[1]
|
Sánchez-Borges, M., Martin, B.L., Muraro, A.M., Wood, R.A., Agache, I.O., Ansotegui, I.J., et al. (2018) The Importance of Allergic Disease in Public Health: An iCAALL Statement. World Allergy Organization Journal, 11, 8. https://doi.org/10.1186/s40413-018-0187-2
|
[2]
|
Oh, J. (2022) Pollen Allergy in a Changing Planetary Environment. Allergy, Asthma & Immunology Research, 14, 168-181. https://doi.org/10.4168/aair.2022.14.2.168
|
[3]
|
贾鑫磊. 孢子/花粉壁结构、化学成分以及功能研究[D]: [博士学位论文]. 上海: 上海师范大学, 2023.
|
[4]
|
Roulston, T.H. and Cane, J.H. (2000) Pollen Nutritional Content and Digestibility for Animals. Plant Systematics and Evolution, 222, 187-209. https://doi.org/10.1007/bf00984102
|
[5]
|
Aw, M., Penn, J., Gauvreau, G.M., Lima, H. and Sehmi, R. (2019) Atopic March: Collegium Internationale Allergologicum Update 2020. International Archives of Allergy and Immunology, 181, 1-10. https://doi.org/10.1159/000502958
|
[6]
|
Singh, A.B. and Kumar, P. (2022) Climate Change and Allergic Diseases: An Overview. Frontiers in Allergy, 3, Article 964987. https://doi.org/10.3389/falgy.2022.964987
|
[7]
|
沈暘. 气候变化对呼吸道过敏及花粉、霉菌所致过敏性哮喘的影响[J]. 中华临床免疫和变态反应杂志, 2021, 15(3): 347.
|
[8]
|
Ziska, L.H. (2020) An Overview of Rising CO2 and Climatic Change on Aeroallergens and Allergic Diseases. Allergy, Asthma & Immunology Research, 12, 771-782. https://doi.org/10.4168/aair.2020.12.5.771
|
[9]
|
陈妍, 刘爱霞, 叶凤钗, 柏杉山, 梁利君, 王春花, 高军凯, 王玉秋. 空气污染与过敏症发病的关系[J]. 环境与健康杂志, 2008(1): 81-84.
|
[10]
|
张晓燕, 刘俊. 花粉过敏与城市绿化[J]. 扬州教育学院学报, 2007(3): 42-45.
|
[11]
|
Wayne, P., Foster, S., Connolly, J., Bazzaz, F. and Epstein, P. (2002) Production of Allergenic Pollen by Ragweed (Ambrosia artemisiifolia L.) Is Increased in CO2-Enriched Atmospheres. Annals of Allergy, Asthma & Immunology, 88, 279-282. https://doi.org/10.1016/s1081-1206(10)62009-1
|
[12]
|
Ziska, L.H. and Caulfield, F.A. (2000) Rising CO2 and Pollen Production of Common Ragweed (Ambrosia artemisiifolia L.), a Known Allergy-Inducing Species: Implications for Public Health. Functional Plant Biology, 27, 893-898. https://doi.org/10.1071/pp00032
|
[13]
|
Kim, K.R., Oh, J., Woo, S., Seo, Y.A., Choi, Y., Kim, H.S., et al. (2018) Does the Increase in Ambient CO2 Concentration Elevate Allergy Risks Posed by Oak Pollen? International Journal of Biometeorology, 62, 1587-1594. https://doi.org/10.1007/s00484-018-1558-7
|
[14]
|
van Ginkel, J.H., Gorissen, A. and Polci, D. (2000) Elevated Atmospheric Carbon Dioxide Concentration: Effects of Increased Carbon Input in a Lolium perenne Soil on Microorganisms and Decomposition. Soil Biology and Biochemistry, 32, 449-456. https://doi.org/10.1016/s0038-0717(99)00097-8
|
[15]
|
Stach, A., Emberlin, J., Smith, M., Adams-Groom, B. and Myszkowska, D. (2007) Factors That Determine the Severity of Betula Spp. Pollen Seasons in Poland (Poznań and Krakow) and the United Kingdom (Worcester and London). International Journal of Biometeorology, 52, 311-321. https://doi.org/10.1007/s00484-007-0127-2
|
[16]
|
Zhang, Y., Bielory, L., Mi, Z., Cai, T., Robock, A. and Georgopoulos, P. (2014) Allergenic Pollen Season Variations in the Past Two Decades under Changing Climate in the United States. Global Change Biology, 21, 1581-1589. https://doi.org/10.1111/gcb.12755
|
[17]
|
Barnes, C.S. (2018) Impact of Climate Change on Pollen and Respiratory Disease. Current Allergy and Asthma Reports, 18, Article No. 59. https://doi.org/10.1007/s11882-018-0813-7
|
[18]
|
Cubasch, U., Meehl, G.A., Boer, G.J., et al. (2001) Projections of Future Climate Change. Climate Change 2001: The Scientific Basis. Contribution of WG1 to the Third Assessment Report of the IPCC (TAR). Cambridge University Press, 525-582.
|
[19]
|
Khouider, S., Borges, F., LeBlanc, C., Ungru, A., Schnittger, A., Martienssen, R., et al. (2021) Male Fertility in Arabidopsis Requires Active DNA Demethylation of Genes That Control Pollen Tube Function. Nature Communications, 12, Article No. 410. https://doi.org/10.1038/s41467-020-20606-1
|
[20]
|
Hoebeke, L., Bruffaerts, N., Verstraeten, C., Delcloo, A., De Smedt, T., Packeu, A., et al. (2017) Thirty-Four Years of Pollen Monitoring: An Evaluation of the Temporal Variation of Pollen Seasons in Belgium. Aerobiologia, 34, 139-155. https://doi.org/10.1007/s10453-017-9503-5
|
[21]
|
Khwarahm, N., Dash, J., Atkinson, P.M., Newnham, R.M., Skjøth, C.A., Adams-Groom, B., et al. (2014) Exploring the Spatio-Temporal Relationship between Two Key Aeroallergens and Meteorological Variables in the United Kingdom. International Journal of Biometeorology, 58, 529-545. https://doi.org/10.1007/s00484-013-0739-7
|
[22]
|
黄赐璇, 许清海, 阳小兰. 东北平原海伦空气孢粉分析[J]. 地理科学进展, 2001, 20(4): 371-377.
|
[23]
|
欧祖镇. 重庆主城区葎草花粉的分布与致敏特点[D]: [硕士学位论文]. 重庆: 重庆医科大学大学, 2018.
|
[24]
|
Cariñanos, P., Díaz de la Guardia, C., Algarra, J.A., De Linares, C. and Irurita, J.M. (2013) The Pollen Counts as Bioindicator of Meteorological Trends and Tool for Assessing the Status of Endangered Species: The Case of Artemisia in Sierra Nevada (Spain). Climatic Change, 119, 799-813. https://doi.org/10.1007/s10584-013-0751-2
|
[25]
|
Jung, S., Estrella, N., Pfaffl, M.W., Hartmann, S., Ewald, F. and Menzel, A. (2021) Impact of Elevated Air Temperature and Drought on Pollen Characteristics of Major Agricultural Grass Species. PLOS ONE, 16, e0248759. https://doi.org/10.1371/journal.pone.0248759
|
[26]
|
闫珂. 北京4种常见树种花粉飘散规律及致敏潜力分析[D]: [硕士学位论文]. 北京: 北京林业大学, 2020.
|
[27]
|
谢水祥, 马廉兰, 刘志刚, 万文豪, 陈玲. 气传致敏花粉飘散与气象七要素的相关性[J]. 中国临床康复, 2006(12): 56-58.
