[1]
|
Xue, S. (2021) Overview of Computer Architecture Development Direction Breaking through Von Neumann Architecture. International Core Journal of Engineering, 7, 330-334.
|
[2]
|
Troiler-McKinstry, S. (2020) Impact of Ferroelectricity. American Ceramic Society Bulletin, 99, 22-23.
|
[3]
|
Chen, H., Zhou, X., Tang, L., Chen, Y., Luo, H., Yuan, X., et al. (2022) HfO2-Based Ferroelectrics: From Enhancing Performance, Material Design, to Applications. Applied Physics Reviews, 9, Article 011307. https://doi.org/10.1063/5.0066607
|
[4]
|
Sharma, D.K., Khosla, R. and Sharma, S.K. (2015) Multilevel Metal/Pb(Zr0.52Ti0.48)O3/TiOxNy/Si for Next Generation Feram Technology Node. Solid-State Electronics, 111, 42-46. https://doi.org/10.1016/j.sse.2015.04.006
|
[5]
|
Kohlstedt, H., Mustafa, Y., Gerber, A., Petraru, A., Fitsilis, M., Meyer, R., et al. (2005) Current Status and Challenges of Ferroelectric Memory Devices. Microelectronic Engineering, 80, 296-304. https://doi.org/10.1016/j.mee.2005.04.084
|
[6]
|
Le, H.V., Takahashi, M. and Sakai, S. (2011) Downsizing of Ferroelectric-Gate Field-Effect-Transistors for Ferroelectric-NAND Flash Memory Cells. Proceedings of 2011 3rd IEEE International Memory Workshop (IMW), Monterey, CA, USA, 22-25 May 2011, 1-4.
|
[7]
|
Böscke, T.S., Müller, J., Bräuhaus, D., Schröder, U. and Böttger, U. (2011) Ferroelectricity in Hafnium Oxide Thin Films. Applied Physics Letters, 99, Article 102903. https://doi.org/10.1063/1.3634052
|
[8]
|
Bousquet, E., Spaldin, N.A. and Ghosez, P. (2010) Strain-Induced Ferroelectricity in Simple Rocksalt Binary Oxides. Physical Review Letters, 104, Article 037601. https://doi.org/10.1103/physrevlett.104.037601
|
[9]
|
Park, M.H., Schenk, T. and Schroeder, U. (2019) Dopants in Atomic Layer Deposited HfO2 Thin Films. In: Schroeder, U., Hwang, C.S. and Funakubo, H., Eds., Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices, Elsevier, 49-74. https://doi.org/10.1016/b978-0-08-102430-0.00005-x
|
[10]
|
Batra, R., Huan, T.D., Jones, J.L., Rossetti, G. and Ramprasad, R. (2017) Factors Favoring Ferroelectricity in Hafnia: A First-Principles Computational Study. The Journal of Physical Chemistry C, 121, 4139-4145. https://doi.org/10.1021/acs.jpcc.6b11972
|
[11]
|
袁国亮, 王琛皓, 唐文彬, 等, HfO2基铁电薄膜的结构、性能调控及典型器件应用[J]. 物理学报, 2023, 72(9): 241-262.
