HIF-1α在高原低氧心肌损伤中的研究进展
Research Progress of HIF-1α in High Altitude Hypoxic Myocardial Injury
DOI: 10.12677/tcm.2024.138290, PDF, HTML, XML,   
作者: 杜 珂:青海大学医学院,青海 西宁;祁永福*:青海大学医学院,青海 西宁;青海省中医院中医药研究所,青海 西宁
关键词: 高原低氧心肌损伤HIF-1αHigh Altitude Hypoxia Myocardial Damage HIF-1α
摘要: 高原心脏损伤(HACI)是由于高原缺氧引起的常见组织损伤之一,严重时可危及生命。研究表明,缺氧诱导因子-1α (HIF-1α)是一种氧敏感转录因子,在缺氧条件下显著增高,介导了机体对缺氧的适应性代谢反应,通过改善线粒体功能,降低细胞氧化应激反应,激活心肌细胞缺氧信号转导通路和下游基因,在HACI中起关键作用。HIF-1α的相关生物学研究显著提高了对氧稳态的理解,本文就HIF-1α在HACI中的作用及其相关作用机制进行综述,期望为治疗HACI提供部分证据。
Abstract: High altitude cardiac injury (HACI) is one of the common tissue injuries caused by high altitude hypoxia, which can be life-threatening in severe cases. Hypoxia-inducible factor-1α (HIF-1α) has been shown to be an oxygen-sensitive transcription factor that increases markedly in hypoxic conditions, mediates the adaptive metabolic response to hypoxia in the body, and plays a key role in HACI by improving mitochondrial function, decreasing cellular oxidative stress responses, activating cardiomyocyte hypoxic signaling pathways and downstream genes. Relevant biological studies on HIF-1α have significantly improved the understanding of oxygen homeostasis, and this article reviews the role of HIF-1α in HACI and its associated mechanisms of action, with the hope of providing some evidence for the treatment of HACI.
文章引用:杜珂, 祁永福. HIF-1α在高原低氧心肌损伤中的研究进展[J]. 中医学, 2024, 13(8): 1946-1952. https://doi.org/10.12677/tcm.2024.138290

1. 前言

高海拔位置定义为海拔2500米以上的区域[1] [2]。高原地区最显著的特征是低气压。随着吸入气体中的氧含量在低压条件下降低,组织氧水平显著降低,这可能对人类健康构成巨大威胁[3] [4]。在处于更高的海拔时,人类的心血管系统会产生很大变化,心率、血压和肺动脉压力的升高,以适应不断变化的环境条件[5]。研究表明,心血管系统性能的变化可能是高海拔缺氧期间的一种代偿机制[6]。缺氧期间为了增加心脏泵血的效率,心脏会通过增加心率来提高每分钟泵血量,从而增加氧输送到各个组织;心肌收缩力的增加可以增加每次心搏时的血液排出量,从而提高有效血流量和组织氧供;高海拔缺氧状态下,血管会发生扩张,特别是周围小动脉和毛细血管。这种扩张可以降低外周阻力,增加有效血流量和氧供;长期暴露在高海拔缺氧环境中,身体会逐渐适应产生更多的红细胞,这样可以增加血液携带氧气的能力,以增加氧供给。而过度和异常的变化会导致甚至加剧急性高原病(AMS),这是最常见的高原疾病之一[7] [8]。无法适应高原诱导的缺氧可迅速导致高原心脏损伤、高原肺水肿和高原脑水肿。高原诱导的缺氧、交感神经激活和碱中毒可能是心脏缺血和心律失常的诱发因素[9],过度的氧化应激和炎症反应导致心肌细胞凋亡[10],这可能会导致心脏性猝死,这是高海拔山地运动期间所有死亡的30%的原因[9]。以乙酰唑胺、地塞米松为代表的化药因副作用明显[11],限制了其在常规预防中的应用,而以主要含有红景天等高原植物为代表的中药复方制剂,则面临资源相对有限、价格昂贵、过度开发破坏高原生态环境的问题[12]

