[1]
|
Bozoki, A., Giordani, B., Heidebrink, J.L., Berent, S. and Foster, N.L. (2001) Mild Cognitive Impairments Predict Dementia in Nondemented Elderly Patients with Memory Loss. Archives of Neurology, 58, 411-416. https://doi.org/10.1001/archneur.58.3.411
|
[2]
|
Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G. and Kokmen, E. (1999) Mild Cognitive Impairment. Archives of Neurology, 56, 303-308. https://doi.org/10.1001/archneur.56.3.303
|
[3]
|
Stewart, R. and Liolitsa, D. (1999) Type 2 Diabetes Mellitus, Cognitive Impairment and Dementia. Diabetic Medicine, 16, 93-112. https://doi.org/10.1046/j.1464-5491.1999.00027.x
|
[4]
|
Reske-Nielsen, E., Lundbæk, K. and Rafaelsen, O.J. (1966) Pathological Changes in the Central and Peripheral Nervous System of Young Long-Term Diabetics. Diabetologia, 1, 233-241. https://doi.org/10.1007/bf01257917
|
[5]
|
Biessels, G.J., Deary, I.J. and Ryan, C.M. (2008) Cognition and Diabetes: A Lifespan Perspective. The Lancet Neurology, 7, 184-190. https://doi.org/10.1016/s1474-4422(08)70021-8
|
[6]
|
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华内分泌代谢杂志, 2021, 37(4): 311-398.
|
[7]
|
Kodl, C.T., Franc, D.T., Rao, J.P., Anderson, F.S., Thomas, W., Mueller, B.A., et al. (2008) Diffusion Tensor Imaging Identifies Deficits in White Matter Microstructure in Subjects with Type 1 Diabetes That Correlate with Reduced Neurocognitive Function. Diabetes, 57, 3083-3089. https://doi.org/10.2337/db08-0724
|
[8]
|
李敏, 张丽. 老年2型糖尿病与轻度认知功能障碍的关系研究[J]. 中国全科医学, 2011, 14(5B): 1537-1539.
|
[9]
|
杨礼, 秦琴保. 老年高干人群轻度认知功能障碍调查及危险因素分析[J]. 中国神经精神疾病杂志, 2011, 37(8): 473-476.
|
[10]
|
Nasreddine, Z.S., Phillips, N.A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., et al. (2005) The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. Journal of the American Geriatrics Society, 53, 695-699. https://doi.org/10.1111/j.1532-5415.2005.53221.x
|
[11]
|
金肖青, 许瑛. 失智症长期照护[M]. 北京: 人民卫生出版社, 2019.
|
[12]
|
林露, 刘礼斌. 低血糖对糖尿病患者认知功能障碍影响的研究新进展[J]. 中华内分泌代谢杂志, 2021, 37(5): 485, 488.
|
[13]
|
Hirabayashi, N., Hata, J., Furuta, Y., Ohara, T., Shibata, M., Hirakawa, Y., et al. (2022) Association between Diabetes and Gray Matter Atrophy Patterns in a General Older Japanese Population: The Hisayama Study. Diabetes Care, 45, 1364-1371. https://doi.org/10.2337/dc21-1911
|
[14]
|
Hughes, T.M., Ryan, C.M., Aizenstein, H.J., Nunley, K., Gianaros, P.J., Miller, R., et al. (2013) Frontal Gray Matter Atrophy in Middle Aged Adults with Type 1 Diabetes Is Independent of Cardiovascular Risk Factors and Diabetes Complications. Journal of Diabetes and its Complications, 27, 558-564. https://doi.org/10.1016/j.jdiacomp.2013.07.001
|
[15]
|
Marzelli, M.J., Mazaika, P.K., Barnea-Goraly, N., Hershey, T., Tsalikian, E., Tamborlane, W., et al. (2013) Neuroanatomical Correlates of Dysglycemia in Young Children with Type 1 Diabetes. Diabetes, 63, 343-353. https://doi.org/10.2337/db13-0179
|
[16]
|
van Duinkerken, E., Schoonheim, M.M., Sanz-Arigita, E.J., IJzerman, R.G., Moll, A.C., Snoek, F.J., et al. (2012) Resting-State Brain Networks in Type 1 Diabetic Patients with and without Microangiopathy and Their Relation to Cognitive Functions and Disease Variables. Diabetes, 61, 1814-1821. https://doi.org/10.2337/db11-1358
|
[17]
|
Biessels, G.J. (2005) Increased Cortical Atrophy in Patients with Alzheimer's Disease and Type 2 Diabetes Mellitus. Journal of Neurology, Neurosurgery & Psychiatry, 77, 304-307. https://doi.org/10.1136/jnnp.2005.069583
|
[18]
|
Moran, C., Phan, T.G., Chen, J., Blizzard, L., Beare, R., Venn, A., et al. (2013) Brain Atrophy in Type 2 Diabetes. Diabetes Care, 36, 4036-4042. https://doi.org/10.2337/dc13-0143
|
[19]
|
