s12886-015-0044-9
|
[28]
|
Beutgen, V.M., Perumal, N., Pfeiffer, N. and Grus, F.H. (2019) Autoantibody Biomarker Discovery in Primary Open Angle Glaucoma Using Serological Proteome Analysis (SERPA). Frontiers in Immunology, 10, Article 381. https://doi.org/10.3389/fimmu.2019.00381
|
[29]
|
Lorenz, K., Beck, S., Keilani, M.M., Wasielica-Poslednik, J., Pfeiffer, N. and Grus, F.H. (2016) Longitudinal Analysis of Serum Autoantibody-Reactivities in Patients with Primary Open Angle Glaucoma and Optic Disc Hemorrhage. PLOS ONE, 11, e0166813. https://doi.org/10.1371/journal.pone.0166813
|
[30]
|
Lorenz, K., Beck, S., Keilani, M.M., Wasielica‐Poslednik, J., Pfeiffer, N. and Grus, F.H. (2017) Course of Serum Autoantibodies in Patients after Acute Angle‐Closure Glaucoma Attack. Clinical & Experimental Ophthalmology, 45, 280-287. https://doi.org/10.1111/ceo.12864
|
[31]
|
Beutgen, V.M., Schmelter, C., Pfeiffer, N. and Grus, F.H. (2020) Autoantigens in the Trabecular Meshwork and Glaucoma‐Specific Alterations in the Natural Autoantibody Repertoire. Clinical & Translational Immunology, 9, e01101. https://doi.org/10.1002/cti2.1101
|
[32]
|
Bell, K., Wilding, C., Funke, S., Perumal, N., Beck, S., Wolters, D., et al. (2016) Neuroprotective Effects of Antibodies on Retinal Ganglion Cells in an Adolescent Retina Organ Culture. Journal of Neurochemistry, 139, 256-269. https://doi.org/10.1111/jnc.13765
|
[33]
|
Joachim, S.C., Grus, F.H., Kraft, D., White-Farrar, K., Barnes, G., Barbeck, M., et al. (2009) Complex Antibody Profile Changes in an Experimental Autoimmune Glaucoma Animal Model. Investigative Opthalmology & Visual Science, 50, 4734-4742. https://doi.org/10.1167/iovs.08-3144
|
[34]
|
Gramlich, O.W., Teister, J., Neumann, M., Tao, X., Beck, S., von Pein, H.D., et al. (2016) Immune Response after Intermittent Minimally Invasive Intraocular Pressure Elevations in an Experimental Animal Model of Glaucoma. Journal of Neuroinflammation, 13, Article No. 82. https://doi.org/10.1186/s12974-016-0542-6
|
[35]
|
Schmelter, C., Perumal, N., Funke, S., Bell, K., Pfeiffer, N. and Grus, F.H. (2017) Peptides of the Variable IgG Domain as Potential Biomarker Candidates in Primary Open-Angle Glaucoma (POAG). Human Molecular Genetics, 26, 4451-4464. https://doi.org/10.1093/hmg/ddx332
|
[36]
|
Lindquist, S. and Craig, E.A. (1988) The Heat-Shock Proteins. Annual Review of Genetics, 22, 631-677. https://doi.org/10.1146/annurev.ge.22.120188.003215
|
[37]
|
Jiang, S., Kametani, M. and Chen, D.F. (2020) Adaptive Immunity: New Aspects of Pathogenesis Underlying Neurodegeneration in Glaucoma and Optic Neuropathy. Frontiers in Immunology, 11, Article 65. https://doi.org/10.3389/fimmu.2020.00065
|
[38]
|
Tsai, T., Grotegut, P., Reinehr, S. and Joachim, S.C. (2019) Role of Heat Shock Proteins in Glaucoma. International Journal of Molecular Sciences, 20, Article 5160. https://doi.org/10.3390/ijms20205160
|
[39]
|
Asea, A., Kraeft, S., Kurt-Jones, E.A., Stevenson, M.A., Chen, L.B., Finberg, R.W., et al. (2000) HSP70 Stimulates Cytokine Production through a CD14-Dependant Pathway, Demonstrating Its Dual Role as a Chaperone and Cytokine. Nature Medicine, 6, 435-442. https://doi.org/10.1038/74697
|
[40]
|
Lamb, J.R. and Young, D.B. (1990) T Cell Recognition of Stress Proteins. A Link between Infectious and Autoimmune Disease. Molecular Biology and Medicine, 7, 311-321.