2. HIF-1α

氧气浓度降低是缺氧的主要特征,是影响好氧物种生存的主要因素,在心血管疾病中发挥了重要作用[13]。缺氧诱导因子(HIF)是细胞对低氧做出应答的关键因子[13],是一类与缺氧生理反应密切相关的核转录调控因子。分为3种亚型,各有αβ亚单位:HIF-1αβ、HIF-2αβ、HIF-3αβ。在任何刺激下,HIFs的激活导致HIF-α亚单位的稳定。正常情况下,这种亚单位的半衰期非常短,不到5分钟。相反,β亚单位在正常氧气条件下保持一致的表达水平[14]。在正常氧气条件下,HIF脯氨酰羟化酶(PHDs)和天冬酰胺羟化酶(抑制HIF或FIH的因子)修饰HIF-1α,导致其降解并抑制转录活性。在缺氧条件下,HIF水平稳定增加,这些蛋白质有助于细胞氧应激反应8,这些修饰受到限制,使HIF-1α能够易位到细胞核,与HIF-1β形成二聚体,并与缺氧反应元件(HREs)结合以促进转录[15] [16]。HIF的另一种亚型,称为HIF-2α,可检测氧水平,并承担在血管内关重要的功能[17]。HIFs的调节存在显著差异,与HIF-1α相比,HIF2α通常在相对较高的氧水平下表现出稳定性[18]。尽管它们有相似之处,但当与替代转录因子和共调节因子相互作用时,它们也对不同的靶基因发挥不同的调节作用[19]。HIF-1α激活糖酵解基因,减少氧的使用,并且降低活性氧(ROS)的产生,而HIF-2α增强促红细胞生成素(EPO)的合成和铁代谢,并调节脂肪酸的合成和摄取、炎症、纤维化和血管肿瘤[20] [21]。HIF-1是目前研究最广泛的分子之一。在常氧条件下,HIF-1α上的脯氨酸残基被脯氨酰羟化酶hy羟化,脯氨酰羟化酶被E3泛素连接酶识别和泛素化,并被蛋白酶体快速降解。然而,在缺氧状态下,脯氨酸羟化酶(使用氧气作为辅助基质)受到抑制,导致HIF-1α在细胞质中积累,随后进入细胞核,与HIF-1β结合形成二聚体,调节下游基因的表达[22]。全基因组染色质免疫沉淀(ChIP)分析显示,几个基因的启动子区都有一个HIF-1结合元件(5’-a/TCGTG-3’,缺氧反应元件,HRE)。这种元素可以引发各种代谢反应,包括与细胞能量代谢、血管再生、细胞增殖以及免疫和炎症反应相关的反应[22]

HIF相关的缺氧信号通路和糖酵解代谢之间的相互联系后来被认为是确定HIF在心脏和肿瘤代谢通路中的关键作用的基础[23]。HIF-1蛋白的空间结构得到了广泛研究,导致了1995年初HIF-1的首次分离、纯化和表征。这揭示了一个异二聚体复合物,包括一个120 kDa的HIF-1α亚单位和一个91~94 kDa的HIF-1β亚单位(也称为芳香烃受体核转运蛋白,ARNT) [24]。同年晚些时候,还测定了HIF-1α和HIF-1β的蛋白质结构域[25]。在1996年,Semenza等人通过证明HIF-1α能够诱导在血管生成中起关键作用的VEGF,取得了另一项重大发现[26] [27]。冠状动脉疾病可导致心肌缺血,导致灌注不足和局部缺氧。VEGF通过促进侧支血管或新生血管等代偿过程的发展,在血管生成中发挥关键作用,见于慢性心肌缺血、视网膜缺血和肿瘤进展等疾病。不同于HIF-1诱导的EPO在特定细胞中的有限表达,各种细胞类型,无论是原代还是培养的,都显示出HIF-1诱导的VEGF表达增加以响应缺氧,这为HIF-1的广泛和保守性质提供了额外的证据。1998年,HIF-1α的体内生物学功能得到证实,在缺乏功能性HIF-1α的情况下,与血管发育和氧依赖相关的基因表达严重受损,导致胚胎肥胖[28]。总体而言,HIF-1α在调节血管发育和红细胞生成以在血流中转运氧的氧感应机制中起着至关重要的作用。

