[1]
|
Wu, Q., Xiao, Y., Yuan, Y., Ma, Z., Liao, H., Liu, C., et al. (2017) Mechanisms Contributing to Cardiac Remodelling. Clinical Science, 131, 2319-2345. https://doi.org/10.1042/cs20171167
|
[2]
|
Kubota, Y. and Shimizu, W. (2022) Clinical Benefits of Sodium-Glucose Cotransporter 2 Inhibitors and the Mechanisms Underlying Their Cardiovascular Effects. JACC: Asia, 2, 287-293. https://doi.org/10.1016/j.jacasi.2022.03.009
|
[3]
|
Scheen, A.J. (2014) Pharmacodynamics, Efficacy and Safety of Sodium-Glucose Co-Transporter Type 2 (SGLT2) Inhibitors for the Treatment of Type 2 Diabetes Mellitus. Drugs, 75, 33-59. https://doi.org/10.1007/s40265-014-0337-y
|
[4]
|
Vaduganathan, M., Docherty, K.F., Claggett, B.L., Jhund, P.S., de Boer, R.A., Hernandez, A.F., et al. (2022) SGLT2 Inhibitors in Patients with Heart Failure: A Comprehensive Meta-Analysis of Five Randomised Controlled Trials. The Lancet, 400, 757-767. https://doi.org/10.1016/s0140-6736(22)01429-5
|
[5]
|
Zhang, N., Wang, Y., Tse, G., Korantzopoulos, P., Letsas, K.P., Zhang, Q., et al. (2021) Effect of Sodium-Glucose Cotransporter-2 Inhibitors on Cardiac Remodelling: A Systematic Review and Meta-Analysis. European Journal of Preventive Cardiology, 28, 1961-1973. https://doi.org/10.1093/eurjpc/zwab173
|
[6]
|
Pabel, S., Hamdani, N., Luedde, M. and Sossalla, S. (2021) SGLT2 Inhibitors and Their Mode of Action in Heart Failure—Has the Mystery Been Unravelled? Current Heart Failure Reports, 18, 315-328. https://doi.org/10.1007/s11897-021-00529-8
|
[7]
|
Zhang, Q., Li, G., Zhong, Y., Wang, J., Wang, A., Zhou, X., et al. (2020) Empagliflozin Improves Chronic Hypercortisolism-Induced Abnormal Myocardial Structure and Cardiac Function in Mice. Therapeutic Advances in Chronic Disease, 11, 1-12. https://doi.org/10.1177/2040622320974833
|
[8]
|
Moellmann, J., Mann, P.A., Kappel, B.A., Kahles, F., Klinkhammer, B.M., Boor, P., et al. (2022) The Sodium‐Glucose Co‐Transporter‐2 Inhibitor Ertugliflozin Modifies the Signature of Cardiac Substrate Metabolism and Reduces Cardiac mtor Signalling, Endoplasmic Reticulum Stress and Apoptosis. Diabetes, Obesity and Metabolism, 24, 2263-2272. https://doi.org/10.1111/dom.14814
|
[9]
|
Park, S., Farooq, M.A., Gaertner, S., Bruckert, C., Qureshi, A.W., Lee, H., et al. (2020) Empagliflozin Improved Systolic Blood Pressure, Endothelial Dysfunction and Heart Remodeling in the Metabolic Syndrome ZSF1 Rat. Cardiovascular Diabetology, 19, Article No. 19. https://doi.org/10.1186/s12933-020-00997-7
|
[10]
|
Connelly, K.A., Zhang, Y., Visram, A., Advani, A., Batchu, S.N., Desjardins, J., et al. (2019) Empagliflozin Improves Diastolic Function in a Nondiabetic Rodent Model of Heart Failure with Preserved Ejection Fraction. JACC: Basic to Translational Science, 4, 27-37. https://doi.org/10.1016/j.jacbts.2018.11.010
|
[11]
|