|
[28]
|
Liu, Z., Zhang, Z., Cheng, D., Duan, Z. and Ni, J. (2023) Spatial Influence of the Asian Summer Monsoon on Pollen Assemblages of Qinghai-Xizang Plateau and Its Potential Implication for the Interpretation of Fossil Pollen Records. Palaeogeography, Palaeoclimatology, Palaeoecology, 625, Article 111690. https://doi.org/10.1016/j.palaeo.2023.111690
|
[29]
|
杨颖. 北京城区树木花粉飘散规律及影响因素研究[D]: [硕士学位论文]. 北京: 北京林业大学, 2007.
|
[30]
|
Dai, L. and Weng, C. (2010) A Survey on Pollen Dispersal in the Western Pacific Ocean and Its Paleoclimatological Significance as a Proxy for Variation of the Asian Winter Monsoon. Science China Earth Sciences, 54, 249-258. https://doi.org/10.1007/s11430-010-4027-7
|
[31]
|
Emberlin, J. (1994) The Effects of Patterns in Climate and Pollen Abundance on Allergy. Allergy, 49, 15-20. https://doi.org/10.1111/j.1398-9995.1994.tb04233.x
|
[32]
|
Bishan, C., Bing, L., Chixin, C., Junxia, S., Shulin, Z., Cailang, L., et al. (2020) Relationship between Airborne Pollen Assemblages and Major Meteorological Parameters in Zhanjiang, South China. PLOS ONE, 15, e0240160. https://doi.org/10.1371/journal.pone.0240160
|
[33]
|
赵德䴖宇, 叶彩华, 王宇飞, 姚轶锋. 京津冀地区气传花粉数据分析[J]. 植物学报, 2021, 56(6): 751-760.
|
[34]
|
Pehkonen, E. and Rantio‐Lehtimäki, A. (1994) Variations in Airborne Pollen Antigenic Particles Caused by Meteorologic Factors. Allergy, 49, 472-477. https://doi.org/10.1111/j.1398-9995.1994.tb00842.x
|
[35]
|
Laaidi, M. (2001) Forecasting the Start of the Pollen Season of Poaceæ: Evaluation of Some Methods Based on Meteorological Factors. International Journal of Biometeorology, 45, 1-7. https://doi.org/10.1007/s004840000079
|
[36]
|
Aboulaich, N., Achmakh, L., Bouziane, H., Trigo, M.M., Recio, M., Kadiri, M., et al. (2012) Effect of Meteorological Parameters on Poaceae Pollen in the Atmosphere of Tetouan (NW Morocco). International Journal of Biometeorology, 57, 197-205. https://doi.org/10.1007/s00484-012-0566-2
|
[37]
|
高欣丽. 吸烟与大气污染对肺部疾病的影响[J]. 国际呼吸杂志, 2018, 38(5): 378-381.
|
[38]
|
Wolters, J.H.B. and Martens, M.J.M. (1987) Effects of Air Pollutants on Pollen. The Botanical Review, 53, 372-414. https://doi.org/10.1007/bf02858322
|
[39]
|
Shahali, Y., Pourpak, Z., Moin, M., Zare, A. and Majd, A. (2009) Impacts of Air Pollution Exposure on the Allergenic Properties of Arizona Cypress Pollens. Journal of Physics: Conference Series, 151, Article 012027. https://doi.org/10.1088/1742-6596/151/1/012027
|
[40]
|
Sénéchal, H., Visez, N., Charpin, D., Shahali, Y., Peltre, G., Biolley, J., et al. (2015) A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity. The Scientific World Journal, 2015, Article ID: 940243. https://doi.org/10.1155/2015/940243