3. HIF-1α与心肌损伤

缺氧的特征是由各种因素导致的血液供应不足。它是心肌细胞损伤的主要原因[29] [30]。缺氧会损害红细胞、血管内皮细胞和其他组织,如肺、脑和心肌。多项研究表明,观察缺氧诱导因子的转换可以从氧气浓度逐渐下降、急性和慢性缺氧的表现以及缺氧的地理特征这几个方面进行观察。有实验研究[31],研究了不同时间和不同海拔高度缺氧对大鼠组织的影响,该研究表明大鼠心脏中的HIF-1α蛋白水平在常氧组和低氧组大鼠之间显示出轻微的差异。与常氧组相比,低氧组HIF-1α蛋白水平略有升高。HIF-1α蛋白水平最高的是海拔8000米的低氧组和72小时低氧暴露组。缺氧诱导HIF-1α逐渐上调,进而诱导适应性基因红细胞生成、血管内皮生长因子、葡萄糖转运蛋白-1和一氧化氮合酶的表达[32]。这意味着在低氧条件下HIF-1α蛋白水平增加,并且在低氧条件下在细胞水平上逐渐发生系统适应[30]。HIF及其蛋白质家族通过调节氧依赖性信号级联和随后的反应来感知和响应向脑、肺和心脏输送的氧减少、缺氧。缺氧被发现是HACE、HAPE、缺血性疾病和心肌梗死代谢变化的主要驱动因素之一,HIF可能是一个有吸引力的治疗靶点[33]

4. HIF-1α与细胞凋亡

凋亡是心肌细胞死亡的主要形式之一[34] [35],缺氧诱导的凋亡是心肌损伤的强有力指标。缺氧诱导因子-1α (HIF-1α)是在研究肝癌细胞的基因功能时首次发现的[36]。发现HIF-1α调节许多缺氧相关基因的转录,如细胞的基础代谢、存活、分化和凋亡[37]。HIF-1α也参与缺氧反应的下游信号转导过程[38]。HIF-1α/BNIP3通路可诱导心肌缺血再灌注损伤时H9c2的自噬和凋亡[39]。缺氧通过上调LRG1和HIF-1α的表达降低细胞活性,促进细胞凋亡和自噬[40]。HIF-1α通过影响BNIP3的表达并参与调节心肌细胞H9c2凋亡途径,抑制缺氧期间的大鼠心肌细胞凋亡[41]。然而,HIF-1α在缺氧诱导的心肌细胞凋亡中的机制作用仍不清楚。

5. HIF-1α与炎症

炎症在缺氧应激的生理反应中起着关键作用。细胞缺氧可以触发几种炎症介质的表达,这些介质发出组织损伤的信号并启动存活反应。几项研究表明,在高海拔地区,或在急性缺氧的情况下,甚至在没有感染的情况下,选择的炎症介质上调。由于这些研究集中在候选的炎症标记物上,大规模的转录组学或蛋白质组学研究将提供对慢性缺氧期间炎症网络如何转移的更好理解[42]。在炎症方面,缺氧期间IκBα的磷酸化会导致IκBα降解和NF-κB激活[36]。然而,HIF-1α激活可以抑制NF-κB通路并诱导HO-1,从而减弱促炎细胞因子的产生,抑制组织炎症并降低MIRI的严重程度。

6. HIF-1α与氧化应激

在氧化应激方面,HIF-1α也起着重要作用。缺氧诱导因子-1α (HIF-1α)通过核转位和基因表达调节介导对氧化应激的适应性反应[43]。HIF-1α可以上调Nrf2,然后通过增强内在ROS清除率来激活抗氧化酶以保护细胞[44] [45]。研究表明,HIF-1α在缺氧时通过多种途径降低ROS水平,包括:通过将细胞色素c氧化酶亚基COX4-1转换为COX4-2来提高复合物IV的效率;诱导丙酮酸脱氢酶激酶1和乳酸脱氢酶A,前者将丙酮酸从线粒体分流,后者将丙酮酸转化为乳酸;诱导BNIP3,触发线粒体选择性自噬;和microRNA-210的诱导,其阻断氧化磷酸化所需的Fe/S簇的组装[46]。HIF-1α的研究主要集中在其转录活性依赖性功能上。然而有研究表明[43],mtHIF-1α的氧化应激相关效应独立于其向细胞核的易位而发生,并且不需要其转录活性。HIF-1α在体外和体内响应氧化应激时被募集到线粒体,这表明mtHIF-1α可能参与多种氧化应激相关疾病。

