钠–葡萄糖共转运蛋白2抑制剂改善病理性心脏重塑的研究进展
Progress in the Treatment of Pathological Cardiac Remodeling with Sodium-Glucose Cotransporter 2 Inhibitors
摘要: 心脏重塑是心脏在持续性压力、代谢等刺激下发生的适应性形态结构变化过程,其中病理性心脏重塑是心血管不良事件独立危险因素。新型降糖药物钠–葡萄糖协同转运蛋白-2 (sodium-glucose cotransporter 2, SGLT2)抑制剂除了能够降低容量负荷、减少心血管死亡及住院风险外,还展现出改善心脏结构和功能、逆转心脏重构的潜力。本文旨在对SGLT2抑制剂在改善心脏重塑方面的研究进展进行综述。
Abstract: Cardiac remodeling, a process of adaptive morphological and structural alterations in the heart triggered by sustained stress, metabolic, and other stimuli, among which pathological cardiac remodeling serves as an independent predictor of adverse cardiovascular outcomes. Recently, novel hypoglycemic agents, specifically sodium-glucose cotransporter 2 (SGLT2) inhibitors, have emerged as potential therapeutics that not only alleviate volume overload but also reduce the risk of cardiovascular mortality and hospitalization. Additionally, these agents exhibit promising effects in improving cardiac structure and function, as well as reversing pathological cardiac remodeling. This article aims to comprehensively review the progress made in investigating the therapeutic benefits of SGLT2 inhibitors in ameliorating cardiac remodeling.
文章引用:宋琦, 凌智瑜. 钠–葡萄糖共转运蛋白2抑制剂改善病理性心脏重塑的研究进展[J]. 临床医学进展, 2024, 14(8): 429-438. https://doi.org/10.12677/acm.2024.1482233

1. 引言

心血管疾病严重威胁人类健康,是全球死亡的主要原因,而心脏重塑在其中扮演着重要角色。心脏重塑可分为生理性和病理性两种类型。生理性重塑是对生长、运动和妊娠等外部变化的有益适应,而病理性重塑则是在炎症、缺血再灌注(ischemia reperfusion, I/R)损伤、血流动力学改变、神经体液过度激活等病理刺激下,心脏结构和功能逐渐恶化的过程,是心力衰竭病程进展的重要因素[1]。钠–葡萄糖协同转运蛋白-2 (sodium-glucose cotransporter 2, SGLT2)抑制剂作为新型口服降糖药物不仅具有显著的降糖效果,还能带来心血管获益,包括改善心肌能量代谢和逆转心肌重构[2]。然而,SGLT2抑制剂对于临床结局及心脏结构的改善不能仅通过降糖作用解释,其具体作用机制尚不清楚。因此,本文将对SGLT2抑制剂在改善病理性心脏重塑方面的研究进展作一综述,以期为发现新治疗靶点、逆转心脏重塑、改善心脏功能及预后提供帮助。

2. SGLT2抑制剂对心脏重塑的影响

SGLT2抑制剂是一种治疗2型糖尿病(Type 2 Diabetes Mellitus, T2DM)的新型口服降糖药物。它主要通过阻断近端肾小管中葡萄糖的重吸收,从而发挥非胰岛素依赖性的降血糖作用,可显著降低心血管不良事件发生风险[3] [4]。研究表明,SGLT2抑制剂在逆转病理性心脏重塑方面起着重要作用,而改善心脏重塑可能是SGLT2抑制剂心脏获益的核心机制[5] [6]

2.1. SGLT2抑制剂在动物实验中对心脏重塑的影响

在小鼠模型中,通过组织学改变显示出SGLT2抑制剂对心脏重塑的改善。Zhang等[7]发现,恩格列净(Empagliflozin, EMPA)能够改善心肌肥大和纤维化。Moellmann等[8]也观察到,在心脏肥大小鼠模型中,经过10周的厄格列净治疗,左室纤维化减少,左室功能改善。

在大鼠模型中,研究者通过超声心动图更直观地观察到心脏重塑的改善。在代谢综合征大鼠模型中,EMPA使左室容积和心脏质量减少[9]。进一步研究表明,SGLT2抑制剂独立于降糖作用外发挥逆重构作用。在射血分数保留的心力衰竭(heart failure with preserved ejection, HFpEF)大鼠模型中,无论血糖水平如何,EMPA使左室容积和室壁应力显著降低[10]。伊格列净同样可使非糖尿病心肌病大鼠左室质量和间隔厚度减少,且不影响血糖水平[11]

在心衰猪模型[12] [13]中,EMPA可降低左室质量和球形度并减少左室扩张。此外,组织学及心脏磁共振还观察到心肌细胞肥大和间质纤维化减少,提示SGLT2抑制剂对心脏重塑有改善作用。各类动物模型研究表明,无论是否合并糖尿病,使用SGLT2抑制剂均可改善心肌细胞肥大和心肌纤维化。

2.2. SGLT2抑制剂在人体研究中对心脏重塑的影响

体外研究表明,SGLT2抑制剂显著减轻心肌间质纤维化,并可能对结构重塑产生有利影响。Kang等[14]研究显示,从人心房组织中分离出的心脏成纤维细胞在接受EMPA治疗后,显著减弱了转化生长因子β1 (TGFβ1)诱导的成纤维细胞活化。此外,形态学显示,暴露于EMPA的肌成纤维细胞呈现更静止的表型,且细胞介导的细胞外基质重塑显著减少。最后,基因谱显示,EMPA显著抑制促纤维化标志物表达。

在T2DM患者中,SGLT2抑制剂能减少心脏病理性重塑。EMPA-HEART Cardiolink-6试验[15]发现,在T2DM合并冠状动脉疾病患者中,接受EMPA治疗6个月后,左室质量指数显著降低,且与血压变化无关。同样,DAPA-LVH试验[16]证明达格列净(Dapagliflozin, DAPA)具有类似效果。