|
[41]
|
Luo, C., Yang, X., Kain, A.D., Powell, D.W., Kuehn, M.H. and Tezel, G. (2010) Glaucomatous Tissue Stress and the Regulation of Immune Response through Glial Toll-Like Receptor Signaling. Investigative Opthalmology & Visual Science, 51, 5697-5707. https://doi.org/10.1167/iovs.10-5407
|
[42]
|
Wax, M.B., Tezel, G., Yang, J., Peng, G., Patil, R.V., Agarwal, N., et al. (2008) Induced Autoimmunity to Heat Shock Proteins Elicits Glaucomatous Loss of Retinal Ganglion Cell Neurons via Activated T-Cell-Derived Fas-Ligand. The Journal of Neuroscience, 28, 12085-12096. https://doi.org/10.1523/jneurosci.3200-08.2008
|
[43]
|
Casola, C., Schiwek, J.E., Reinehr, S., Kuehn, S., Grus, F.H., Kramer, M., et al. (2015) S100 Alone Has the Same Destructive Effect on Retinal Ganglion Cells as in Combination with HSP 27 in an Autoimmune Glaucoma Model. Journal of Molecular Neuroscience, 56, 228-236. https://doi.org/10.1007/s12031-014-0485-2
|
[44]
|
Reinehr, S., Safaei, A., Grotegut, P., Guntermann, A., Tsai, T., Hahn, S.A., et al. (2022) Heat Shock Protein Upregulation Supplemental to Complex mRNA Alterations in Autoimmune Glaucoma. Biomolecules, 12, Article 1538. https://doi.org/10.3390/biom12101538
|
[45]
|
West, E.E., Kolev, M. and Kemper, C. (2018) Complement and the Regulation of T Cell Responses. Annual Review of Immunology, 36, 309-338. https://doi.org/10.1146/annurev-immunol-042617-053245
|
[46]
|
Lo, M.W. and Woodruff, T.M. (2020) Complement: Bridging the Innate and Adaptive Immune Systems in Sterile Inflammation. Journal of Leukocyte Biology, 108, 339-351. https://doi.org/10.1002/jlb.3mir0220-270r
|
[47]
|
Becker, S., Reinehr, S., Burkhard Dick, H. and Joachim, S.C. (2014) Komplementaktivierung nach Induktion einer okulären Hypertension im Tiermodell. Der Ophthalmologe, 112, 41-48. https://doi.org/10.1007/s00347-014-3100-6
|
[48]
|
Chen, J., Jiang, C., Huang, Q., Lin, X., Wu, W. and Li, J. (2022) Detection of Plasma Complement and Immune Globulin in Different Sorts of Glaucoma. European Journal of Ophthalmology, 32, 2907-2912. https://doi.org/10.1177/11206721221074202
|
[49]
|
Harder, J.M., Braine, C.E., Williams, P.A., Zhu, X., MacNicoll, K.H., Sousa, G.L., et al. (2017) Early Immune Responses Are Independent of RGC Dysfunction in Glaucoma with Complement Component C3 Being Protective. Proceedings of the National Academy of Sciences of the United States of America, 114, E3839-E3848. https://doi.org/10.1073/pnas.1608769114
|
[50]
|
Hubens, W.H.G., Beckers, H.J.M., Gorgels, T.G.M.F. and Webers, C.A.B. (2021) Increased Ratios of Complement Factors C3a to C3 in Aqueous Humor and Serum Mark Glaucoma Progression. Experimental Eye Research, 204, Article ID: 108460. https://doi.org/10.1016/j.exer.2021.108460
|
[51]
|