7. 展望

近十年来,随着生物医学研究的迅速发展,HACI的机制得到了广泛的研究。HACI由多种因素介导。在低氧条件下,许多因素参与HIF-1α调节,HIF-1α通过激活靶基因诱导多种蛋白的表达,HIF-1α与许多因子之间存在相互调节,与各信号通路相互影响,发挥重要的协同或拮抗作用,其中诱导或抑制因素、作用靶点及通路中是否还涉及其他相关因子尚不完全清楚,有待进一步实验证明。缺氧的程度、缺氧缺血的持续时间及其在不同类型细胞中的表达,可能是影响其两面性的重要因素。在整个病理生理过程中,许多协同机制可能促进心肌细胞损伤。HIF-1α可以通过各种复杂的机制减轻心肌细胞损伤。HIF-1α在HACI中保护作用的潜在机制,包括参与线粒体功能、细胞存活、凋亡和氧化应激基因的作用,仍不清楚。HIF-1α调节多个靶基因,因此可能通过不同的机制在HACI进展的不同阶段发挥不同的作用。因此,进一步研究HIF-1α在HACI病理生理学中的作用及其潜在机制至关重要。

NOTES

*通讯作者。

参考文献

[1] Parati, G., Agostoni, P., Basnyat, B., Bilo, G., Brugger, H., Coca, A., et al. (2018) Clinical Recommendations for High Altitude Exposure of Individuals with Pre-Existing Cardiovascular Conditions. European Heart Journal, 39, 1546-1554.
https://doi.org/10.1093/eurheartj/ehx720
[2] Park, J.H., Moon, S., Kang, D.H., Um, H.J., Kang, S., Kim, J.Y., et al. (2018) Diquafosol Sodium Inhibits Apoptosis and Inflammation of Corneal Epithelial Cells via Activation of Erk1/2 and RSK: In Vitro and in Vivo Dry Eye Model. Investigative Opthalmology & Visual Science, 59, 5108-5115.
https://doi.org/10.1167/iovs.17-22925
[3] Meier, D., Collet, T., Locatelli, I., Cornuz, J., Kayser, B., Simel, D.L., et al. (2017) Does This Patient Have Acute Mountain Sickness? The Rational Clinical Examination Systematic Review. JAMA, 318, 1810-1819.
https://doi.org/10.1001/jama.2017.16192
[4] Rathor, R., Suryakumar, G. and Singh, S.N. (2021) Diet and Redox State in Maintaining Skeletal Muscle Health and Performance at High Altitude. Free Radical Biology and Medicine, 174, 305-320.
https://doi.org/10.1016/j.freeradbiomed.2021.07.024
[5] Bärtsch, P. and Gibbs, J.S.R. (2007) Effect of Altitude on the Heart and the Lungs. Circulation, 116, 2191-2202.
https://doi.org/10.1161/circulationaha.106.650796
[6] Maufrais, C., Rupp, T., Bouzat, P., Doucende, G., Verges, S., Nottin, S., et al. (2016) Heart Mechanics at High Altitude: 6 Days on the Top of Europe. European Heart JournalCardiovascular Imaging, 18, 1369-1377.
https://doi.org/10.1093/ehjci/jew286
[7] Guo, W., Bian, S., Zhang, J., Li, Q., Yu, J., Chen, J., et al. (2016) Physiological and Psychological Factors Associated with Onset of High-Altitude Headache in Chinese Men Upon Acute High-Altitude Exposure at 3700 M. Cephalalgia, 37, 336-347.
https://doi.org/10.1177/0333102416646761
[8] Zila-Velasque, J.P., Grados-Espinoza, P., Morán-Mariños, C., Morales Pocco, K.O., Capcha-Jimenez, U.S. and Ortiz-Benique, Z.N. (2023) Adaptation and Altitude Sickness: A 40-Year Bibliometric Analysis and Collaborative Networks. Frontiers in Public Health, 11, Article 1069212.
https://doi.org/10.3389/fpubh.2023.1069212
[9] Woods, D., Boos, C. and Roberts, P. (2011) Cardiac Arrhythmias at High Altitude. Journal of the Royal Army Medical Corps, 157, 59-62.
https://doi.org/10.1136/jramc-157-01-10
[10] Wang, Q., Hu, L., Hu, Y., Gong, G., Tan, H., Deng, L., et al. (2016) Carbon Monoxide-Saturated Hemoglobin-Based Oxygen Carriers Attenuate High-Altitude-Induced Cardiac Injury by Amelioration of the Inflammation Response and Mitochondrial Oxidative Damage. Cardiology, 136, 180-191.