Takasu, T. and Takakura, S. (2019) Effect of Ipragliflozin, an SGLT2 Inhibitor, on Cardiac Histopathological Changes in a Non-Diabetic Rat Model of Cardiomyopathy. Life Sciences, 230, 19-27. https://doi.org/10.1016/j.lfs.2019.05.051
|
[12]
|
Santos-Gallego, C.G., Requena-Ibanez, J.A., San Antonio, R., Ishikawa, K., Watanabe, S., Picatoste, B., et al. (2019) Empagliflozin Ameliorates Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics. Journal of the American College of Cardiology, 73, 1931-1944. https://doi.org/10.1016/j.jacc.2019.01.056
|
[13]
|
Santos-Gallego, C.G., Requena-Ibanez, J.A., San Antonio, R., Garcia-Ropero, A., Ishikawa, K., Watanabe, S., et al. (2021) Empagliflozin Ameliorates Diastolic Dysfunction and Left Ventricular Fibrosis/stiffness in Nondiabetic Heart Failure. JACC: Cardiovascular Imaging, 14, 393-407. https://doi.org/10.1016/j.jcmg.2020.07.042
|
[14]
|
Kang, S., Verma, S., Hassanabad, A.F., Teng, G., Belke, D.D., Dundas, J.A., et al. (2020) Direct Effects of Empagliflozin on Extracellular Matrix Remodelling in Human Cardiac Myofibroblasts: Novel Translational Clues to Explain EMPA-REG OUTCOME Results. Canadian Journal of Cardiology, 36, 543-553. https://doi.org/10.1016/j.cjca.2019.08.033
|
[15]
|
Verma, S., Mazer, C.D., Yan, A.T., Mason, T., Garg, V., Teoh, H., et al. (2019) Effect of Empagliflozin on Left Ventricular Mass in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation, 140, 1693-1702. https://doi.org/10.1161/circulationaha.119.042375
|
[16]
|
Brown, A.J.M., Gandy, S., McCrimmon, R., Houston, J.G., Struthers, A.D. and Lang, C.C. (2020) A Randomized Controlled Trial of Dapagliflozin on Left Ventricular Hypertrophy in People with Type Two Diabetes: The DAPA-LVH Trial. European Heart Journal, 41, 3421-3432. https://doi.org/10.1093/eurheartj/ehaa419
|
[17]
|
Santos-Gallego, C.G., Vargas-Delgado, A.P., Requena-Ibanez, J.A., Garcia-Ropero, A., Mancini, D., Pinney, S., et al. (2021) Randomized Trial of Empagliflozin in Nondiabetic Patients with Heart Failure and Reduced Ejection Fraction. Journal of the American College of Cardiology, 77, 243-255. https://doi.org/10.1016/j.jacc.2020.11.008
|
[18]
|
Omar, M., Jensen, J., Ali, M., Frederiksen, P.H., Kistorp, C., Videbæk, L., et al. (2021) Associations of Empagliflozin with Left Ventricular Volumes, Mass, and Function in Patients with Heart Failure and Reduced Ejection Fraction. JAMA Cardiology, 6, 836-840. https://doi.org/10.1001/jamacardio.2020.6827
|
[19]
|
Packer, M. (2020) Role of Deranged Energy Deprivation Signaling in the Pathogenesis of Cardiac and Renal Disease in States of Perceived Nutrient Overabundance. Circulation, 141, 2095-2105. https://doi.org/10.1161/circulationaha.119.045561
|
[20]
|
Nah, J., Shirakabe, A., Mukai, R., Zhai, P., Sung, E.A., Ivessa, A., et al. (2022) Ulk1-Dependent Alternative Mitophagy Plays a Protective Role during Pressure Overload in the Heart. Cardiovascular Research, 118, 2638-2651. https://doi.org/10.1093/cvr/cvac003
|
[21]
|