|
[41]
|
D’Amato, G., Liccardi, G., D’Amato, M. and Cazzola, M. (2001) The Role of Outdoor Air Pollution and Climatic Changes on the Rising Trends in Respiratory Allergy. Respiratory Medicine, 95, 606-611. https://doi.org/10.1053/rmed.2001.1112
|
[42]
|
Guilbert, A., Cox, B., Bruffaerts, N., Hoebeke, L., Packeu, A., Hendrickx, M., et al. (2018) Relationships between Aeroallergen Levels and Hospital Admissions for Asthma in the Brussels-Capital Region: A Daily Time Series Analysis. Environmental Health, 17, Article No. 35. https://doi.org/10.1186/s12940-018-0378-x
|
[43]
|
Visez, N., Hamzé, M., Vandenbossche, K., Occelli, F., de Nadaï, P., Tobon, Y., et al. (2023) Uptake of Ozone by Allergenic Pollen Grains. Environmental Pollution, 331, Article 121793. https://doi.org/10.1016/j.envpol.2023.121793
|
[44]
|
Berger, M., Bastl, K., Bastl, M., Dirr, L., Hutter, H., Moshammer, H., et al. (2020) Impact of Air Pollution on Symptom Severity during the Birch, Grass and Ragweed Pollen Period in Vienna, Austria: Importance of O3 in 2010-2018. Environmental Pollution, 263, Article 114526. https://doi.org/10.1016/j.envpol.2020.114526
|
[45]
|
Zhou, S., Wang, X., Lu, S., Yao, C., Zhang, L., Rao, L., et al. (2021) Characterization of Allergenicity of Platanus Pollen Allergen a 3 (Pla a 3) after Exposure to NO2 and O3. Environmental Pollution, 278, Article 116913. https://doi.org/10.1016/j.envpol.2021.116913
|
[46]
|
Ouyang, Y., Xu, Z., Fan, E., Li, Y. and Zhang, L. (2015) Effect of Nitrogen Dioxide and Sulfur Dioxide on Viability and Morphology of Oak Pollen. International Forum of Allergy & Rhinology, 6, 95-100. https://doi.org/10.1002/alr.21632
|
[47]
|
Franze, T., Weller, M.G., Niessner, R. and Pöschl, U. (2003) Enzyme Immunoassays for the Investigation of Protein Nitration by Air Pollutants. The Analyst, 128, 824-831. https://doi.org/10.1039/b303132b
|
[48]
|
Sagehashi, M., Fukuda, T., Fujii, T., Sakai, Y. and Sakoda, A. (2005) Elution and Adsorptive Concentration of Japanese Cedar (Cryptomeria japonica) Pollen Allergen in Environmental Water. Water Science and Technology, 52, 37-43. https://doi.org/10.2166/wst.2005.0219
|
[49]
|
张槿, 滕尧树, 李锃亮, 王梓合, 朱瑾. 气候变化、大气污染在过敏性气道疾病中的作用及机制[J]. 中华临床免疫和变态反应杂志, 2020, 14(6): 599-604.
|
[50]
|
Qiu, C., Feng, W., An, X., Liu, F., Liang, F., Tang, X., et al. (2022) The Effect of Fine Particulate Matter Exposure on Allergic Rhinitis of Adolescents Aged 10-13 Years: A Cross-Sectional Study from Chongqing, China. Frontiers in Public Health, 10, Article ID: 921089. https://doi.org/10.3389/fpubh.2022.921089
|
[51]
|
周骥, 付世华, 彭丽, 杨丹丹, 杨丝絮, 周弋, 许建明, 叶晓芳. 臭氧和PM(2.5)对慢阻肺死亡影响及气温修饰效应[J]. 中国环境科学, 2021, 41(12): 5904-5911.