https://doi.org/10.1159/000448652
[11] Lu, H., Zhang, H. and Jiang, Y. (2020) Methazolamide in High-Altitude Illnesses. European Journal of Pharmaceutical Sciences, 148, Article ID: 105326.
https://doi.org/10.1016/j.ejps.2020.105326
[12] 苏锦松, 洪道鑫, 文检, 等. 青藏高原珍稀濒危药用植物大花红景天的资源调查[J]. 中药材, 2017, 40(5): 1046-1050.
[13] Kung-Chun Chiu, D., Pui-Wah Tse, A., Law, C., Ming-Jing Xu, I., Lee, D., Chen, M., et al. (2019) Hypoxia Regulates the Mitochondrial Activity of Hepatocellular Carcinoma Cells through HIF/HEY1/PINK1 Pathway. Cell Death & Disease, 10, Article No. 934.
https://doi.org/10.1038/s41419-019-2155-3
[14] Loboda, A., Jozkowicz, A. and Dulak, J. (2012) HIF-1 versus HIF-2—Is One More Important than the Other? Vascular Pharmacology, 56, 245-251.
https://doi.org/10.1016/j.vph.2012.02.006
[15] Jaakkola, P., Mole, D.R., Tian, Y., Wilson, M.I., Gielbert, J., Gaskell, S.J., et al. (2001) Targeting of HIF-α to the Von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation. Science, 292, 468-472.
https://doi.org/10.1126/science.1059796
[16] Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., et al. (2001) HIFα Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing. Science, 292, 464-468.
https://doi.org/10.1126/science.1059817
[17] Knutson, A.K., Williams, A.L., Boisvert, W.A. and Shohet, R.V. (2021) HIF in the Heart: Development, Metabolism, Ischemia, and Atherosclerosis. Journal of Clinical Investigation, 131, e137557.
https://doi.org/10.1172/jci137557
[18] Choudhry, H. and Harris, A.L. (2018) Advances in Hypoxia-Inducible Factor Biology. Cell Metabolism, 27, 281-298.
https://doi.org/10.1016/j.cmet.2017.10.005
[19] Downes, N.L., Laham-Karam, N., Kaikkonen, M.U. and Ylä-Herttuala, S. (2018) Differential But Complementary HIF1α and HIF2α Transcriptional Regulation. Molecular Therapy, 26, 1735-1745.
https://doi.org/10.1016/j.ymthe.2018.05.004
[20] Ramakrishnan, S.K., Taylor, M., Qu, A., Ahn, S., Suresh, M.V., Raghavendran, K., et al. (2014) Loss of Von Hippel-Lindau Protein (VHL) Increases Systemic Cholesterol Levels through Targeting Hypoxia-Inducible Factor 2α and Regulation of Bile Acid Homeostasis. Molecular and Cellular Biology, 34, 1208-1220.
https://doi.org/10.1128/mcb.01441-13
[21] Fukushima, K., Kitamura, S., Tsuji, K. and Wada, J. (2021) Sodium-Glucose Cotransporter 2 Inhibitors Work as a “Regulator” of Autophagic Activity in Overnutrition Diseases. Frontiers in Pharmacology, 12, Article 761842.
https://doi.org/10.3389/fphar.2021.761842
[22] Semenza, G.L. (2012) Hypoxia-Inducible Factors in Physiology and Medicine. Cell, 148, 399-408.
https://doi.org/10.1016/j.cell.2012.01.021
[23] Hu, Y., Zhao, Y., Li, P., Lu, H., Li, H. and Ge, J. (2023) Hypoxia and Panvascular Diseases: Exploring the Role of Hypoxia-Inducible Factors in Vascular Smooth Muscle Cells under Panvascular Pathologies. Science Bulletin, 68, 1954-1974.