Ghosh, R., Gillaspie, J.J., Campbell, K.S., Symons, J.D., Boudina, S. and Pattison, J.S. (2022) Chaperone-Mediated Autophagy Protects Cardiomyocytes against Hypoxic-Cell Death. American Journal of Physiology-Cell Physiology, 323, C1555-C1575. https://doi.org/10.1152/ajpcell.00369.2021
|
[22]
|
Kanamori, H., Yoshida, A., Naruse, G., Endo, S., Minatoguchi, S., Watanabe, T., et al. (2022) Impact of Autophagy on Prognosis of Patients with Dilated Cardiomyopathy. Journal of the American College of Cardiology, 79, 789-801. https://doi.org/10.1016/j.jacc.2021.11.059
|
[23]
|
Saito, T., Asai, K., Sato, S., Hayashi, M., Adachi, A., Sasaki, Y., et al. (2016) Autophagic Vacuoles in Cardiomyocytes of Dilated Cardiomyopathy with Initially Decompensated Heart Failure Predict Improved Prognosis. Autophagy, 12, 579-587. https://doi.org/10.1080/15548627.2016.1145326
|
[24]
|
Packer, M. (2020) Cardioprotective Effects of Sirtuin-1 and Its Downstream Effectors: Potential Role in Mediating the Heart Failure Benefits of SGLT2 (Sodium-Glucose Cotransporter 2) Inhibitors. Circulation: Heart Failure, 13, e007197. https://doi.org/10.1161/circheartfailure.120.007197
|
[25]
|
Packer, M. (2020) Longevity Genes, Cardiac Ageing, and the Pathogenesis of Cardiomyopathy: Implications for Understanding the Effects of Current and Future Treatments for Heart Failure. European Heart Journal, 41, 3856-3861. https://doi.org/10.1093/eurheartj/ehaa360
|
[26]
|
Bugyei-Twum, A., Ford, C., Civitarese, R., Seegobin, J., Advani, S.L., Desjardins, J., et al. (2018) Sirtuin 1 Activation Attenuates Cardiac Fibrosis in a Rodent Pressure Overload Model by Modifying Smad2/3 Transactivation. Cardiovascular Research, 114, 1629-1641. https://doi.org/10.1093/cvr/cvy131
|
[27]
|
Deng, R., Jiang, K., Chen, F., Miao, Y., Lu, Y., Su, F., et al. (2022) Novel Cardioprotective Mechanism for Empagliflozin in Nondiabetic Myocardial Infarction with Acute Hyperglycemia. Biomedicine & Pharmacotherapy, 154, Article ID: 113606. https://doi.org/10.1016/j.biopha.2022.113606
|
[28]
|
Wang, C., Chen, C., Lin, M., Su, H., Ho, M., Yeh, J., et al. (2020) TLR9 Binding to Beclin 1 and Mitochondrial SIRT3 by a Sodium-Glucose Co-Transporter 2 Inhibitor Protects the Heart from Doxorubicin Toxicity. Biology, 9, Article 369. https://doi.org/10.3390/biology9110369
|
[29]
|
Jiang, K., Xu, Y., Wang, D., Chen, F., Tu, Z., Qian, J., et al. (2021) Cardioprotective Mechanism of SGLT2 Inhibitor against Myocardial Infarction Is through Reduction of Autosis. Protein & Cell, 13, 336-359. https://doi.org/10.1007/s13238-020-00809-4
|
[30]
|
Martins, D., Garcia, L.R., Queiroz, D.A.R., Lazzarin, T., Tonon, C.R., Balin, P.d.S., et al. (2022) Oxidative Stress as a Therapeutic Target of Cardiac Remodeling. Antioxidants, 11, Article 2371. https://doi.org/10.3390/antiox11122371
|
[31]
|
Li, C., Zhang, J., Xue, M., Li, X., Han, F., Liu, X., et al. (2019) SGLT2 Inhibition with Empagliflozin Attenuates Myocardial Oxidative Stress and Fibrosis in Diabetic Mice Heart. Cardiovascular Diabetology, 18, Article No. 15. https://doi.org/10.1186/s12933-019-0816-2
|
[32]
|
Li, X., Flynn, E.R., do Carmo, J.M., Wang, Z., da Silva, A.A., Mouton, A.J., et al. (2022) Direct Cardiac Actions of Sodium-Glucose Cotransporter 2 Inhibition Improve Mitochondrial Function and Attenuate Oxidative Stress in Pressure Overload-Induced Heart Failure. Frontiers in Cardiovascular Medicine, 9, Article 859253. https://doi.org/10.3389/fcvm.2022.859253
|
[33]
|
Yurista, S.R., Silljé, H.H.W., Oberdorf‐Maass, S.U., Schouten, E., Pavez Giani, M.G., Hillebrands, J., et al. (2019) Sodium-Glucose Co‐Transporter 2 Inhibition with Empagliflozin Improves Cardiac Function in Non‐Diabetic Rats with Left Ventricular Dysfunction after Myocardial Infarction. European Journal of Heart Failure, 21, 862-873. https://doi.org/10.1002/ejhf.1473
|
[34]
|
Kondo, H., Akoumianakis, I., Badi, I., Akawi, N., Kotanidis, C.P., Polkinghorne, M., et al. (2021) Effects of Canagliflozin on Human Myocardial Redox Signalling: Clinical Implications. European Heart Journal, 42, 4947-4960. https://doi.org/10.1093/eurheartj/ehab420
|
[35]
|
Liu, Y., Wu, M., Xu, J., Xu, B. and Kang, L. (2021) Empagliflozin Prevents from Early Cardiac Injury Post Myocardial Infarction in Non-Diabetic Mice. European Journal of Pharmaceutical Sciences, 161, Article ID: 105788. https://doi.org/10.1016/j.ejps.2021.105788
|
[36]
|
Fan, Z., Xu, Y., Chen, X., Ji, M. and Ma, G. (2022) Appropriate Dose of Dapagliflozin Improves Cardiac Outcomes by Normalizing Mitochondrial Fission and Reducing Cardiomyocyte Apoptosis after Acute Myocardial Infarction. Drug Design, Development and Therapy, 16, 2017-2030. https://doi.org/10.2147/dddt.s371506
|
[37]
|
Ren, F., Xie, Z., Jiang, Y., Guan, X., Chen, Q., Lai, T., et al. (2021) Dapagliflozin Attenuates Pressure Overload-Induced Myocardial Remodeling in Mice via Activating SIRT1 and Inhibiting Endoplasmic Reticulum Stress. Acta Pharmacologica Sinica, 43, 1721-1732. https://doi.org/10.1038/s41401-021-00805-2
|
[38]
|
Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285. https://doi.org/10.1016/j.cell.2017.09.021
|
[39]
|
Fang, X., Ardehali, H., Min, J. and Wang, F. (2022) The Molecular and Metabolic Landscape of Iron and Ferroptosis in Cardiovascular Disease. Nature Reviews Cardiology, 20, 7-23. https://doi.org/10.1038/s41569-022-00735-4
|
[40]
|
Wang, X., Chen, X., Zhou, W., Men, H., Bao, T., Sun, Y., et al. (2022) Ferroptosis Is Essential for Diabetic Cardiomyopathy and Is Prevented by Sulforaphane via AMPK/NRF2 Pathways. Acta Pharmaceutica Sinica B, 12, 708-722. https://doi.org/10.1016/j.apsb.2021.10.005
|
[41]
|
Chen, Y., Li, X., Wang, S., Miao, R. and Zhong, J. (2023) Targeting Iron Metabolism and Ferroptosis as Novel Therapeutic Approaches in Cardiovascular Diseases. Nutrients, 15, Article 591. https://doi.org/10.3390/nu15030591
|
[42]
|
Ma, S., He, L., Zhang, G., Zuo, Q., Wang, Z., Zhai, J., et al. (2022) Canagliflozin Mitigates Ferroptosis and Ameliorates Heart Failure in Rats with Preserved Ejection Fraction. Naunyn-Schmiedeberg’s Archives of Pharmacology, 395, 945-962. https://doi.org/10.1007/s00210-022-02243-1
|
[43]
|
Chen, W., Zhang, Y., Wang, Z., Tan, M., Lin, J., Qian, X., et al. (2023) Dapagliflozin Alleviates Myocardial Ischemia/Reperfusion Injury by Reducing Ferroptosis via MAPK Signaling Inhibition. Frontiers in Pharmacology, 14, Article 1078205. https://doi.org/10.3389/fphar.2023.1078205
|
[44]
|
Frangogiannis, N.G. (2019) Cardiac Fibrosis: Cell Biological Mechanisms, Molecular Pathways and Therapeutic Opportunities. Molecular Aspects of Medicine, 65, 70-99. https://doi.org/10.1016/j.mam.2018.07.001
|
[45]
|
Zhang, Y., Lin, X., Chu, Y., Chen, X., Du, H., Zhang, H., et al. (2021) Dapagliflozin: A Sodium-Glucose Cotransporter 2 Inhibitor, Attenuates Angiotensin II-Induced Cardiac Fibrotic Remodeling by Regulating TGFβ1/Smad Signaling. Cardiovascular Diabetology, 20, Article No. 121. https://doi.org/10.1186/s12933-021-01312-8
|
[46]
|
Halade, G.V. and Lee, D.H. (2022) Inflammation and Resolution Signaling in Cardiac Repair and Heart Failure. eBioMedicine, 79, Article ID: 103992. https://doi.org/10.1016/j.ebiom.2022.103992
|
[47]
|
Kounatidis, D., Vallianou, N., Evangelopoulos, A., Vlahodimitris, I., Grivakou, E., Kotsi, E., et al. (2023) SGLT-2 Inhibitors and the Inflammasome: What’s Next in the 21st Century? Nutrients, 15, Article 2294. https://doi.org/10.3390/nu15102294
|
[48]
|
Zhang, N., Feng, B., Ma, X., Sun, K., Xu, G. and Zhou, Y. (2019) Dapagliflozin Improves Left Ventricular Remodeling and Aorta Sympathetic Tone in a Pig Model of Heart Failure with Preserved Ejection Fraction. Cardiovascular Diabetology, 18, Article No. 107. https://doi.org/10.1186/s12933-019-0914-1
|
[49]
|
Yan, P., Song, X., Tran, J., Zhou, R., Cao, X., Zhao, G., et al. (2022) Dapagliflozin Alleviates Coxsackievirus B3-Induced Acute Viral Myocarditis by Regulating the Macrophage Polarization through Stat3-Related Pathways. Inflammation, 45, 2078-2090. https://doi.org/10.1007/s10753-022-01677-2
|
[50]
|
Byrne, N.J., Matsumura, N., Maayah, Z.H., Ferdaoussi, M., Takahara, S., Darwesh, A.M., et al. (2020) Empagliflozin Blunts Worsening Cardiac Dysfunction Associated with Reduced NLRP3 (Nucleotide-Binding Domain-Like Receptor Protein 3) Inflammasome Activation in Heart Failure. Circulation: Heart Failure, 13, e006277. https://doi.org/10.1161/circheartfailure.119.006277
|
[51]
|
Iacobellis, G. and Gra‐Menendez, S. (2020) Effects of Dapagliflozin on Epicardial Fat Thickness in Patients with Type 2 Diabetes and Obesity. Obesity, 28, 1068-1074. https://doi.org/10.1002/oby.22798
|
[52]
|
Requena-Ibáñez, J.A., Santos-Gallego, C.G., Rodriguez-Cordero, A., Vargas-Delgado, A.P., Mancini, D., Sartori, S., et al. (2021) Mechanistic Insights of Empagliflozin in Nondiabetic Patients with HFrEF: From the EMPA-TROPISM Study. JACC: Heart Failure, 9, 578-589. https://doi.org/10.1016/j.jchf.2021.04.014
|
[53]
|
Díaz-Rodríguez, E., Agra, R.M., Fernández, Á.L., Adrio, B., García-Caballero, T., González-Juanatey, J.R., et al. (2017) Effects of Dapagliflozin on Human Epicardial Adipose Tissue: Modulation of Insulin Resistance, Inflammatory Chemokine Production, and Differentiation Ability. Cardiovascular Research, 114, 336-346. https://doi.org/10.1093/cvr/cvx186
|
[54]
|
Takano, M., Kondo, H., Harada, T., Takahashi, M., Ishii, Y., Yamasaki, H., et al. (2023) Empagliflozin Suppresses the Differentiation/Maturation of Human Epicardial Preadipocytes and Improves Paracrine Secretome Profile. JACC: Basic to Translational Science, 8, 1081-1097. https://doi.org/10.1016/j.jacbts.2023.05.007
|
[55]
|
Elrakaybi, A., Laubner, K., Zhou, Q., Hug, M.J. and Seufert, J. (2022) Cardiovascular Protection by SGLT2 Inhibitors—Do Anti-Inflammatory Mechanisms Play a Role? Molecular Metabolism, 64, Article ID: 101549. https://doi.org/10.1016/j.molmet.2022.101549
|
[56]
|
Shu, H., Peng, Y., Hang, W., Zhang, M., Shen, L., Wang, D., et al. (2022) Trimetazidine Enhances Myocardial Angiogenesis in Pressure Overload-Induced Cardiac Hypertrophy Mice through Directly Activating Akt and Promoting the Binding of HSF1 to VEGF-A Promoter. Acta Pharmacologica Sinica, 43, 2550-2561. https://doi.org/10.1038/s41401-022-00877-8
|
[57]
|
Blom, J.N., Wang, X., Lu, X., Kim, M.Y., Wang, G. and Feng, Q. (2022) Inhibition of Intraflagellar Transport Protein-88 Promotes Epithelial-to-Mesenchymal Transition and Reduces Cardiac Remodeling Post-Myocardial Infarction. European Journal of Pharmacology, 933, Article ID: 175287. https://doi.org/10.1016/j.ejphar.2022.175287
|
[58]
|
Juni, R.P., Kuster, D.W.D., Goebel, M., Helmes, M., Musters, R.J.P., van der Velden, J., et al. (2019) Cardiac Microvascular Endothelial Enhancement of Cardiomyocyte Function Is Impaired by Inflammation and Restored by Empagliflozin. JACC: Basic to Translational Science, 4, 575-591. https://doi.org/10.1016/j.jacbts.2019.04.003
|
[59]
|
Nakao, M., Shimizu, I., Katsuumi, G., Yoshida, Y., Suda, M., Hayashi, Y., et al. (2021) Empagliflozin Maintains Capillarization and Improves Cardiac Function in a Murine Model of Left Ventricular Pressure Overload. Scientific Reports, 11, Article No. 18384. https://doi.org/10.1038/s41598-021-97787-2
|
[60]
|
Adingupu, D.D., Göpel, S.O., Grönros, J., Behrendt, M., Sotak, M., Miliotis, T., et al. (2019) SGLT2 Inhibition with Empagliflozin Improves Coronary Microvascular Function and Cardiac Contractility in Prediabetic ob/ob−/− Mice. Cardiovascular Diabetology, 18, Article No. 16. https://doi.org/10.1186/s12933-019-0820-6
|
[61]
|
Herat, L.Y., Magno, A.L., Rudnicka, C., Hricova, J., Carnagarin, R., Ward, N.C., et al. (2020) SGLT2 Inhibitor-Induced Sympathoinhibition: A Novel Mechanism for Cardiorenal Protection. JACC: Basic to Translational Science, 5, 169-179. https://doi.org/10.1016/j.jacbts.2019.11.007
|
[62]
|
Shimizu, W., Kubota, Y., Hoshika, Y., Mozawa, K., Tara, S., Tokita, Y., et al. (2020) Effects of Empagliflozin versus Placebo on Cardiac Sympathetic Activity in Acute Myocardial Infarction Patients with Type 2 Diabetes Mellitus: The EMBODY Trial. Cardiovascular Diabetology, 19, Article No. 148. https://doi.org/10.1186/s12933-020-01127-z
|
[63]
|
Raza, S., Osasan, S., Sethia, S., Batool, T., Bambhroliya, Z., Sandrugu, J., et al. (2022) A Systematic Review of Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors and Sympathetic Nervous System Inhibition: An Underrated Mechanism of Cardiorenal Protection. Cureus, 14, e26313. https://doi.org/10.7759/cureus.26313
|
[64]
|
Salah, H.M., Verma, S., Santos-Gallego, C.G., Bhatt, A.S., Vaduganathan, M., Khan, M.S., et al. (2022) Sodium-Glucose Cotransporter 2 Inhibitors and Cardiac Remodeling. Journal of Cardiovascular Translational Research, 15, 944-956. https://doi.org/10.1007/s12265-022-10220-5
|
[65]
|
Philippaert, K., Kalyaanamoorthy, S., Fatehi, M., Long, W., Soni, S., Byrne, N.J., et al. (2021) Cardiac Late Sodium Channel Current Is a Molecular Target for the Sodium/glucose Cotransporter 2 Inhibitor Empagliflozin. Circulation, 143, 2188-2204. https://doi.org/10.1161/circulationaha.121.053350
|
[66]
|
Baartscheer, A., Schumacher, C.A., Wüst, R.C.I., Fiolet, J.W.T., Stienen, G.J.M., Coronel, R., et al. (2016) Empagliflozin Decreases Myocardial Cytoplasmic Na+ through Inhibition of the Cardiac Na+/H+ Exchanger in Rats and Rabbits. Diabetologia, 60, 568-573. https://doi.org/10.1007/s00125-016-4134-x
|
[67]
|
Uthman, L., Baartscheer, A., Bleijlevens, B., Schumacher, C.A., Fiolet, J.W.T., Koeman, A., et al. (2017) Class Effects of SGLT2 Inhibitors in Mouse Cardiomyocytes and Hearts: Inhibition of Na+/H+ Exchanger, Lowering of Cytosolic Na+ and Vasodilation. Diabetologia, 61, 722-726. https://doi.org/10.1007/s00125-017-4509-7
|
[68]
|
Li, X., Lu, Q., Qiu, Y., do Carmo, J.M., Wang, Z., da Silva, A.A., et al. (2021) Direct Cardiac Actions of the Sodium Glucose Co‐transporter 2 Inhibitor Empagliflozin Improve Myocardial Oxidative Phosphorylation and Attenuate Pressure‐overload Heart Failure. Journal of the American Heart Association, 10, e018298. https://doi.org/10.1161/jaha.120.018298
|
[69]
|
Lopaschuk, G.D., Ussher, J.R., Folmes, C.D.L., Jaswal, J.S. and Stanley, W.C. (2010) Myocardial Fatty Acid Metabolism in Health and Disease. Physiological Reviews, 90, 207-258. https://doi.org/10.1152/physrev.00015.2009
|
[70]
|
Trang, N.N., Chung, C., Lee, T., Cheng, W., Kao, Y., Huang, S., et al. (2021) Empagliflozin and Liraglutide Differentially Modulate Cardiac Metabolism in Diabetic Cardiomyopathy in Rats. International Journal of Molecular Sciences, 22, Article 1177. https://doi.org/10.3390/ijms22031177
|