|
[52]
|
Janke, K. (2014) Air Pollution, Avoidance Behaviour and Children’s Respiratory Health: Evidence from England. Journal of Health Economics, 38, 23-42. https://doi.org/10.1016/j.jhealeco.2014.07.002
|
[53]
|
Schwartz, J. (2005) How Sensitive Is the Association between Ozone and Daily Deaths to Control for Temperature? American Journal of Respiratory and Critical Care Medicine, 171, 627-631. https://doi.org/10.1164/rccm.200407-933oc
|
[54]
|
Ayres, J.G., Forsberg, B., Annesi-Maesano, I., Dey, R., Ebi, K.L., Helms, P.J., et al. (2009) Climate Change and Respiratory Disease: European Respiratory Society Position Statement. European Respiratory Journal, 34, 295-302. https://doi.org/10.1183/09031936.00003409
|
[55]
|
Hong, Q., Zhou, S., Zhao, H., Peng, J., Li, Y., Shang, Y., et al. (2018) Allergenicity of Recombinant Humulus Japonicus Pollen Allergen 1 after Combined Exposure to Ozone and Nitrogen Dioxide. Environmental Pollution, 234, 707-715. https://doi.org/10.1016/j.envpol.2017.11.078
|
[56]
|
秦玲, 刘丽丽. 园林绿化设计对花粉过敏的影响分析[J]. 城市建筑, 2019, 16(18): 141-142.
|
[57]
|
张曼琳, 潘妮, 赵娟娟, 李明娟, 江南. 城市花粉致敏植物种类构成、分布与潜在危害评估——以深圳市为例[J]. 生态学报, 2021, 41(22): 8746-8757.
|
[58]
|
隋利萍, 李健, 李清华, 赵运华, 郑家华, 郭有新, 欧阳昱晖. 致敏花粉监测及浓度播报在花粉症防治中的作用[J]. 中国耳鼻咽喉头颈外科, 2022, 29(10): 641-644.
|
[59]
|
姚亚男, 李树华, 王玥, 金洋, 王羽. 中国花粉致敏树种分级研究[J]. 中国园林, 2023, 39(6): 114-119.
|
[60]
|
Cariñanos, P., Casares-Porcel, M. and Quesada-Rubio, J. (2014) Estimating the Allergenic Potential of Urban Green Spaces: A Case-Study in Granada, Spain. Landscape and Urban Planning, 123, 134-144. https://doi.org/10.1016/j.landurbplan.2013.12.009
|
[61]
|
Cariñanos, P., Grilo, F., Pinho, P., Casares-Porcel, M., Branquinho, C., Acil, N., et al. (2019) Estimation of the Allergenic Potential of Urban Trees and Urban Parks: Towards the Healthy Design of Urban Green Spaces of the Future. International Journal of Environmental Research and Public Health, 16, Article 1357. https://doi.org/10.3390/ijerph16081357
|
[62]
|
辛嘉楠, 欧阳志云, 郑华, 王效科, 苗鸿. 城市化加剧花粉过敏症的机制研究进展[J]. 环境与健康杂志, 2007(10): 833-836.
|
[63]
|
Lambrecht, B.N. and Hammad, H. (2017) The Immunology of the Allergy Epidemic and the Hygiene Hypothesis. Nature Immunology, 18, 1076-1083. https://doi.org/10.1038/ni.3829
|
[64]
|
Ober, C., Sperling, A.I., von Mutius, E. and Vercelli, D. (2017) Immune Development and Environment: Lessons from Amish and Hutterite Children. Current Opinion in Immunology, 48, 51-60. https://doi.org/10.1016/j.coi.2017.08.003
|
[65]
|
Marfortt, D.A., Josviack, D., Lozano, A., Cuestas, E., Agüero, L. and Castro-Rodriguez, J.A. (2017) Differences between Preschoolers with Asthma and Allergies in Urban and Rural Environments. Journal of Asthma, 55, 470-476. https://doi.org/10.1080/02770903.2017.1339800
|
[66]
|
Okada, H., Kuhn, C., Feillet, H. and Bach, J. (2010) The ‘Hygiene Hypothesis’ for Autoimmune and Allergic Diseases: An Update. Clinical and Experimental Immunology, 160, 1-9. https://doi.org/10.1111/j.1365-2249.2010.04139.x
|
[67]
|
李平. 花粉过敏症增多的原因[J]. 国外医学情报, 1997(2): 5, 8.