https://doi.org/10.1016/j.scib.2023.07.032
[24] Wang, G.L. and Semenza, G.L. (1995) Purification and Characterization of Hypoxia-Inducible Factor 1. Journal of Biological Chemistry, 270, 1230-1237.
https://doi.org/10.1074/jbc.270.3.1230
[25] Wang, G.L., Jiang, B.H., Rue, E.A. and Semenza, G.L. (1995) Hypoxia-inducible Factor 1 Is a Basic-Helix-Loop-Helix-Pas Heterodimer Regulated by Cellular O2 Tension. Proceedings of the National Academy of Sciences of the United States of America, 92, 5510-5514.
https://doi.org/10.1073/pnas.92.12.5510
[26] Forsythe, J.A., Jiang, B., Iyer, N.V., Agani, F., Leung, S.W., Koos, R.D., et al. (1996) Activation of Vascular Endothelial Growth Factor Gene Transcription by Hypoxia-Inducible Factor 1. Molecular and Cellular Biology, 16, 4604-4613.
https://doi.org/10.1128/mcb.16.9.4604
[27] Zhao, Y., Xiong, W., Li, C., Zhao, R., Lu, H., Song, S., et al. (2023) Hypoxia-Induced Signaling in the Cardiovascular System: Pathogenesis and Therapeutic Targets. Signal Transduction and Targeted Therapy, 8, Article No. 431.
https://doi.org/10.1038/s41392-023-01652-9
[28] Iyer, N.V., Kotch, L.E., Agani, F., Leung, S.W., Laughner, E., Wenger, R.H., et al. (1998) Cellular and Developmental Control of O2 Homeostasis by Hypoxia-Inducible Factor 1α. Genes & Development, 12, 149-162.
https://doi.org/10.1101/gad.12.2.149
[29] Rustamova, Y. and Lombardi, M. (2020) Ischemic Heart Disease. In: Rustamova, Y. and Lombardi, M., Eds., Cardiac Magnetic Resonance Atlas, Springer, 63-91.
https://doi.org/10.1007/978-3-030-41830-4_3
[30] Savla, J.J., Levine, B.D. and Sadek, H.A. (2018) The Effect of Hypoxia on Cardiovascular Disease: Friend or Foe? High Altitude Medicine & Biology, 19, 124-130.
https://doi.org/10.1089/ham.2018.0044
[31] Li, X., Wang, W., Li, M., Liu, T., Tian, X. and Wu, L. (2022) Effects of Altitude and Duration of Differing Levels of Hypoxic Exposure on Hypoxia-Inducible Factor-1α in Rat Tissues. High Altitude Medicine & Biology, 23, 173-184.
https://doi.org/10.1089/ham.2021.0100
[32] Hashmi, S. and Al-Salam, S. (2012) Hypoxia-Inducible Factor-1 α in the Heart. Cardiology in Review, 20, 268-273.
https://doi.org/10.1097/crd.0b013e31826287f6
[33] Singh, M., Thomas, P., Shukla, D., Tulsawani, R., Saxena, S. and Bansal, A. (2013) Effect of Subchronic Hypobaric Hypoxia on Oxidative Stress in Rat Heart. Applied Biochemistry and Biotechnology, 169, 2405-2419.
https://doi.org/10.1007/s12010-013-0141-2
[34] Virzì, G.M., Clementi, A. and Ronco, C. (2016) Cellular Apoptosis in the Cardiorenal Axis. Heart Failure Reviews, 21, 177-189.
https://doi.org/10.1007/s10741-016-9534-y
[35] Xuan, Y., Liu, S., Li, Y., Dong, J., Luo, J., Liu, T., et al. (2017) Short-Term Vagus Nerve Stimulation Reduces Myocardial Apoptosis by Downregulating Microrna-205 in Rats with Chronic Heart Failure. Molecular Medicine Reports, 16, 5847-5854.
https://doi.org/10.3892/mmr.2017.7344