针对心衰人群,EMPA-TROPISM试验[17]通过心脏磁共振观察到,EMPA显著降低了射血分数降低的心力衰竭患者的左室容积、质量及球形度,减少了心肌纤维化。Empire HF试验[18]同样观察到类似结果,并通过更大的样本量增加了结果的可靠性。

目前,关于SGLT2抑制剂对人心脏重塑的研究较少,普遍随访时间短,长期效果不明确,且针对非糖尿病、HFpEF患者的研究较少,仍需进一步研究。

3. SGLT2抑制剂逆转病理性心脏重塑的潜在机制

病理性心脏重塑是各种心脏疾病的普遍终点。SGLT2抑制剂对病理性心脏重塑的改善显示了其在心血管疾病中的重要影响,但其潜在作用机制尚不明确。当前研究表明,这种积极效果可能涉及以下几个方面。

3.1. 心肌效应:维持心肌细胞稳态、抑制心肌纤维化

SGLT2抑制剂引起的生酮作用和红细胞增多反映了对营养不足和缺氧的典型反应[19]。该反应提示SGLT2抑制剂的心血管益处可能与营养剥夺信号的激活有关,从而促进自噬、改善线粒体功能、减少活性氧产生、减少细胞凋亡、抑制炎症和纤维化,并增强心肌细胞的活力。

3.1.1. 自噬

适度激活自噬有助于保护心脏免受压力超负荷、缺氧和心脏毒性物质的损伤[20] [21]。自噬不足或过度会影响病理性心脏重塑的进程。心脏逆重构的患者自噬得到改善,而自噬的持续降低是不良预后的因素之一[22] [23]

SGLT2蛋白是一种营养过载传感器,应用SGLT2抑制剂会导致尿糖增加,从而引发饥饿状态,激活沉寂信息调节因子1 (SIRT1)及其下游效应因子单磷酸腺苷激活的蛋白激酶(AMPK),从而促进自噬的上调[24]。增强自噬活性可以减少心脏纤维化及重塑,并改善心脏功能[25] [26]。此外,苄氯素1 (BECN1)介导的内质网应激也是调节自噬的途径之一。研究显示,EMPA能够调节心肌细胞中基于BECN1的自噬,并通过BECN1-Toll样受体9-SIRT3轴发挥心肌保护作用[27] [28]。此外,EMPA还可通过靶向心肌细胞上的钠/氢交换蛋白1 (NHE1)来调节过度的自噬[29]。多项研究表明,SGLT2抑制剂通过多种途径调节自噬的活性来发挥心脏保护作用。

3.1.2. 氧化应激

氧化应激是病理性心脏重塑发展的关键因素[30]。多项研究表明,SGLT2抑制剂通过减少体内氧化应激来保护心肌细胞。Li等[31]在KK-Ay糖尿病小鼠模型中发现,EMPA通过激活核因子样红系因子2/抗氧化反应元件信号传导抑制心脏氧化应激,从而减少心肌肥大。在非糖尿病模型中,EMPA通过增强线粒体的氧化磷酸化和减少活性氧的产生减少氧化应激,改善心脏功能并减少重塑[32] [33]。Kondo等[34]首次证明,卡格列净(Canagliflozin, CANA)通过SGLT1/AMPK/Rac1信号通路抑制心肌NADPH氧化酶活性,从而减轻氧化应激,对人心肌产生保护作用。然而,现有研究主要集中在高血糖或糖尿病状态下,对正常血糖及涉及人类组织的研究仍然相对较少。

3.1.3. 细胞凋亡

SGLT2抑制剂可通过抑制细胞凋亡途径减少心脏重塑并改善心脏功能。Liu等[35]发现EMPA可抑制心肌梗死早期心肌细胞凋亡并改善心脏重塑。此外,DAPA可使线粒体裂变正常化,并减少心肌细胞凋亡,从而改善急性心肌梗死后的心脏重塑[36]。Ren等[37]研究表明,DAPA还通过激活SIRT1来抑制内质网应激诱导的细胞凋亡,并改善心脏重塑。尽管目前已有多项研究表明SGLT2抑制剂可通过调节线粒体途径减少细胞凋亡,但对于死亡受体通路的研究仍较少,未来需要进一步深入研究。

3.1.4. 铁死亡

铁死亡是由大量脂质过氧化介导的膜损伤从而引起铁依赖性调节坏死,在多种心血管疾病的发生和进展中发挥作用[38] [39]。目前已有多项研究表明,SGLT2抑制剂可以减少铁死亡,而铁死亡与心脏重塑及功能影响有关。研究表明,通过使用铁抑素-1抑制铁死亡,可以预防晚期糖基化产物诱导的心脏重塑和功能障碍,并通过增强谷胱甘肽过氧化物酶4信号传导来减轻心脏纤维化和病理重塑[40] [41]。Ma等[42]研究表明,CANA可通过减少铁的摄入和铁超负荷以及抑制氧化应激来调节铁死亡以治疗HFpEF。此外,DAPA可通过丝裂原活化蛋白激酶信号通路减少铁死亡,并发挥心脏保护作用[43]。减少铁死亡可能是SGLT2抑制剂改善心脏重构的一种途径,但仍需进一步探索。

3.1.5. 心肌细胞肥大及纤维化

在许多心血管疾病中,心肌细胞肥大和心肌纤维化与病理性心脏重塑密切相关[1]。在纤维化的信号通路中,TGFβ1/Smad对诱导和维持胶原合成以及激活心脏成纤维细胞至关重要,并在一定程度上介导了血管紧张素II引起的结构重塑[44]。研究证实,EMPA能够减轻由TGFβ1介导的人类成纤维细胞活化和细胞介导的胶原重塑[14]。进一步的研究显示,DAPA以血糖非依赖性方式调节TGFβ1/Smad信号传导,并减弱心肌纤维化和胶原合成,改善了心脏重塑[45]。Zhang等[7]研究表明,EMPA还通过下调Toll样受体4的表达并抑制转录激活因子3的磷酸化,来缓解心肌肥大和纤维化。总之,SGLT2抑制剂能够调节多种信号通路,从而抑制心肌细胞肥大和心脏纤维化。