Vashishtha, A., Maina, S.W., Altman, J., Jones, G., Lee, T.J., Bollinger, K.E., et al. (2023) Complement System Proteins in the Human Aqueous Humor and Their Association with Primary Open-Angle Glaucoma. Journal of Personalized Medicine, 13, Article 1400. https://doi.org/10.3390/jpm13091400
|
[52]
|
Bosco, A., Anderson, S.R., Breen, K.T., Romero, C.O., Steele, M.R., Chiodo, V.A., et al. (2018) Complement C3-Targeted Gene Therapy Restricts Onset and Progression of Neurodegeneration in Chronic Mouse Glaucoma. Molecular Therapy, 26, 2379-2396. https://doi.org/10.1016/j.ymthe.2018.08.017
|
[53]
|
Kuehn, M.H., Kim, C.Y., Ostojic, J., Bellin, M., Alward, W.L.M., Stone, E.M., et al. (2006) Retinal Synthesis and Deposition of Complement Components Induced by Ocular Hypertension. Experimental Eye Research, 83, 620-628. https://doi.org/10.1016/j.exer.2006.03.002
|
[54]
|
Adav, S.S., Wei, J., Terence, Y., Ang, B.C.H., Yip, L.W.L. and Sze, S.K. (2018) Proteomic Analysis of Aqueous Humor from Primary Open Angle Glaucoma Patients on Drug Treatment Revealed Altered Complement Activation Cascade. Journal of Proteome Research, 17, 2499-2510. https://doi.org/10.1021/acs.jproteome.8b00244
|
[55]
|
Reinehr, S., Reinhard, J., Gandej, M., Kuehn, S., Noristani, R., Faissner, A., et al. (2016) Simultaneous Complement Response via Lectin Pathway in Retina and Optic Nerve in an Experimental Autoimmune Glaucoma Model. Frontiers in Cellular Neuroscience, 10, Article 140. https://doi.org/10.3389/fncel.2016.00140
|
[56]
|
Reinehr, S., Reinhard, J., Gandej, M., Gottschalk, I., Stute, G., Faissner, A., et al. (2018) S100B Immunization Triggers NFκB and Complement Activation in an Autoimmune Glaucoma Model. Scientific Reports, 8, Article No. 9821. https://doi.org/10.1038/s41598-018-28183-6
|
[57]
|
Kuehn, M.H. (2014) Immune Phenomena in Glaucoma and Conformational Disorders: Why Is the Second Eye Not Involved? Journal of Glaucoma, 23, S59-S61. https://doi.org/10.1097/ijg.0000000000000115
|
[58]
|
Williams, P.A., Tribble, J.R., Pepper, K.W., Cross, S.D., Morgan, B.P., Morgan, J.E., et al. (2016) Inhibition of the Classical Pathway of the Complement Cascade Prevents Early Dendritic and Synaptic Degeneration in Glaucoma. Molecular Neurodegeneration, 11, Article No. 26. https://doi.org/10.1186/s13024-016-0091-6
|
[59]
|
Reinehr, S., Gomes, S.C., Gassel, C.J., Asaad, M.A., Stute, G., Schargus, M., et al. (2019) Intravitreal Therapy against the Complement Factor C5 Prevents Retinal Degeneration in an Experimental Autoimmune Glaucoma Model. Frontiers in Pharmacology, 10, Article 1381. https://doi.org/10.3389/fphar.2019.01381
|
[60]
|
Vernazza, S., Tirendi, S., Bassi, A.M., Traverso, C.E. and Saccà, S.C. (2020) Neuroinflammation in Primary Open-Angle Glaucoma. Journal of Clinical Medicine, 9, Article 3172. https://doi.org/10.3390/jcm9103172
|
[61]
|
Tezel, G. (2009) The Role of Glia, Mitochondria, and the Immune System in Glaucoma. Investigative Opthalmology & Visual Science, 50, 1001-1012. https://doi.org/10.1167/iovs.08-2717
|
[62]
|
Block, M.L., Zecca, L. and Hong, J. (2007) Microglia-Mediated Neurotoxicity: Uncovering the Molecular Mechanisms. Nature Reviews Neuroscience, 8, 57-69. https://doi.org/10.1038/nrn2038
|
[63]
|
Chong, R.S. and Martin, K.R. (2015) Glial Cell Interactions and Glaucoma. Current Opinion in Ophthalmology, 26, 73-77. https://doi.org/10.1097/icu.0000000000000125
|
[64]
|
Margeta, M.A., Yin, Z., Madore, C., Pitts, K.M., Letcher, S.M., Tang, J., et al. (2022) Apolipoprotein E4 Impairs the Response of Neurodegenerative Retinal Microglia and Prevents Neuronal Loss in Glaucoma. Immunity, 55, 1627-1644.E7. https://doi.org/10.1016/j.immuni.2022.07.014
|
[65]
|
Wei, X., Cho, K., Thee, E.F., Jager, M.J. and Chen, D.F. (2018) Neuroinflammation and Microglia in Glaucoma: Time for a Paradigm Shift. Journal of Neuroscience Research, 97, 70-76. https://doi.org/10.1002/jnr.24256
|
[66]
|
Joachim, S.C., Gramlich, O.W., Laspas, P., Schmid, H., Beck, S., von Pein, H.D., et al. (2012) Retinal Ganglion Cell Loss Is Accompanied by Antibody Depositions and Increased Levels of Microglia after Immunization with Retinal Antigens. PLOS ONE, 7, e40616. https://doi.org/10.1371/journal.pone.0040616
|
[67]
|
Noristani, R., Kuehn, S., Stute, G., Reinehr, S., Stellbogen, M., Dick, H.B., et al. (2016) Retinal and Optic Nerve Damage Is Associated with Early Glial Responses in an Experimental Autoimmune Glaucoma Model. Journal of Molecular Neuroscience, 58, 470-482. https://doi.org/10.1007/s12031-015-0707-2
|
[68]
|
Casola, C., Reinehr, S., Kuehn, S., Stute, G., Spiess, B.M., Dick, H.B., et al. (2016) Specific Inner Retinal Layer Cell Damage in an Autoimmune Glaucoma Model Is Induced by GDNF with or without HSP27. Investigative Opthalmology & Visual Science, 57, 3626-3639. https://doi.org/10.1167/iovs.15-18999r2
|
[69]
|
Kuehn, S., Grotegut, P., Smit, A., et al. (2018) Important Role of Microglia in a Novel S100B Based Retina Degeneration Model. Investigative Ophthalmology & Visual Science, 59, 4500.
|
[70]
|
Rodrigues-Neves, A.C., Aires, I.D., Vindeirinho, J., Boia, R., Madeira, M.H., Gonçalves, F.Q., et al. (2018) Elevated Pressure Changes the Purinergic System of Microglial Cells. Frontiers in Pharmacology, 9, Article 16. https://doi.org/10.3389/fphar.2018.00016
|
[71]
|
Narayan, D.S., Casson, R.J., Ebneter, A., Chidlow, G., Grace, P.M., Hutchinson, M.R., et al. (2014) Immune Priming and Experimental Glaucoma: The Effect of Prior Systemic Lipopolysaccharide Challenge on Tissue Outcomes after Optic Nerve Injury. Clinical & Experimental Ophthalmology, 42, 539-554. https://doi.org/10.1111/ceo.12289
|
[72]
|
Ramírez, A.I., Salazar, J.J., de Hoz, R., Rojas, B., Gallego, B.I., Salobrar-García, E., et al. (2015) Macro-and Microglial Responses in the Fellow Eyes Contralateral to Glaucomatous Eyes. Progress in Brain Research, 220, 155-172. https://doi.org/10.1016/bs.pbr.2015.05.003
|