[36] Dong, W., Gao, D., Lin, H., Zhang, X., Li, N. and Li, F. (2008) New Insights into Mechanism for the Effect of Resveratrol Preconditioning against Cerebral Ischemic Stroke: Possible Role of Matrix Metalloprotease-9. Medical Hypotheses, 70, 52-55.
https://doi.org/10.1016/j.mehy.2007.04.033
[37] Ní Chróinín, D., Asplund, K., Åsberg, S., Callaly, E., Cuadrado-Godia, E., Díez-Tejedor, E., et al. (2013) Statin Therapy and Outcome after Ischemic Stroke: Systematic Review and Meta-Analysis of Observational Studies and Randomized Trials. Stroke, 44, 448-456.
https://doi.org/10.1161/strokeaha.112.668277
[38] Chen, L., Luo, S., Yan, L. and Zhao, W. (2014) A Systematic Review of Closure versus Medical Therapy for Preventing Recurrent Stroke in Patients with Patent Foramen Ovale and Cryptogenic Stroke or Transient Ischemic Attack. Journal of the Neurological Sciences, 337, 3-7.
https://doi.org/10.1016/j.jns.2013.11.027
[39] Zhang, Y., Liu, D., Hu, H., Zhang, P., Xie, R. and Cui, W. (2019) Hif-1α/BNIP3 Signaling Pathway-Induced-Autophagy Plays Protective Role during Myocardial Ischemia-Reperfusion Injury. Biomedicine & Pharmacotherapy, 120, Article ID: 109464.
https://doi.org/10.1016/j.biopha.2019.109464
[40] Feng, J., Zhan, J. and Ma, S. (2021) LRG1 Promotes Hypoxia-Induced Cardiomyocyte Apoptosis and Autophagy by Regulating Hypoxia-Inducible Factor-1α. Bioengineered, 12, 8897-8907.
https://doi.org/10.1080/21655979.2021.1988368
[41] Yu, H., Chen, B. and Ren, Q. (2019) Baicalin Relieves Hypoxia-Aroused H9c2 Cell Apoptosis by Activating Nrf2/HO-1-Mediated HIF1α/BNIP3 Pathway. Artificial Cells, Nanomedicine, and Biotechnology, 47, 3657-3663.
https://doi.org/10.1080/21691401.2019.1657879
[42] Pham, K., Parikh, K. and Heinrich, E.C. (2021) Hypoxia and Inflammation: Insights from High-Altitude Physiology. Frontiers in Physiology, 12, Article 676782.
https://doi.org/10.3389/fphys.2021.676782
[43] Lee, J.W., Ko, J., Ju, C. and Eltzschig, H.K. (2019) Hypoxia Signaling in Human Diseases and Therapeutic Targets. Experimental & Molecular Medicine, 51, 1-13.
https://doi.org/10.1038/s12276-019-0235-1
[44] Li, H., Zhou, Y., Li, L., Li, S., Long, D., Chen, X., et al. (2019) HIF-1α Protects against Oxidative Stress by Directly Targeting Mitochondria. Redox Biology, 25, Article ID: 101109.
https://doi.org/10.1016/j.redox.2019.101109
[45] Zhu, N., Li, J., Li, Y., Zhang, Y., Du, Q., Hao, P., et al. (2020) Berberine Protects against Simulated Ischemia/Reperfusion Injury-Induced H9C2 Cardiomyocytes Apoptosis in Vitro and Myocardial Ischemia/Reperfusion-Induced Apoptosis in Vivo by Regulating the Mitophagy-Mediated HIF-1α/BNIP3 Pathway. Frontiers in Pharmacology, 11, Article 367.
https://doi.org/10.3389/fphar.2020.00367
[46] Tormos, K.V. and Chandel, N.S. (2010) Inter‐Connection between Mitochondria and HIFs. Journal of Cellular and Molecular Medicine, 14, 795-804.
https://doi.org/10.1111/j.1582-4934.2010.01031.x