3.2. 间质效应:减轻炎症

炎症显著影响心脏重塑和心衰的进展[46]。越来越多的证据表明SGLT2抑制剂具有广泛的抗炎作用,且主要归因于它能抑制炎症小体的激活[47]。靶向特定的细胞因子或炎症途径可以有效减轻心脏的病理性重塑。

多种促炎细胞因子通过影响心肌细胞、成纤维细胞和免疫细胞来介导心脏重塑。Zhang等[48]发现,DAPA能降低HFpEF猪的IL-6和TNF-α水平,并逆转心脏重塑。Yan等[49]观察到,DAPA降低了促炎细胞因子水平,促进巨噬细胞向M2极化,并激活转录激活因子3信号通路,从而发挥抗炎作用并减少心脏损伤。此外,研究表明EMPA通过减少细胞内Ca2+水平,抑制炎症小体的激活和细胞因子的表达,从而减轻炎症反应和心脏纤维化,改善心衰小鼠心脏重塑及功能[50]

在慢性炎症等病理情况下,心外膜脂肪组织(EAT)中合成的促炎细胞因子可直接分泌到心肌中,导致心肌炎症和纤维化。多项研究表明,SGLT2抑制剂可降低EAT厚度并改善心外膜脂肪细胞的分化,减少EAT炎症趋化因子和炎症标志物的产生[51]-[53]。Takano等[54]首次证明,SGLT2主要在人EAT的前脂肪细胞中表达,EMPA可能通过调节IL-6的表达来抑制前脂肪细胞的成熟和分化,以及EAT中炎症因子的表达和分泌。然而,SGLT2介导的EAT旁分泌谱变化机制尚不清楚,仍需体外机制研究来探索复杂的细胞内信号传导。

越来越多的证据表明,SGLT2抑制剂在减轻炎症方面具有重要意义,这可能部分解释了其改善斑块形成、内皮功能障碍、心脏纤维化和心脏重塑风险的原因[55]。然而,未来仍需进一步研究以确定这些抗炎作用是否与其降低心衰住院率和心血管死亡有关。

3.3. 血管效应:改善内皮功能,保护微血管系统

内皮功能障碍常伴有心脏肥大和纤维化,并与各种心血管疾病的发展相关。促进血管生成可增加微血管和小动脉的密度,从而减少心脏重塑[56] [57]。Juni等[58]首次证明,EMPA可以直接作用于心脏微血管内皮细胞,改善微血管功能紊乱。Nakao等[59]发现,EMPA通过激活Akt/NOS/NO通路防止内皮细胞凋亡,并维持毛细血管形成,从而改善收缩功能障碍。然而,仅使用电子显微镜观察微血管的结构变化难以全面评估其功能,Adingupu等[60]应用无创多普勒超声成像监测冠状动脉血流速度储备和右室面积变化分数的改变,进一步证实EMPA可改善冠状动脉微血管功能。各类研究表明,SGLT2抑制剂可能通过改善内皮功能和血管生成,保护微血管系统,从而改善心脏重塑。

3.4. 神经系统:交感神经系统活动减少

交感神经系统(SNS)在心脏重塑中发挥重要作用,SGLT2抑制剂降低血压而没有代偿性增加心率,表明其可能抑制SNS。Herat等[61]研究发现,用6-羟基多巴胺对SNS进行化学去神经支配会降低肾脏SGLT2的表达,且DAPA治疗显著减少了心肾酪氨酸羟化酶及去甲肾上腺素水平,降低了SNS活性。因此,SGLT2抑制与SNS活性之间可能存在双向关系。EMBODY试验[62]显示,EMPA显著改善了交感神经和副交感神经活动的参数,但研究中123I-间碘苄胍心肌闪烁显像的延迟期H/M比值和洗脱率的改善在EMPA组和安慰剂组之间没有差异,这可能表明SGLT2抑制剂能降低整体交感神经张力,而非心脏局部效应。Raza等[63]综合相关研究后得出类似结论,即SGLT2抑制剂可能通过降低肾传入神经活性和抑制全身SNS激活而发挥心血管保护作用。

3.5. 生理学效益:维持离子稳态

钠、钙平衡失调是导致心脏重塑的关键因素,其中晚期钠电流(INaL)的病理性增加和NHE1活性升高起主要作用[64]。在心力衰竭小鼠模型中,EMPA、DAPA、CANA均表现出对INaL选择性抑制作用,且效果相当;且在单个心肌细胞中,EMPA能可逆性地降低INaL诱导的钙紊乱的发生率[65]。此外,Baartscheer等[66] [67]提出,SGLT2抑制剂可降低心肌中的Na+、Ca2+浓度并抑制NHE。同时在使用NHE1抑制剂对细胞进行预处理时,观察到EMPA的效果减弱,因此推测SGLT2抑制剂可能通过抑制NHE1发挥心脏保护作用。然而,Li等[68]并未发现EMPA能与NHE1直接相互作用,且NHE1抑制剂处理心肌细胞可观察到收缩力降低和钙瞬变,但EMPA没有类似变化,提示NHE1抑制剂并不能模拟SGLT2抑制剂对心肌细胞的作用。因此,SGLT2抑制剂的心脏获益是否与直接抑制心脏NHE1相关,有待进一步深入研究。

3.6. 代谢效应:改善能量代谢

心脏是人体代谢最活跃的器官之一,日常活动需要消耗大量三磷酸腺苷(ATP),并可利用脂肪酸、葡萄糖等多种能量底物。心肌能量代谢的变化可促进病理性心脏重塑的发展[69]。心脏代谢重塑通常表现为在各种病理生理条件下,从以脂肪酸代谢为主转变为以葡萄糖代谢为主。虽然糖酵解使心脏对缺血的耐受性更强,但由于胰岛素抵抗和葡萄糖氧化减少,糖酵解不能为患病的心脏提供足够的能量,进一步加重心脏重塑。因此,改善心脏能量代谢,提高能量底物利用效率可能是治疗心力衰竭和心脏重塑的有效策略。

Li等[68]的研究发现,EMPA可通过与葡萄糖转运蛋白结合,减少过度糖酵解,恢复脂肪酸摄取并改善线粒体氧化磷酸化。此外,葡萄糖摄取减少还可激活AMPK,以减少病理性心脏重塑。相反,Trang等[70]发现,EMPA通过减少脂肪酸代谢、增加葡萄糖代谢,改善糖尿病心肌病大鼠的心脏重塑。这些实验结果的差异可能与糖尿病心肌病中脂肪酸增加导致的脂毒性和胰岛素抵抗相关,后续尚需进一步研究。此外,Yurista等[33]研究发现,EMPA通过增加酮体的利用率以及葡萄糖和脂肪酸的氧化,使心脏ATP生成增加并改善了心脏代谢。然而,这项研究未提供直接证据表明EMPA的心脏益处与酮体氧化增加有关,也未量化酮体氧化与心肌ATP水平升高之间的关系。Santos-Gallego等[12]研究进一步表明,EMPA可通过将心肌底物利用从葡萄糖转向酮体、支链氨基酸和游离脂肪酸的氧化来减轻心脏重塑。酮体为心脏提供了额外的燃料来源并改善心脏功能,但与葡萄糖氧化相比,酮体氧化并不是一种更有效的能量底物来源,因此并不会提高心脏的效率。目前,酮体氧化增加对心脏功能的长期影响及对其他潜在不良途径的干扰仍存在争议,心肌酮体氧化与EMPA的心脏保护作用之间的关系仍未明确,需进一步深入研究。综合而言,一系列研究表明,SGLT2抑制剂可能不会提高心脏的效率,但为心脏提供了额外的能量底物来源,改善了心脏能量代谢,从而减轻心脏重塑。

4. 总结和展望

SGLT2抑制剂是一种重要的心血管药物,可以显著降低心血管不良事件发生风险。多项基础研究和临床试验表明,SGLT2抑制剂具有抗心脏重塑的作用。当前的理论认为,它可能通过多种机制逆转病理性心脏重塑,包括维持细胞稳态、减少炎症反应、改善血管重塑、抑制交感神经系统、维持离子稳态和优化能量代谢等。然而,SGLT2抑制剂在心脏中的具体作用机制及潜在分子机制仍需进一步探索。此外,很少有研究比较SGLT2抑制剂对不同人群(如糖尿病与非糖尿病人群、缺血性与非缺血性心脏病人群)心脏重塑的影响及所涉及的分子途径是否相同。近年来,表观遗传学在疾病发展中的作用受到广泛关注,但SGLT2抑制剂在心脏重塑中的表观遗传机制尚未明确。总之,未来需要更多研究以探索SGLT2抑制剂改善心脏重塑的潜在治疗靶点,为临床诊疗提供新方案和策略。

NOTES

*通讯作者。

参考文献

[1] Wu, Q., Xiao, Y., Yuan, Y., Ma, Z., Liao, H., Liu, C., et al. (2017) Mechanisms Contributing to Cardiac Remodelling. Clinical Science, 131, 2319-2345.
https://doi.org/10.1042/cs20171167
[2] Kubota, Y. and Shimizu, W. (2022) Clinical Benefits of Sodium-Glucose Cotransporter 2 Inhibitors and the Mechanisms Underlying Their Cardiovascular Effects. JACC: Asia, 2, 287-293.
https://doi.org/10.1016/j.jacasi.2022.03.009
[3] Scheen, A.J. (2014) Pharmacodynamics, Efficacy and Safety of Sodium-Glucose Co-Transporter Type 2 (SGLT2) Inhibitors for the Treatment of Type 2 Diabetes Mellitus. Drugs, 75, 33-59.
https://doi.org/10.1007/s40265-014-0337-y
[4] Vaduganathan, M., Docherty, K.F., Claggett, B.L., Jhund, P.S., de Boer, R.A., Hernandez, A.F., et al. (2022) SGLT2 Inhibitors in Patients with Heart Failure: A Comprehensive Meta-Analysis of Five Randomised Controlled Trials. The Lancet, 400, 757-767.
https://doi.org/10.1016/s0140-6736(22)01429-5
[5] Zhang, N., Wang, Y., Tse, G., Korantzopoulos, P., Letsas, K.P., Zhang, Q., et al. (2021) Effect of Sodium-Glucose Cotransporter-2 Inhibitors on Cardiac Remodelling: A Systematic Review and Meta-Analysis. European Journal of Preventive Cardiology, 28, 1961-1973.
https://doi.org/10.1093/eurjpc/zwab173
[6] Pabel, S., Hamdani, N., Luedde, M. and Sossalla, S. (2021) SGLT2 Inhibitors and Their Mode of Action in Heart Failure—Has the Mystery Been Unravelled? Current Heart Failure Reports, 18, 315-328.
https://doi.org/10.1007/s11897-021-00529-8
[7] Zhang, Q., Li, G., Zhong, Y., Wang, J., Wang, A., Zhou, X., et al. (2020) Empagliflozin Improves Chronic Hypercortisolism-Induced Abnormal Myocardial Structure and Cardiac Function in Mice. Therapeutic Advances in Chronic Disease, 11, 1-12.
https://doi.org/10.1177/2040622320974833
[8] Moellmann, J., Mann, P.A., Kappel, B.A., Kahles, F., Klinkhammer, B.M., Boor, P., et al. (2022) The Sodium‐Glucose Co‐Transporter‐2 Inhibitor Ertugliflozin Modifies the Signature of Cardiac Substrate Metabolism and Reduces Cardiac mtor Signalling, Endoplasmic Reticulum Stress and Apoptosis. Diabetes, Obesity and Metabolism, 24, 2263-2272.
https://doi.org/10.1111/dom.14814
[9] Park, S., Farooq, M.A., Gaertner, S., Bruckert, C., Qureshi, A.W., Lee, H., et al. (2020) Empagliflozin Improved Systolic Blood Pressure, Endothelial Dysfunction and Heart Remodeling in the Metabolic Syndrome ZSF1 Rat. Cardiovascular Diabetology, 19, Article No. 19.
https://doi.org/10.1186/s12933-020-00997-7
[10] Connelly, K.A., Zhang, Y., Visram, A., Advani, A., Batchu, S.N., Desjardins, J., et al. (2019) Empagliflozin Improves Diastolic Function in a Nondiabetic Rodent Model of Heart Failure with Preserved Ejection Fraction. JACC: Basic to Translational Science, 4, 27-37.
https://doi.org/10.1016/j.jacbts.2018.11.010
[11] Takasu, T. and Takakura, S. (2019) Effect of Ipragliflozin, an SGLT2 Inhibitor, on Cardiac Histopathological Changes in a Non-Diabetic Rat Model of Cardiomyopathy. Life Sciences, 230, 19-27.
https://doi.org/10.1016/j.lfs.2019.05.051
[12] Santos-Gallego, C.G., Requena-Ibanez, J.A., San Antonio, R., Ishikawa, K., Watanabe, S., Picatoste, B., et al. (2019) Empagliflozin Ameliorates Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics. Journal of the American College of Cardiology, 73, 1931-1944.
https://doi.org/10.1016/j.jacc.2019.01.056
[13] Santos-Gallego, C.G., Requena-Ibanez, J.A., San Antonio, R., Garcia-Ropero, A., Ishikawa, K., Watanabe, S., et al. (2021) Empagliflozin Ameliorates Diastolic Dysfunction and Left Ventricular Fibrosis/stiffness in Nondiabetic Heart Failure. JACC: Cardiovascular Imaging, 14, 393-407.
https://doi.org/10.1016/j.jcmg.2020.07.042
[14] Kang, S., Verma, S., Hassanabad, A.F., Teng, G., Belke, D.D., Dundas, J.A., et al. (2020) Direct Effects of Empagliflozin on Extracellular Matrix Remodelling in Human Cardiac Myofibroblasts: Novel Translational Clues to Explain EMPA-REG OUTCOME Results. Canadian Journal of Cardiology, 36, 543-553.
https://doi.org/10.1016/j.cjca.2019.08.033
[15] Verma, S., Mazer, C.D., Yan, A.T., Mason, T., Garg, V., Teoh, H., et al. (2019) Effect of Empagliflozin on Left Ventricular Mass in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation, 140, 1693-1702.
https://doi.org/10.1161/circulationaha.119.042375
[16] Brown, A.J.M., Gandy, S., McCrimmon, R., Houston, J.G., Struthers, A.D. and Lang, C.C. (2020) A Randomized Controlled Trial of Dapagliflozin on Left Ventricular Hypertrophy in People with Type Two Diabetes: The DAPA-LVH Trial. European Heart Journal, 41, 3421-3432.
https://doi.org/10.1093/eurheartj/ehaa419
[17] Santos-Gallego, C.G., Vargas-Delgado, A.P., Requena-Ibanez, J.A., Garcia-Ropero, A., Mancini, D., Pinney, S., et al. (2021) Randomized Trial of Empagliflozin in Nondiabetic Patients with Heart Failure and Reduced Ejection Fraction. Journal of the American College of Cardiology, 77, 243-255.
https://doi.org/10.1016/j.jacc.2020.11.008
[18] Omar, M., Jensen, J., Ali, M., Frederiksen, P.H., Kistorp, C., Videbæk, L., et al. (2021) Associations of Empagliflozin with Left Ventricular Volumes, Mass, and Function in Patients with Heart Failure and Reduced Ejection Fraction. JAMA Cardiology, 6, 836-840.
https://doi.org/10.1001/jamacardio.2020.6827
[19] Packer, M. (2020) Role of Deranged Energy Deprivation Signaling in the Pathogenesis of Cardiac and Renal Disease in States of Perceived Nutrient Overabundance. Circulation, 141, 2095-2105.
https://doi.org/10.1161/circulationaha.119.045561
[20] Nah, J., Shirakabe, A., Mukai, R., Zhai, P., Sung, E.A., Ivessa, A., et al. (2022) Ulk1-Dependent Alternative Mitophagy Plays a Protective Role during Pressure Overload in the Heart. Cardiovascular Research, 118, 2638-2651.
https://doi.org/10.1093/cvr/cvac003
[21] Ghosh, R., Gillaspie, J.J., Campbell, K.S., Symons, J.D., Boudina, S. and Pattison, J.S. (2022) Chaperone-Mediated Autophagy Protects Cardiomyocytes against Hypoxic-Cell Death. American Journal of Physiology-Cell Physiology, 323, C1555-C1575.
https://doi.org/10.1152/ajpcell.00369.2021
[22] Kanamori, H., Yoshida, A., Naruse, G., Endo, S., Minatoguchi, S., Watanabe, T., et al. (2022) Impact of Autophagy on Prognosis of Patients with Dilated Cardiomyopathy. Journal of the American College of Cardiology, 79, 789-801.
https://doi.org/10.1016/j.jacc.2021.11.059
[23] Saito, T., Asai, K., Sato, S., Hayashi, M., Adachi, A., Sasaki, Y., et al. (2016) Autophagic Vacuoles in Cardiomyocytes of Dilated Cardiomyopathy with Initially Decompensated Heart Failure Predict Improved Prognosis. Autophagy, 12, 579-587.
https://doi.org/10.1080/15548627.2016.1145326
[24] Packer, M. (2020) Cardioprotective Effects of Sirtuin-1 and Its Downstream Effectors: Potential Role in Mediating the Heart Failure Benefits of SGLT2 (Sodium-Glucose Cotransporter 2) Inhibitors. Circulation: Heart Failure, 13, e007197.
https://doi.org/10.1161/circheartfailure.120.007197
[25] Packer, M. (2020) Longevity Genes, Cardiac Ageing, and the Pathogenesis of Cardiomyopathy: Implications for Understanding the Effects of Current and Future Treatments for Heart Failure. European Heart Journal, 41, 3856-3861.
https://doi.org/10.1093/eurheartj/ehaa360
[26] Bugyei-Twum, A., Ford, C., Civitarese, R., Seegobin, J., Advani, S.L., Desjardins, J., et al. (2018) Sirtuin 1 Activation Attenuates Cardiac Fibrosis in a Rodent Pressure Overload Model by Modifying Smad2/3 Transactivation. Cardiovascular Research, 114, 1629-1641.
https://doi.org/10.1093/cvr/cvy131
[27] Deng, R., Jiang, K., Chen, F., Miao, Y., Lu, Y., Su, F., et al. (2022) Novel Cardioprotective Mechanism for Empagliflozin in Nondiabetic Myocardial Infarction with Acute Hyperglycemia. Biomedicine & Pharmacotherapy, 154, Article ID: 113606.
https://doi.org/10.1016/j.biopha.2022.113606
[28] Wang, C., Chen, C., Lin, M., Su, H., Ho, M., Yeh, J., et al. (2020) TLR9 Binding to Beclin 1 and Mitochondrial SIRT3 by a Sodium-Glucose Co-Transporter 2 Inhibitor Protects the Heart from Doxorubicin Toxicity. Biology, 9, Article 369.
https://doi.org/10.3390/biology9110369
[29] Jiang, K., Xu, Y., Wang, D., Chen, F., Tu, Z., Qian, J., et al. (2021) Cardioprotective Mechanism of SGLT2 Inhibitor against Myocardial Infarction Is through Reduction of Autosis. Protein & Cell, 13, 336-359.
https://doi.org/10.1007/s13238-020-00809-4
[30] Martins, D., Garcia, L.R., Queiroz, D.A.R., Lazzarin, T., Tonon, C.R., Balin, P.d.S., et al. (2022) Oxidative Stress as a Therapeutic Target of Cardiac Remodeling. Antioxidants, 11, Article 2371.
https://doi.org/10.3390/antiox11122371
[31] Li, C., Zhang, J., Xue, M., Li, X., Han, F., Liu, X., et al. (2019) SGLT2 Inhibition with Empagliflozin Attenuates Myocardial Oxidative Stress and Fibrosis in Diabetic Mice Heart. Cardiovascular Diabetology, 18, Article No. 15.
https://doi.org/10.1186/s12933-019-0816-2
[32] Li, X., Flynn, E.R., do Carmo, J.M., Wang, Z., da Silva, A.A., Mouton, A.J., et al. (2022) Direct Cardiac Actions of Sodium-Glucose Cotransporter 2 Inhibition Improve Mitochondrial Function and Attenuate Oxidative Stress in Pressure Overload-Induced Heart Failure. Frontiers in Cardiovascular Medicine, 9, Article 859253.
https://doi.org/10.3389/fcvm.2022.859253
[33] Yurista, S.R., Silljé, H.H.W., Oberdorf‐Maass, S.U., Schouten, E., Pavez Giani, M.G., Hillebrands, J., et al. (2019) Sodium-Glucose Co‐Transporter 2 Inhibition with Empagliflozin Improves Cardiac Function in Non‐Diabetic Rats with Left Ventricular Dysfunction after Myocardial Infarction. European Journal of Heart Failure, 21, 862-873.
https://doi.org/10.1002/ejhf.1473
[34] Kondo, H., Akoumianakis, I., Badi, I., Akawi, N., Kotanidis, C.P., Polkinghorne, M., et al. (2021) Effects of Canagliflozin on Human Myocardial Redox Signalling: Clinical Implications. European Heart Journal, 42, 4947-4960.
https://doi.org/10.1093/eurheartj/ehab420
[35] Liu, Y., Wu, M., Xu, J., Xu, B. and Kang, L. (2021) Empagliflozin Prevents from Early Cardiac Injury Post Myocardial Infarction in Non-Diabetic Mice. European Journal of Pharmaceutical Sciences, 161, Article ID: 105788.
https://doi.org/10.1016/j.ejps.2021.105788