Milne, N.T., Bucks, R.S., Davis, W.A., Davis, T.M.E., Pierson, R., Starkstein, S.E., et al. (2017) Hippocampal Atrophy, Asymmetry, and Cognition in Type 2 Diabetes Mellitus. Brain and Behavior, 8, e00741. https://doi.org/10.1002/brb3.741
|
[20]
|
Arnold, S.E., Arvanitakis, Z., Macauley-Rambach, S.L., Koenig, A.M., Wang, H., Ahima, R.S., et al. (2018) Brain Insulin Resistance in Type 2 Diabetes and Alzheimer Disease: Concepts and Conundrums. Nature Reviews Neurology, 14, 168-181. https://doi.org/10.1038/nrneurol.2017.185
|
[21]
|
Tumminia, A., Vinciguerra, F., Parisi, M. and Frittitta, L. (2018) Type 2 Diabetes Mellitus and Alzheimer’s Disease: Role of Insulin Signalling and Therapeutic Implications. International Journal of Molecular Sciences, 19, Article 3306. https://doi.org/10.3390/ijms19113306
|
[22]
|
Gray, S.M. and Barrett, E.J. (2018) Insulin Transport into the Brain. American Journal of Physiology-Cell Physiology, 315, C125-C136. https://doi.org/10.1152/ajpcell.00240.2017
|
[23]
|
Werner, H. and LeRoith, D. (2014) Insulin and Insulin-Like Growth Factor Receptors in the Brain: Physiological and Pathological Aspects. European Neuropsychopharmacology, 24, 1947-1953. https://doi.org/10.1016/j.euroneuro.2014.01.020
|
[24]
|
de la Monte, S.M. (2012) Metabolic Derangements Mediate Cognitive Impairment and Alzheimer’s Disease: Role of Peripheral Insulin Resistance Diseases. Panminerva Medica, 54, 171-178.
|
[25]
|
Heni, M., Schöpfer, P., Peter, A., Sartorius, T., Fritsche, A., Synofzik, M., et al. (2013) Evidence for Altered Transport of Insulin across the Blood-Brain Barrier in Insulin-Resistant Humans. Acta Diabetologica, 51, 679-681. https://doi.org/10.1007/s00592-013-0546-y
|
[26]
|
Yaffe, K. (2013) Association between Hypoglycemia and Dementia in a Biracial Cohort of Older Adults with Diabetes Mellitus. JAMA Internal Medicine, 173, 1300-1306. https://doi.org/10.1001/jamainternmed.2013.6176
|
[27]
|
Chen, Y., Liu, Z., Yu, Y., Yao, E., Liu, X. and Liu, L. (2017) Effect of Recurrent Severe Hypoglycemia on Cognitive Performance in Adult Patients with Diabetes: A Meta-Analysis. Current Medical Science, 37, 642-648. https://doi.org/10.1007/s11596-017-1784-y
|
[28]
|
Freedman, B.I., Sink, K.M., Hugenschmidt, C.E., Hughes, T.M., Williamson, J.D., Whitlow, C.T., et al. (2017) Associations of Early Kidney Disease with Brain Magnetic Resonance Imaging and Cognitive Function in African Americans with Type 2 Diabetes Mellitus. American Journal of Kidney Diseases, 70, 627-637. https://doi.org/10.1053/j.ajkd.2017.05.006
|
[29]
|
Tahmi, M., Palta, P. and Luchsinger, J.A. (2021) Metabolic Syndrome and Cognitive Function. Current Cardiology Reports, 23, Article No. 180. https://doi.org/10.1007/s11886-021-01615-y
|
[30]
|
Whitmer, R.A., Gilsanz, P., Quesenberry, C.P., Karter, A.J. and Lacy, M.E. (2021) Association of Type 1 Diabetes and Hypoglycemic and Hyperglycemic Events and Risk of Dementia. Neurology, 97, e275-e283. https://doi.org/10.1212/wnl.0000000000012243
|
[31]
|
Rizzo, M.R., Marfella, R., Barbieri, M., Boccardi, V., Vestini, F., Lettieri, B., et al. (2010) Relationships between Daily Acute Glucose Fluctuations and Cognitive Performance among Aged Type 2 Diabetic Patients. Diabetes Care, 33, 2169-2174. https://doi.org/10.2337/dc10-0389
|
[32]
|
Zhong, Y., Zhang, X.Y., Miao, Y., et al. (2012) The Relationship between Glucose Excursion and Cognitive Function in Aged Type 2 Diabetes Patients. Biomedical and Environmental Sciences, 25, 1-7. https://doi.org/10.3967/0895-3988.2012.01.001
|
[33]
|
Quagliaro, L., Piconi, L., Assaloni, R., Martinelli, L., Motz, E. and Ceriello, A. (2003) Intermittent High Glucose Enhances Apoptosis Related to Oxidative Stress in Human Umbilical Vein Endothelial Cells. