[1]
|
Zhou, F., Zhou, J., Wang, W., Zhang, X., Ji, Y., Zhang, P., et al. (2019) Unexpected Rapid Increase in the Burden of NAFLD in China from 2008 to 2018: A Systematic Review and Meta‐Analysis. Hepatology, 70, 1119-1133. https://doi.org/10.1002/hep.30702
|
[2]
|
Polyzos, S., Kountouras, J. and Zavos, C. (2009) Nonalcoholic Fatty Liver Disease: The Pathogenetic Roles of Insulin Resistance and Adipocytokines. Current Molecular Medicine, 9, 299-314. https://doi.org/10.2174/156652409787847191
|
[3]
|
卫建筠, 杨海红, 曾文铤. 非酒精性脂肪肝患者血清瘦素水平与肝纤维化关系研究[J]. 临床医学工程, 2009, 16(4): 46-47.
|
[4]
|
Margetic, S., Gazzola, C., Pegg, G. and Hill, R. (2002) Leptin: A Review of Its Peripheral Actions and Interactions. International Journal of Obesity, 26, 1407-1433. https://doi.org/10.1038/sj.ijo.0802142
|
[5]
|
非酒精性脂肪性肝病防治指南(2018更新版) [J]. 传染病信息, 2018, 31(5): 393-402+420.
|
[6]
|
Zhou, Y. and Rui, L. (2013) Leptin Signaling and Leptin Resistance. Frontiers of Medicine, 7, 207-222. https://doi.org/10.1007/s11684-013-0263-5
|
[7]
|
Taga, T. and Kishimoto, T. (1997) gp130 and the Interleukin-6 Family of Cytokines. Annual Review of Immunology, 15, 797-819. https://doi.org/10.1146/annurev.immunol.15.1.797
|
[8]
|
Myers, M.G. and Olson, D.P. (2014) Snapshot: Neural Pathways That Control Feeding. Cell Metabolism, 19, 732-732.e1. https://doi.org/10.1016/j.cmet.2014.03.015
|
[9]
|
Bates, S.H. and Myers, M.G. (2003) The Role of Leptin Receptor Signaling in Feeding and Neuroendocrine Function. Trends in Endocrinology & Metabolism, 14, 447-452. https://doi.org/10.1016/j.tem.2003.10.003
|
[10]
|
Hekerman, P., Zeidler, J., Bamberg‐Lemper, S., Knobelspies, H., Lavens, D., Tavernier, J., et al. (2004) Pleiotropy of Leptin Receptor Signalling Is Defined by Distinct Roles of the Intracellular Tyrosines. The FEBS Journal, 272, 109-119. https://doi.org/10.1111/j.1432-1033.2004.04391.x
|
[11]
|
杨海红, 曾文铤, 卫建筠. 非酒精性脂肪肝患者血清瘦素水平与肝纤维化关系研究[J]. 临床医学工程, 2009, 16(4): 46-47.
|
[12]
|
戚宇琪, 郭杰, 郭晓霞. 基于POMC/AgRP神经元探讨瘦素调节食欲的作用机制[J]. 医学综述, 2019, 25(23): 4646-4651.
|
[13]
|
Rahmouni, K., Sigmund, C.D., Haynes, W.G. and Mark, A.L. (2009) Hypothalamic ERK Mediates the Anorectic and Thermogenic Sympathetic Effects of Leptin. Diabetes, 58, 536-542. https://doi.org/10.2337/db08-0822
|
[14]
|
Luo, X., Liao, R., Hanley, K.L., Zhu, H.H., Malo, K.N., Hernandez, C., et al. (2016) Dual Shp2 and Pten Deficiencies Promote Non-Alcoholic Steatohepatitis and Genesis of Liver Tumor-Initiating Cells. Cell Reports, 17, 2979-2993. https://doi.org/10.1016/j.celrep.2016.11.048
|
[15]
|
Donato Jr., J., Frazão, R. and Elias, C.F. (2010) The PI3K Signaling Pathway Mediates the Biological Effects of Leptin. Arquivos Brasileiros de Endocrinologia & Metabologia, 54, 591-602. https://doi.org/10.1590/s0004-27302010000700002
|
[16]
|
Polyzos, S.A., Kountouras, J. and Mantzoros, C.S. (2015) Leptin in Nonalcoholic Fatty Liver Disease: A Narrative Review. Metabolism, 64, 60-78. https://doi.org/10.1016/j.metabol.2014.10.012
|
[17]
|
Cota, D., Proulx, K., Smith, K.A.B., Kozma, S.C., Thomas, G., Woods, S.C., et al. (2006) Hypothalamic mTOR Signaling Regulates Food Intake. Science, 312, 927-930. https://doi.org/10.1126/science.1124147
|
[18]
|
Imajo, K., Fujita, K., Yoneda, M., Nozaki, Y., Ogawa, Y., Shinohara, Y., et al. (2012) Hyperresponsivity to Low-Dose Endotoxin during Progression to Nonalcoholic Steatohepatitis Is Regulated by Leptin-Mediated Signaling. Cell Metabolism, 16, 44-54. https://doi.org/10.1016/j.cmet.2012.05.012
|
[19]
|
Cai, C.X., Buddha, H., Castelino-Prabhu, S., Zhang, Z., Britton, R.S., Bacon, B.R., et al. (2017) Activation of Insulin-PI3K/Akt-p70S6K Pathway in Hepatic Stellate Cells Contributes to Fibrosis in Nonalcoholic Steatohepatitis. Digestive Diseases and Sciences, 62, 968-978. https://doi.org/10.1007/s10620-017-4470-9
|
[20]
|
Liu, X., Liu, W., Ding, C., Zhao, Y., Chen, X., Ling, D., et al. (2021) Taxifolin, Extracted from Waste Larix Olgensis Roots, Attenuates Ccl4-Induced Liver Fibrosis by Regulating the PI3K/AKT/mTOR and TGF-β1/Smads Signaling Pathways. Drug Design, Development and Therapy, 15, 871-887. https://doi.org/10.2147/dddt.s281369
|
[21]
|
王鑫蕾, 倪晓晴, 苏建友, 等. AKT/FOXO1信号通路在限热卡高脂饮食改善肥胖小鼠肝脏胰岛素抵抗中的作用[J]. 实用医学杂志, 2020, 36(16): 2199-2204.
|
[22]
|
廖丹, 钱波, 徐敏. FoxO1转录因子与肝纤维化的关系研究进展[J]. 中国医药导报, 2019, 16(13): 54-57.
|
[23]
|
Min, H., Kapoor, A., Fuchs, M., Mirshahi, F., Zhou, H., Maher, J., et al. (2012) Increased Hepatic Synthesis and Dysregulation of Cholesterol Metabolism Is Associated with the Severity of Nonalcoholic Fatty Liver Disease. Cell Metabolism, 15, 665-674. https://doi.org/10.1016/j.cmet.2012.04.004
|
[24]
|
Guo, C., Chen, W., Liao, C., Huang, K., Chen, P. and Yang, C. (2018) Effects of Chinese Medicinal Formula BNG-1 on Phosphodiesterase 3B Expression, Hepatic Steatosis, and Insulin Resistance in High Fat Diet-Induced NAFLD Mice. International Journal of Medical Sciences, 15, 1194-1202. https://doi.org/10.7150/ijms.26941
|
[25]
|
Zhang, Y., Chen, M., Zhou, Y., Yi, L., Gao, Y., Ran, L., et al. (2015) Resveratrol Improves Hepatic Steatosis by Inducing Autophagy through the cAMP Signaling Pathway. Molecular Nutrition & Food Research, 59, 1443-1457. https://doi.org/10.1002/mnfr.201500016
|
[26]
|
Geng, T., Liu, Y., Xu, Y., Jiang, Y., Zhang, N., Wang, Z., et al. (2018) H19 lncRNA Promotes Skeletal Muscle Insulin Sensitivity in Part by Targeting AMPK. Diabetes, 67, 2183-2198. https://doi.org/10.2337/db18-0370
|
[27]
|
李鑫, 王文川, 殷建敏, 等. 水飞蓟素通过JAK/STAT信号通路抑制老年非酒精性脂肪肝大鼠肝细胞增殖[J]. 中国老年学杂志, 2022, 42(18): 4576-4579.
|
[28]
|
马东晓. 芹菜素抗非酒精性脂肪肝作用的机制研究[D]: [硕士学位论文]. 洛阳: 河南科技大学, 2019.
|
[29]
|
黄谨. 鬼箭羽水提取物对非酒精性脂肪肝大鼠肝纤维化的影响[D]: [硕士学位论文]. 恩施: 湖北民族学院, 2018.
|
[30]
|
王卓媛. 基于网络药理学及分子对接技术探讨补气消脂方治疗非酒精性脂肪性肝病的作用机制[J]. 中药新药与临床药理, 2021, 32(12): 1797-1806.
|
[31]
|
徐拥建, 冯高飞, 杨钦河, 等. 参苓白术散对NAFLD大鼠肝脏超微结构及mTOR、STAT3蛋白磷酸化的影响[J]. 中药材, 2019, 42(11): 2669-2673.
|
[32]
|
喻松仁, 白洋, 王河宝, 等. 温胆汤对肥胖大鼠血清瘦素及下丘脑STAT3和SOCS3表达的影响[J]. 中医杂志, 2019, 60(3): 232-236.
|
[33]
|
郑培永, 王磊, 张莉, 等. 强肝胶囊对非酒精性脂肪肝大鼠肝脏瘦素受体及P-JAK2和P-STAT3蛋白的影响[J]. 中国中西医结合消化杂志, 2009, 17(3): 141-145.
|
[34]
|
郑琳颖, 潘竞锵, 等. 白芍总苷下调果糖-高脂诱导大鼠非酒精性脂肪性肝病ERK1/2, TLR4和TRL9蛋白表达的作用[J]. 中国药学杂志, 2014, 49(24): 2168-2172.
|
[35]
|
廖媛. 基于MAPK-ERK-TLRs通路探讨脂必泰对非酒精性脂肪性肝病的作用机制及临床疗效研究[D]: [博士学位论文]. 广州: 广州中医药大学, 2020.
|
[36]
|
孙瑞芳, 刘石柱, 李瑞东, 等. 化浊抗纤保肝汤调控PI3K/AKT/mTOR途径抑制肝纤维化的机制研究[J]. 天津中医药, 2022, 39(7): 911-916.
|
[37]
|
张恒. 益母草苷通过促进脂质自噬缓解非酒精性脂肪肝的机制研究[D]: [硕士学位论文]. 秦皇岛: 华北理工大学, 2021.
|
[38]
|
徐拥建, 张云城, 冯高飞, 等. 参芩白术散对NAFLD大鼠肝细胞、Kupffer细胞mTOR通路相关基因及蛋白表达影响的实验研究[J]. 湖南中医杂志, 2020, 36(7): 147-152.
|
[39]
|
曾勇, 彭孟云, 张玉蓉, 等. 基于IRS-PI3K-AKT-mTOR信号通路探讨祛痰活血方治疗非酒精性脂肪性肝病大鼠的机制[J]. 西南医科大学学报, 2020, 43(4): 323-328.
|
[40]
|
谯明, 朱毅, 杨建华, 等. 基于网络药理学-分子对接探讨清热卡森颗粒防治脂肪肝的作用机制及实验验证[J]. 新疆医科大学学报, 2022, 45(7): 754-763.
|
[41]
|
魏爽, 李冀, 付强, 等. 黄芪-葛根药对通过PI3K/Akt/FoxO1通路调控糖异生作用治疗糖尿病大鼠作用机制[J]. 中华中医药学刊, 2022, 40(8): 32-38+260.
|
[42]
|
刘梦, 刘舒庭, 卢曦, 等. 基于AMPK/ACC信号通路研究雷公菌活性成分对羟基苯甲醛对大鼠非酒精性脂肪肝的保护作用[J]. 中国现代应用药学, 2022, 39(19): 2429-2436.
|
[43]
|
田硕, 吴丽丽, 张卫华, 等. 基于AMPK/ACC信号通路探讨夏枯草提取物调节ZDF大鼠脂代谢的机制[J]. 中国实验方剂学杂志, 2019, 25(9): 82-88.
|
[44]
|
田香. 梓醇对非酒精性脂肪肝病的预防作用及其机制研究[D]: [博士学位论文]. 武汉: 湖北大学, 2020.
|
[45]
|
Huang, Y., Lang, H., Chen, K., Zhang, Y., Gao, Y., Ran, L., et al. (2020) Resveratrol Protects against Nonalcoholic Fatty Liver Disease by Improving Lipid Metabolism and Redox Homeostasis via the PPARα Pathway. Applied Physiology, Nutrition, and Metabolism, 45, 227-239. https: //doi.org/10.1139/apnm-2019-0057
|
[46]
|
余燕均, 李昌平. 小檗碱治疗非酒精性脂肪肝病相关通路的研究进展[J]. 现代临床医学, 2021, 47(4): 307-309.
|
[47]
|
姚笑睿, 夏凡, 唐外姣, 等. 护肝清脂片对非酒精性脂肪肝大鼠肝脏中AMPK通路激活及NF-κB-p65蛋白的影响[J]. 南方医科大学学报, 2017, 37(1): 56-62.
|