[36] Fan, Z., Xu, Y., Chen, X., Ji, M. and Ma, G. (2022) Appropriate Dose of Dapagliflozin Improves Cardiac Outcomes by Normalizing Mitochondrial Fission and Reducing Cardiomyocyte Apoptosis after Acute Myocardial Infarction. Drug Design, Development and Therapy, 16, 2017-2030.
https://doi.org/10.2147/dddt.s371506
[37] Ren, F., Xie, Z., Jiang, Y., Guan, X., Chen, Q., Lai, T., et al. (2021) Dapagliflozin Attenuates Pressure Overload-Induced Myocardial Remodeling in Mice via Activating SIRT1 and Inhibiting Endoplasmic Reticulum Stress. Acta Pharmacologica Sinica, 43, 1721-1732.
https://doi.org/10.1038/s41401-021-00805-2
[38] Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285.
https://doi.org/10.1016/j.cell.2017.09.021
[39] Fang, X., Ardehali, H., Min, J. and Wang, F. (2022) The Molecular and Metabolic Landscape of Iron and Ferroptosis in Cardiovascular Disease. Nature Reviews Cardiology, 20, 7-23.
https://doi.org/10.1038/s41569-022-00735-4
[40] Wang, X., Chen, X., Zhou, W., Men, H., Bao, T., Sun, Y., et al. (2022) Ferroptosis Is Essential for Diabetic Cardiomyopathy and Is Prevented by Sulforaphane via AMPK/NRF2 Pathways. Acta Pharmaceutica Sinica B, 12, 708-722.
https://doi.org/10.1016/j.apsb.2021.10.005
[41] Chen, Y., Li, X., Wang, S., Miao, R. and Zhong, J. (2023) Targeting Iron Metabolism and Ferroptosis as Novel Therapeutic Approaches in Cardiovascular Diseases. Nutrients, 15, Article 591.
https://doi.org/10.3390/nu15030591
[42] Ma, S., He, L., Zhang, G., Zuo, Q., Wang, Z., Zhai, J., et al. (2022) Canagliflozin Mitigates Ferroptosis and Ameliorates Heart Failure in Rats with Preserved Ejection Fraction. Naunyn-Schmiedebergs Archives of Pharmacology, 395, 945-962.
https://doi.org/10.1007/s00210-022-02243-1
[43] Chen, W., Zhang, Y., Wang, Z., Tan, M., Lin, J., Qian, X., et al. (2023) Dapagliflozin Alleviates Myocardial Ischemia/Reperfusion Injury by Reducing Ferroptosis via MAPK Signaling Inhibition. Frontiers in Pharmacology, 14, Article 1078205.
https://doi.org/10.3389/fphar.2023.1078205
[44] Frangogiannis, N.G. (2019) Cardiac Fibrosis: Cell Biological Mechanisms, Molecular Pathways and Therapeutic Opportunities. Molecular Aspects of Medicine, 65, 70-99.
https://doi.org/10.1016/j.mam.2018.07.001
[45] Zhang, Y., Lin, X., Chu, Y., Chen, X., Du, H., Zhang, H., et al. (2021) Dapagliflozin: A Sodium-Glucose Cotransporter 2 Inhibitor, Attenuates Angiotensin II-Induced Cardiac Fibrotic Remodeling by Regulating TGFβ1/Smad Signaling. Cardiovascular Diabetology, 20, Article No. 121.
https://doi.org/10.1186/s12933-021-01312-8
[46] Halade, G.V. and Lee, D.H. (2022) Inflammation and Resolution Signaling in Cardiac Repair and Heart Failure. eBioMedicine, 79, Article ID: 103992.
https://doi.org/10.1016/j.ebiom.2022.103992
[47] Kounatidis, D., Vallianou, N., Evangelopoulos, A., Vlahodimitris, I., Grivakou, E., Kotsi, E., et al. (2023) SGLT-2 Inhibitors and the Inflammasome: What’s Next in the 21st Century? Nutrients, 15, Article 2294.
https://doi.org/10.3390/nu15102294
[48] Zhang, N., Feng, B., Ma, X., Sun, K., Xu, G. and Zhou, Y. (2019) Dapagliflozin Improves Left Ventricular Remodeling and Aorta Sympathetic Tone in a Pig Model of Heart Failure with Preserved Ejection Fraction. Cardiovascular Diabetology, 18, Article No. 107.
https://doi.org/10.1186/s12933-019-0914-1
[49] Yan, P., Song, X., Tran, J., Zhou, R., Cao, X., Zhao, G., et al. (2022) Dapagliflozin Alleviates Coxsackievirus B3-Induced Acute Viral Myocarditis by Regulating the Macrophage Polarization through Stat3-Related Pathways. Inflammation, 45, 2078-2090.
https://doi.org/10.1007/s10753-022-01677-2
[50] Byrne, N.J., Matsumura, N., Maayah, Z.H., Ferdaoussi, M., Takahara, S., Darwesh, A.M., et al. (2020) Empagliflozin Blunts Worsening Cardiac Dysfunction Associated with Reduced NLRP3 (Nucleotide-Binding Domain-Like Receptor Protein 3) Inflammasome Activation in Heart Failure. Circulation: Heart Failure, 13, e006277.
https://doi.org/10.1161/circheartfailure.119.006277
[51] Iacobellis, G. and Gra‐Menendez, S. (2020) Effects of Dapagliflozin on Epicardial Fat Thickness in Patients with Type 2 Diabetes and Obesity. Obesity, 28, 1068-1074.
https://doi.org/10.1002/oby.22798
[52] Requena-Ibáñez, J.A., Santos-Gallego, C.G., Rodriguez-Cordero, A., Vargas-Delgado, A.P., Mancini, D., Sartori, S., et al. (2021) Mechanistic Insights of Empagliflozin in Nondiabetic Patients with HFrEF: From the EMPA-TROPISM Study. JACC: Heart Failure, 9, 578-589.
https://doi.org/10.1016/j.jchf.2021.04.014
[53] Díaz-Rodríguez, E., Agra, R.M., Fernández, Á.L., Adrio, B., García-Caballero, T., González-Juanatey, J.R., et al. (2017) Effects of Dapagliflozin on Human Epicardial Adipose Tissue: Modulation of Insulin Resistance, Inflammatory Chemokine Production, and Differentiation Ability. Cardiovascular Research, 114, 336-346.
https://doi.org/10.1093/cvr/cvx186
[54] Takano, M., Kondo, H., Harada, T., Takahashi, M., Ishii, Y., Yamasaki, H., et al. (2023) Empagliflozin Suppresses the Differentiation/Maturation of Human Epicardial Preadipocytes and Improves Paracrine Secretome Profile. JACC: Basic to Translational Science, 8, 1081-1097.