|
[12]
|
Howard, C.J., Kisi, E.H., Roberts, R.B. and Hill, R.J. (1990) Neutron Diffraction Studies of Phase Transformations between Tetragonal and Orthorhombic Zirconia in Magnesia-Partially-Stabilized Zirconia. Journal of the American Ceramic Society, 73, 2828-2833. https://doi.org/10.1111/j.1151-2916.1990.tb06682.x
|
[13]
|
Fina, I. and Sánchez, F. (2021) Epitaxial Ferroelectric HfO2 Films: Growth, Properties, and Devices. ACS Applied Electronic Materials, 3, 1530-1549. https://doi.org/10.1021/acsaelm.1c00110
|
[14]
|
Muller, J., Polakowski, P., Riedel, S., Mueller, S., Yurchuk, E. and Mikolajick, T. (2014) Ferroelectric Hafnium Oxide a Game Changer to FRAM? 2014 14th Annual Non-Volatile Memory Technology Symposium (NVMTS), Jeju, 27-29 October 2014, 1-7. https://doi.org/10.1109/nvmts.2014.7060838
|
[15]
|
Katayama, K., Shimizu, T., Sakata, O., Shiraishi, T., Nakamura, S., Kiguchi, T., et al. (2016) Growth of (111)-Oriented Epitaxial and Textured Ferroelectric Y-Doped HfO2 Films for Downscaled Devices. Applied Physics Letters, 109, Article No. 112901. https://doi.org/10.1063/1.4962431
|
[16]
|
Oh, I., Kim, M., Lee, J., Lee, C., Lansalot-Matras, C., Noh, W., et al. (2013) The Effect of La2O3-Incorporation in HfO2 Dielectrics on Ge Substrate by Atomic Layer Deposition. Applied Surface Science, 287, 349-354. https://doi.org/10.1016/j.apsusc.2013.09.153
|
[17]
|
Mueller, S., Mueller, J., Singh, A., Riedel, S., Sundqvist, J., Schroeder, U., et al. (2012) Incipient Ferroelectricity in Al-Doped HfO2 Thin Films. Advanced Functional Materials, 22, 2412-2417. https://doi.org/10.1002/adfm.201103119
|
[18]
|
Zhang, Y., Fan, Z., Wang, D., Wang, J., Zou, Z., Li, Y., et al. (2020) Enhanced Ferroelectric Properties and Insulator—Metal Transition-Induced Shift of Polarization-Voltage Hysteresis Loop in VOX-Capped Hf0.5Zr0.5O2 Thin Films. ACS Applied Materials & Interfaces, 12, 40510-40517. https://doi.org/10.1021/acsami.0c10964
|
[19]
|
Cheema, S.S., Kwon, D., Shanker, N., dos Reis, R., Hsu, S., Xiao, J., et al. (2020) Enhanced Ferroelectricity in Ultrathin Films Grown Directly on Silicon. Nature, 580, 478-482. https://doi.org/10.1038/s41586-020-2208-x
|
[20]
|
祝祺, 杨浩. 外延生长的菱方相Hf0.5Zr0.5O2薄膜的铁电性[J]. 应用物理, 2022, 12(1): 1-7.
|
[21]
|
Yun, Y., Buragohain, P., Li, M., Ahmadi, Z., Zhang, Y., Li, X., et al. (2022) Intrinsic Ferroelectricity in Y-Doped HfO2 Thin Films. Nature Materials, 21, 903-909. https://doi.org/10.1038/s41563-022-01282-6
|
[22]
|
Song, T., Tan, H., Bachelet, R., Saint-Girons, G., Fina, I. and Sánchez, F. (2021) Impact of La Concentration on Ferroelectricity of La-Doped HfO2 Epitaxial Thin Films. ACS Applied Electronic Materials, 3, 4809-4816. https://doi.org/10.1021/acsaelm.1c00672
|
[23]
|
李敏, 时鑫娜, 张泽霖, 吉彦达, 樊济宇, 杨浩. 柔性Pb(Zr0.53Ti0.47)O3薄膜的高温铁电特性[J]. 物理学报, 2019, 68(8): 223-228.
|
[24]
|
Lyu, J., Fina, I., Solanas, R., Fontcuberta, J. and Sánchez, F. (2019) Growth Window of Ferroelectric Epitaxial Hf0.5Zr0.5O2 Thin Films. ACS Applied Electronic Materials, 1, 220-228. https://doi.org/10.1021/acsaelm.8b00065
|
[25]
|
Chernikova, A., Kozodaev, M., Markeev, A., Negrov, D., Spiridonov, M., Zarubin, S., et al. (2016) Ultrathin Hf0.5Zr0.5O2 Ferroelectric Films on Si. ACS Applied Materials & Interfaces, 8, 7232-7237. https://doi.org/10.1021/acsami.5b11653
|