|
[68]
|
Šikoparija, B., Marko, O., Panić, M., Jakovetić, D. and Radišić, P. (2018) How to Prepare a Pollen Calendar for Forecasting Daily Pollen Concentrations of Ambrosia, Betula and Poaceae? Aerobiologia, 34, 203-217. https://doi.org/10.1007/s10453-018-9507-9
|
[69]
|
Durham, O.C. (1946) The Volumetric Incidence of Atmospheric Allergens: IV. A Proposed Standard Method of Gravity Sampling, Counting, and Volumetric Interpolation of Results. Journal of Allergy, 17, 79-86. https://doi.org/10.1016/0021-8707(46)90025-1
|
[70]
|
Buters, J., Clot, B., Galán, C., Gehrig, R., Gilge, S., Hentges, F., et al. (2022) Automatic Detection of Airborne Pollen: An Overview. Aerobiologia, 40, 13-37. https://doi.org/10.1007/s10453-022-09750-x
|
[71]
|
Clot, B., Gilge, S., Hajkova, L., Magyar, D., Scheifinger, H., Sofiev, M., et al. (2020) The EUMETNET Autopollen Programme: Establishing a Prototype Automatic Pollen Monitoring Network in Europe. Aerobiologia, 40, 3-11. https://doi.org/10.1007/s10453-020-09666-4
|
[72]
|
Tummon, F., Bruffaerts, N., Celenk, S., Choël, M., Clot, B., Crouzy, B., et al. (2022) Towards Standardisation of Automatic Pollen and Fungal Spore Monitoring: Best Practises and Guidelines. Aerobiologia, 40, 39-55. https://doi.org/10.1007/s10453-022-09755-6
|
[73]
|
Schaefer, J., Milling, M., Schuller, B.W., Bauer, B., Brunner, J.O., Traidl-Hoffmann, C., et al. (2021) Towards Automatic Airborne Pollen Monitoring: From Commercial Devices to Operational by Mitigating Class-Imbalance in a Deep Learning Approach. Science of the Total Environment, 796, Article 148932. https://doi.org/10.1016/j.scitotenv.2021.148932
|
[74]
|
Maya-Manzano, J.M., Tummon, F., Abt, R., Allan, N., Bunderson, L., Clot, B., et al. (2023) Towards European Automatic Bioaerosol Monitoring: Comparison of 9 Automatic Pollen Observational Instruments with Classic Hirst-Type Traps. Science of the Total Environment, 866, Article 161220. https://doi.org/10.1016/j.scitotenv.2022.161220
|
[75]
|
Scheifinger, H., Belmonte, J., Buters, J., Celenk, S., Damialis, A., Dechamp, C., et al. (2012) Monitoring, Modelling and Forecasting of the Pollen Season. In: Sofiev, M. and Bergmann, K.C., Eds., Allergenic Pollen, Springer, 71-126. https://doi.org/10.1007/978-94-007-4881-1_4
|
[76]
|
Plaza, M.P., Kolek, F., Leier-Wirtz, V., Brunner, J.O., Traidl-Hoffmann, C. and Damialis, A. (2022) Detecting Airborne Pollen Using an Automatic, Real-Time Monitoring System: Evidence from Two Sites. International Journal of Environmental Research and Public Health, 19, Article 2471. https://doi.org/10.3390/ijerph19042471
|
[77]
|
Ito, Y., Hattori, R., Mase, H., Watanabe, M. and Shiotani, I. (2008) Forecasting Models for Sugi (Cryptomeria japonica D. Don) Pollen Count Showing an Alternate Dispersal Rhythm. Allergology International, 57, 321-329. https://doi.org/10.2332/allergolint.o-07-520
|
[78]
|
Islam, M. and Shehzad, F. (2022) A Prediction Model Optimization Critiques through Centroid Clustering by Reducing the Sample Size, Integrating Statistical and Machine Learning Techniques for Wheat Productivity. Scientifica, 2022, Article ID: 7271293. https://doi.org/10.1155/2022/7271293
|