https://doi.org/10.1016/j.jacbts.2023.05.007
[55] Elrakaybi, A., Laubner, K., Zhou, Q., Hug, M.J. and Seufert, J. (2022) Cardiovascular Protection by SGLT2 Inhibitors—Do Anti-Inflammatory Mechanisms Play a Role? Molecular Metabolism, 64, Article ID: 101549.
https://doi.org/10.1016/j.molmet.2022.101549
[56] Shu, H., Peng, Y., Hang, W., Zhang, M., Shen, L., Wang, D., et al. (2022) Trimetazidine Enhances Myocardial Angiogenesis in Pressure Overload-Induced Cardiac Hypertrophy Mice through Directly Activating Akt and Promoting the Binding of HSF1 to VEGF-A Promoter. Acta Pharmacologica Sinica, 43, 2550-2561.
https://doi.org/10.1038/s41401-022-00877-8
[57] Blom, J.N., Wang, X., Lu, X., Kim, M.Y., Wang, G. and Feng, Q. (2022) Inhibition of Intraflagellar Transport Protein-88 Promotes Epithelial-to-Mesenchymal Transition and Reduces Cardiac Remodeling Post-Myocardial Infarction. European Journal of Pharmacology, 933, Article ID: 175287.
https://doi.org/10.1016/j.ejphar.2022.175287
[58] Juni, R.P., Kuster, D.W.D., Goebel, M., Helmes, M., Musters, R.J.P., van der Velden, J., et al. (2019) Cardiac Microvascular Endothelial Enhancement of Cardiomyocyte Function Is Impaired by Inflammation and Restored by Empagliflozin. JACC: Basic to Translational Science, 4, 575-591.
https://doi.org/10.1016/j.jacbts.2019.04.003
[59] Nakao, M., Shimizu, I., Katsuumi, G., Yoshida, Y., Suda, M., Hayashi, Y., et al. (2021) Empagliflozin Maintains Capillarization and Improves Cardiac Function in a Murine Model of Left Ventricular Pressure Overload. Scientific Reports, 11, Article No. 18384.
https://doi.org/10.1038/s41598-021-97787-2
[60] Adingupu, D.D., Göpel, S.O., Grönros, J., Behrendt, M., Sotak, M., Miliotis, T., et al. (2019) SGLT2 Inhibition with Empagliflozin Improves Coronary Microvascular Function and Cardiac Contractility in Prediabetic ob/ob−/− Mice. Cardiovascular Diabetology, 18, Article No. 16.
https://doi.org/10.1186/s12933-019-0820-6
[61] Herat, L.Y., Magno, A.L., Rudnicka, C., Hricova, J., Carnagarin, R., Ward, N.C., et al. (2020) SGLT2 Inhibitor-Induced Sympathoinhibition: A Novel Mechanism for Cardiorenal Protection. JACC: Basic to Translational Science, 5, 169-179.
https://doi.org/10.1016/j.jacbts.2019.11.007
[62] Shimizu, W., Kubota, Y., Hoshika, Y., Mozawa, K., Tara, S., Tokita, Y., et al. (2020) Effects of Empagliflozin versus Placebo on Cardiac Sympathetic Activity in Acute Myocardial Infarction Patients with Type 2 Diabetes Mellitus: The EMBODY Trial. Cardiovascular Diabetology, 19, Article No. 148.
https://doi.org/10.1186/s12933-020-01127-z
[63] Raza, S., Osasan, S., Sethia, S., Batool, T., Bambhroliya, Z., Sandrugu, J., et al. (2022) A Systematic Review of Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors and Sympathetic Nervous System Inhibition: An Underrated Mechanism of Cardiorenal Protection. Cureus, 14, e26313.
https://doi.org/10.7759/cureus.26313
[64] Salah, H.M., Verma, S., Santos-Gallego, C.G., Bhatt, A.S., Vaduganathan, M., Khan, M.S., et al. (2022) Sodium-Glucose Cotransporter 2 Inhibitors and Cardiac Remodeling. Journal of Cardiovascular Translational Research, 15, 944-956.
https://doi.org/10.1007/s12265-022-10220-5
[65] Philippaert, K., Kalyaanamoorthy, S., Fatehi, M., Long, W., Soni, S., Byrne, N.J., et al. (2021) Cardiac Late Sodium Channel Current Is a Molecular Target for the Sodium/glucose Cotransporter 2 Inhibitor Empagliflozin. Circulation, 143, 2188-2204.
https://doi.org/10.1161/circulationaha.121.053350
[66] Baartscheer, A., Schumacher, C.A., Wüst, R.C.I., Fiolet, J.W.T., Stienen, G.J.M., Coronel, R., et al. (2016) Empagliflozin Decreases Myocardial Cytoplasmic Na+ through Inhibition of the Cardiac Na+/H+ Exchanger in Rats and Rabbits. Diabetologia, 60, 568-573.
https://doi.org/10.1007/s00125-016-4134-x
[67] Uthman, L., Baartscheer, A., Bleijlevens, B., Schumacher, C.A., Fiolet, J.W.T., Koeman, A., et al. (2017) Class Effects of SGLT2 Inhibitors in Mouse Cardiomyocytes and Hearts: Inhibition of Na+/H+ Exchanger, Lowering of Cytosolic Na+ and Vasodilation. Diabetologia, 61, 722-726.
https://doi.org/10.1007/s00125-017-4509-7
[68] Li, X., Lu, Q., Qiu, Y., do Carmo, J.M., Wang, Z., da Silva, A.A., et al. (2021) Direct Cardiac Actions of the Sodium Glucose Co‐transporter 2 Inhibitor Empagliflozin Improve Myocardial Oxidative Phosphorylation and Attenuate Pressure‐overload Heart Failure. Journal of the American Heart Association, 10, e018298.
https://doi.org/10.1161/jaha.120.018298
[69] Lopaschuk, G.D., Ussher, J.R., Folmes, C.D.L., Jaswal, J.S. and Stanley, W.C. (2010) Myocardial Fatty Acid Metabolism in Health and Disease. Physiological Reviews, 90, 207-258.
https://doi.org/10.1152/physrev.00015.2009
[70] Trang, N.N., Chung, C., Lee, T., Cheng, W., Kao, Y., Huang, S., et al. (2021) Empagliflozin and Liraglutide Differentially Modulate Cardiac Metabolism in Diabetic Cardiomyopathy in Rats. International Journal of Molecular Sciences, 22, Article 1177.
https://doi.org/10.3390/ijms22031177