|
[1]
|
Wu, Q., Xiao, Y., Yuan, Y., Ma, Z., Liao, H., Liu, C., et al. (2017) Mechanisms Contributing to Cardiac Remodelling. Clinical Science, 131, 2319-2345. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kubota, Y. and Shimizu, W. (2022) Clinical Benefits of Sodium-Glucose Cotransporter 2 Inhibitors and the Mechanisms Underlying Their Cardiovascular Effects. JACC: Asia, 2, 287-293. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Scheen, A.J. (2014) Pharmacodynamics, Efficacy and Safety of Sodium-Glucose Co-Transporter Type 2 (SGLT2) Inhibitors for the Treatment of Type 2 Diabetes Mellitus. Drugs, 75, 33-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Vaduganathan, M., Docherty, K.F., Claggett, B.L., Jhund, P.S., de Boer, R.A., Hernandez, A.F., et al. (2022) SGLT2 Inhibitors in Patients with Heart Failure: A Comprehensive Meta-Analysis of Five Randomised Controlled Trials. The Lancet, 400, 757-767. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhang, N., Wang, Y., Tse, G., Korantzopoulos, P., Letsas, K.P., Zhang, Q., et al. (2021) Effect of Sodium-Glucose Cotransporter-2 Inhibitors on Cardiac Remodelling: A Systematic Review and Meta-Analysis. European Journal of Preventive Cardiology, 28, 1961-1973. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Pabel, S., Hamdani, N., Luedde, M. and Sossalla, S. (2021) SGLT2 Inhibitors and Their Mode of Action in Heart Failure—Has the Mystery Been Unravelled? Current Heart Failure Reports, 18, 315-328. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhang, Q., Li, G., Zhong, Y., Wang, J., Wang, A., Zhou, X., et al. (2020) Empagliflozin Improves Chronic Hypercortisolism-Induced Abnormal Myocardial Structure and Cardiac Function in Mice. Therapeutic Advances in Chronic Disease, 11, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Moellmann, J., Mann, P.A., Kappel, B.A., Kahles, F., Klinkhammer, B.M., Boor, P., et al. (2022) The Sodium‐Glucose Co‐Transporter‐2 Inhibitor Ertugliflozin Modifies the Signature of Cardiac Substrate Metabolism and Reduces Cardiac mtor Signalling, Endoplasmic Reticulum Stress and Apoptosis. Diabetes, Obesity and Metabolism, 24, 2263-2272. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Park, S., Farooq, M.A., Gaertner, S., Bruckert, C., Qureshi, A.W., Lee, H., et al. (2020) Empagliflozin Improved Systolic Blood Pressure, Endothelial Dysfunction and Heart Remodeling in the Metabolic Syndrome ZSF1 Rat. Cardiovascular Diabetology, 19, Article No. 19. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Connelly, K.A., Zhang, Y., Visram, A., Advani, A., Batchu, S.N., Desjardins, J., et al. (2019) Empagliflozin Improves Diastolic Function in a Nondiabetic Rodent Model of Heart Failure with Preserved Ejection Fraction. JACC: Basic to Translational Science, 4, 27-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Takasu, T. and Takakura, S. (2019) Effect of Ipragliflozin, an SGLT2 Inhibitor, on Cardiac Histopathological Changes in a Non-Diabetic Rat Model of Cardiomyopathy. Life Sciences, 230, 19-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Santos-Gallego, C.G., Requena-Ibanez, J.A., San Antonio, R., Ishikawa, K., Watanabe, S., Picatoste, B., et al. (2019) Empagliflozin Ameliorates Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics. Journal of the American College of Cardiology, 73, 1931-1944. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Santos-Gallego, C.G., Requena-Ibanez, J.A., San Antonio, R., Garcia-Ropero, A., Ishikawa, K., Watanabe, S., et al. (2021) Empagliflozin Ameliorates Diastolic Dysfunction and Left Ventricular Fibrosis/stiffness in Nondiabetic Heart Failure. JACC: Cardiovascular Imaging, 14, 393-407. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Kang, S., Verma, S., Hassanabad, A.F., Teng, G., Belke, D.D., Dundas, J.A., et al. (2020) Direct Effects of Empagliflozin on Extracellular Matrix Remodelling in Human Cardiac Myofibroblasts: Novel Translational Clues to Explain EMPA-REG OUTCOME Results. Canadian Journal of Cardiology, 36, 543-553. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Verma, S., Mazer, C.D., Yan, A.T., Mason, T., Garg, V., Teoh, H., et al. (2019) Effect of Empagliflozin on Left Ventricular Mass in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation, 140, 1693-1702. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Brown, A.J.M., Gandy, S., McCrimmon, R., Houston, J.G., Struthers, A.D. and Lang, C.C. (2020) A Randomized Controlled Trial of Dapagliflozin on Left Ventricular Hypertrophy in People with Type Two Diabetes: The DAPA-LVH Trial. European Heart Journal, 41, 3421-3432. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Santos-Gallego, C.G., Vargas-Delgado, A.P., Requena-Ibanez, J.A., Garcia-Ropero, A., Mancini, D., Pinney, S., et al. (2021) Randomized Trial of Empagliflozin in Nondiabetic Patients with Heart Failure and Reduced Ejection Fraction. Journal of the American College of Cardiology, 77, 243-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Omar, M., Jensen, J., Ali, M., Frederiksen, P.H., Kistorp, C., Videbæk, L., et al. (2021) Associations of Empagliflozin with Left Ventricular Volumes, Mass, and Function in Patients with Heart Failure and Reduced Ejection Fraction. JAMA Cardiology, 6, 836-840. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Packer, M. (2020) Role of Deranged Energy Deprivation Signaling in the Pathogenesis of Cardiac and Renal Disease in States of Perceived Nutrient Overabundance. Circulation, 141, 2095-2105. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Nah, J., Shirakabe, A., Mukai, R., Zhai, P., Sung, E.A., Ivessa, A., et al. (2022) Ulk1-Dependent Alternative Mitophagy Plays a Protective Role during Pressure Overload in the Heart. Cardiovascular Research, 118, 2638-2651. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ghosh, R., Gillaspie, J.J., Campbell, K.S., Symons, J.D., Boudina, S. and Pattison, J.S. (2022) Chaperone-Mediated Autophagy Protects Cardiomyocytes against Hypoxic-Cell Death. American Journal of Physiology-Cell Physiology, 323, C1555-C1575. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Kanamori, H., Yoshida, A., Naruse, G., Endo, S., Minatoguchi, S., Watanabe, T., et al. (2022) Impact of Autophagy on Prognosis of Patients with Dilated Cardiomyopathy. Journal of the American College of Cardiology, 79, 789-801. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Saito, T., Asai, K., Sato, S., Hayashi, M., Adachi, A., Sasaki, Y., et al. (2016) Autophagic Vacuoles in Cardiomyocytes of Dilated Cardiomyopathy with Initially Decompensated Heart Failure Predict Improved Prognosis. Autophagy, 12, 579-587. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Packer, M. (2020) Cardioprotective Effects of Sirtuin-1 and Its Downstream Effectors: Potential Role in Mediating the Heart Failure Benefits of SGLT2 (Sodium-Glucose Cotransporter 2) Inhibitors. Circulation: Heart Failure, 13, e007197. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Packer, M. (2020) Longevity Genes, Cardiac Ageing, and the Pathogenesis of Cardiomyopathy: Implications for Understanding the Effects of Current and Future Treatments for Heart Failure. European Heart Journal, 41, 3856-3861. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Bugyei-Twum, A., Ford, C., Civitarese, R., Seegobin, J., Advani, S.L., Desjardins, J., et al. (2018) Sirtuin 1 Activation Attenuates Cardiac Fibrosis in a Rodent Pressure Overload Model by Modifying Smad2/3 Transactivation. Cardiovascular Research, 114, 1629-1641. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Deng, R., Jiang, K., Chen, F., Miao, Y., Lu, Y., Su, F., et al. (2022) Novel Cardioprotective Mechanism for Empagliflozin in Nondiabetic Myocardial Infarction with Acute Hyperglycemia. Biomedicine & Pharmacotherapy, 154, Article ID: 113606. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wang, C., Chen, C., Lin, M., Su, H., Ho, M., Yeh, J., et al. (2020) TLR9 Binding to Beclin 1 and Mitochondrial SIRT3 by a Sodium-Glucose Co-Transporter 2 Inhibitor Protects the Heart from Doxorubicin Toxicity. Biology, 9, Article 369. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Jiang, K., Xu, Y., Wang, D., Chen, F., Tu, Z., Qian, J., et al. (2021) Cardioprotective Mechanism of SGLT2 Inhibitor against Myocardial Infarction Is through Reduction of Autosis. Protein & Cell, 13, 336-359. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Martins, D., Garcia, L.R., Queiroz, D.A.R., Lazzarin, T., Tonon, C.R., Balin, P.d.S., et al. (2022) Oxidative Stress as a Therapeutic Target of Cardiac Remodeling. Antioxidants, 11, Article 2371. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Li, C., Zhang, J., Xue, M., Li, X., Han, F., Liu, X., et al. (2019) SGLT2 Inhibition with Empagliflozin Attenuates Myocardial Oxidative Stress and Fibrosis in Diabetic Mice Heart. Cardiovascular Diabetology, 18, Article No. 15. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Li, X., Flynn, E.R., do Carmo, J.M., Wang, Z., da Silva, A.A., Mouton, A.J., et al. (2022) Direct Cardiac Actions of Sodium-Glucose Cotransporter 2 Inhibition Improve Mitochondrial Function and Attenuate Oxidative Stress in Pressure Overload-Induced Heart Failure. Frontiers in Cardiovascular Medicine, 9, Article 859253. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Yurista, S.R., Silljé, H.H.W., Oberdorf‐Maass, S.U., Schouten, E., Pavez Giani, M.G., Hillebrands, J., et al. (2019) Sodium-Glucose Co‐Transporter 2 Inhibition with Empagliflozin Improves Cardiac Function in Non‐Diabetic Rats with Left Ventricular Dysfunction after Myocardial Infarction. European Journal of Heart Failure, 21, 862-873. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Kondo, H., Akoumianakis, I., Badi, I., Akawi, N., Kotanidis, C.P., Polkinghorne, M., et al. (2021) Effects of Canagliflozin on Human Myocardial Redox Signalling: Clinical Implications. European Heart Journal, 42, 4947-4960. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Liu, Y., Wu, M., Xu, J., Xu, B. and Kang, L. (2021) Empagliflozin Prevents from Early Cardiac Injury Post Myocardial Infarction in Non-Diabetic Mice. European Journal of Pharmaceutical Sciences, 161, Article ID: 105788. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Fan, Z., Xu, Y., Chen, X., Ji, M. and Ma, G. (2022) Appropriate Dose of Dapagliflozin Improves Cardiac Outcomes by Normalizing Mitochondrial Fission and Reducing Cardiomyocyte Apoptosis after Acute Myocardial Infarction. Drug Design, Development and Therapy, 16, 2017-2030. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Ren, F., Xie, Z., Jiang, Y., Guan, X., Chen, Q., Lai, T., et al. (2021) Dapagliflozin Attenuates Pressure Overload-Induced Myocardial Remodeling in Mice via Activating SIRT1 and Inhibiting Endoplasmic Reticulum Stress. Acta Pharmacologica Sinica, 43, 1721-1732. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Fang, X., Ardehali, H., Min, J. and Wang, F. (2022) The Molecular and Metabolic Landscape of Iron and Ferroptosis in Cardiovascular Disease. Nature Reviews Cardiology, 20, 7-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Wang, X., Chen, X., Zhou, W., Men, H., Bao, T., Sun, Y., et al. (2022) Ferroptosis Is Essential for Diabetic Cardiomyopathy and Is Prevented by Sulforaphane via AMPK/NRF2 Pathways. Acta Pharmaceutica Sinica B, 12, 708-722. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Chen, Y., Li, X., Wang, S., Miao, R. and Zhong, J. (2023) Targeting Iron Metabolism and Ferroptosis as Novel Therapeutic Approaches in Cardiovascular Diseases. Nutrients, 15, Article 591. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Ma, S., He, L., Zhang, G., Zuo, Q., Wang, Z., Zhai, J., et al. (2022) Canagliflozin Mitigates Ferroptosis and Ameliorates Heart Failure in Rats with Preserved Ejection Fraction. Naunyn-Schmiedeberg’s Archives of Pharmacology, 395, 945-962. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Chen, W., Zhang, Y., Wang, Z., Tan, M., Lin, J., Qian, X., et al. (2023) Dapagliflozin Alleviates Myocardial Ischemia/Reperfusion Injury by Reducing Ferroptosis via MAPK Signaling Inhibition. Frontiers in Pharmacology, 14, Article 1078205. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Frangogiannis, N.G. (2019) Cardiac Fibrosis: Cell Biological Mechanisms, Molecular Pathways and Therapeutic Opportunities. Molecular Aspects of Medicine, 65, 70-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zhang, Y., Lin, X., Chu, Y., Chen, X., Du, H., Zhang, H., et al. (2021) Dapagliflozin: A Sodium-Glucose Cotransporter 2 Inhibitor, Attenuates Angiotensin II-Induced Cardiac Fibrotic Remodeling by Regulating TGFβ1/Smad Signaling. Cardiovascular Diabetology, 20, Article No. 121. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Halade, G.V. and Lee, D.H. (2022) Inflammation and Resolution Signaling in Cardiac Repair and Heart Failure. eBioMedicine, 79, Article ID: 103992. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Kounatidis, D., Vallianou, N., Evangelopoulos, A., Vlahodimitris, I., Grivakou, E., Kotsi, E., et al. (2023) SGLT-2 Inhibitors and the Inflammasome: What’s Next in the 21st Century? Nutrients, 15, Article 2294. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zhang, N., Feng, B., Ma, X., Sun, K., Xu, G. and Zhou, Y. (2019) Dapagliflozin Improves Left Ventricular Remodeling and Aorta Sympathetic Tone in a Pig Model of Heart Failure with Preserved Ejection Fraction. Cardiovascular Diabetology, 18, Article No. 107. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Yan, P., Song, X., Tran, J., Zhou, R., Cao, X., Zhao, G., et al. (2022) Dapagliflozin Alleviates Coxsackievirus B3-Induced Acute Viral Myocarditis by Regulating the Macrophage Polarization through Stat3-Related Pathways. Inflammation, 45, 2078-2090. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Byrne, N.J., Matsumura, N., Maayah, Z.H., Ferdaoussi, M., Takahara, S., Darwesh, A.M., et al. (2020) Empagliflozin Blunts Worsening Cardiac Dysfunction Associated with Reduced NLRP3 (Nucleotide-Binding Domain-Like Receptor Protein 3) Inflammasome Activation in Heart Failure. Circulation: Heart Failure, 13, e006277. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Iacobellis, G. and Gra‐Menendez, S. (2020) Effects of Dapagliflozin on Epicardial Fat Thickness in Patients with Type 2 Diabetes and Obesity. Obesity, 28, 1068-1074. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Requena-Ibáñez, J.A., Santos-Gallego, C.G., Rodriguez-Cordero, A., Vargas-Delgado, A.P., Mancini, D., Sartori, S., et al. (2021) Mechanistic Insights of Empagliflozin in Nondiabetic Patients with HFrEF: From the EMPA-TROPISM Study. JACC: Heart Failure, 9, 578-589. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Díaz-Rodríguez, E., Agra, R.M., Fernández, Á.L., Adrio, B., García-Caballero, T., González-Juanatey, J.R., et al. (2017) Effects of Dapagliflozin on Human Epicardial Adipose Tissue: Modulation of Insulin Resistance, Inflammatory Chemokine Production, and Differentiation Ability. Cardiovascular Research, 114, 336-346. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Takano, M., Kondo, H., Harada, T., Takahashi, M., Ishii, Y., Yamasaki, H., et al. (2023) Empagliflozin Suppresses the Differentiation/Maturation of Human Epicardial Preadipocytes and Improves Paracrine Secretome Profile. JACC: Basic to Translational Science, 8, 1081-1097. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Elrakaybi, A., Laubner, K., Zhou, Q., Hug, M.J. and Seufert, J. (2022) Cardiovascular Protection by SGLT2 Inhibitors—Do Anti-Inflammatory Mechanisms Play a Role? Molecular Metabolism, 64, Article ID: 101549. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Shu, H., Peng, Y., Hang, W., Zhang, M., Shen, L., Wang, D., et al. (2022) Trimetazidine Enhances Myocardial Angiogenesis in Pressure Overload-Induced Cardiac Hypertrophy Mice through Directly Activating Akt and Promoting the Binding of HSF1 to VEGF-A Promoter. Acta Pharmacologica Sinica, 43, 2550-2561. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Blom, J.N., Wang, X., Lu, X., Kim, M.Y., Wang, G. and Feng, Q. (2022) Inhibition of Intraflagellar Transport Protein-88 Promotes Epithelial-to-Mesenchymal Transition and Reduces Cardiac Remodeling Post-Myocardial Infarction. European Journal of Pharmacology, 933, Article ID: 175287. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Juni, R.P., Kuster, D.W.D., Goebel, M., Helmes, M., Musters, R.J.P., van der Velden, J., et al. (2019) Cardiac Microvascular Endothelial Enhancement of Cardiomyocyte Function Is Impaired by Inflammation and Restored by Empagliflozin. JACC: Basic to Translational Science, 4, 575-591. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Nakao, M., Shimizu, I., Katsuumi, G., Yoshida, Y., Suda, M., Hayashi, Y., et al. (2021) Empagliflozin Maintains Capillarization and Improves Cardiac Function in a Murine Model of Left Ventricular Pressure Overload. Scientific Reports, 11, Article No. 18384. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Adingupu, D.D., Göpel, S.O., Grönros, J., Behrendt, M., Sotak, M., Miliotis, T., et al. (2019) SGLT2 Inhibition with Empagliflozin Improves Coronary Microvascular Function and Cardiac Contractility in Prediabetic ob/ob−/− Mice. Cardiovascular Diabetology, 18, Article No. 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Herat, L.Y., Magno, A.L., Rudnicka, C., Hricova, J., Carnagarin, R., Ward, N.C., et al. (2020) SGLT2 Inhibitor-Induced Sympathoinhibition: A Novel Mechanism for Cardiorenal Protection. JACC: Basic to Translational Science, 5, 169-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Shimizu, W., Kubota, Y., Hoshika, Y., Mozawa, K., Tara, S., Tokita, Y., et al. (2020) Effects of Empagliflozin versus Placebo on Cardiac Sympathetic Activity in Acute Myocardial Infarction Patients with Type 2 Diabetes Mellitus: The EMBODY Trial. Cardiovascular Diabetology, 19, Article No. 148. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Raza, S., Osasan, S., Sethia, S., Batool, T., Bambhroliya, Z., Sandrugu, J., et al. (2022) A Systematic Review of Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors and Sympathetic Nervous System Inhibition: An Underrated Mechanism of Cardiorenal Protection. Cureus, 14, e26313. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Salah, H.M., Verma, S., Santos-Gallego, C.G., Bhatt, A.S., Vaduganathan, M., Khan, M.S., et al. (2022) Sodium-Glucose Cotransporter 2 Inhibitors and Cardiac Remodeling. Journal of Cardiovascular Translational Research, 15, 944-956. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Philippaert, K., Kalyaanamoorthy, S., Fatehi, M., Long, W., Soni, S., Byrne, N.J., et al. (2021) Cardiac Late Sodium Channel Current Is a Molecular Target for the Sodium/glucose Cotransporter 2 Inhibitor Empagliflozin. Circulation, 143, 2188-2204. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Baartscheer, A., Schumacher, C.A., Wüst, R.C.I., Fiolet, J.W.T., Stienen, G.J.M., Coronel, R., et al. (2016) Empagliflozin Decreases Myocardial Cytoplasmic Na+ through Inhibition of the Cardiac Na+/H+ Exchanger in Rats and Rabbits. Diabetologia, 60, 568-573. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Uthman, L., Baartscheer, A., Bleijlevens, B., Schumacher, C.A., Fiolet, J.W.T., Koeman, A., et al. (2017) Class Effects of SGLT2 Inhibitors in Mouse Cardiomyocytes and Hearts: Inhibition of Na+/H+ Exchanger, Lowering of Cytosolic Na+ and Vasodilation. Diabetologia, 61, 722-726. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Li, X., Lu, Q., Qiu, Y., do Carmo, J.M., Wang, Z., da Silva, A.A., et al. (2021) Direct Cardiac Actions of the Sodium Glucose Co‐transporter 2 Inhibitor Empagliflozin Improve Myocardial Oxidative Phosphorylation and Attenuate Pressure‐overload Heart Failure. Journal of the American Heart Association, 10, e018298. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Lopaschuk, G.D., Ussher, J.R., Folmes, C.D.L., Jaswal, J.S. and Stanley, W.C. (2010) Myocardial Fatty Acid Metabolism in Health and Disease. Physiological Reviews, 90, 207-258. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Trang, N.N., Chung, C., Lee, T., Cheng, W., Kao, Y., Huang, S., et al. (2021) Empagliflozin and Liraglutide Differentially Modulate Cardiac Metabolism in Diabetic Cardiomyopathy in Rats. International Journal of Molecular Sciences, 22, Article 1177. [Google Scholar] [CrossRef] [PubMed]
|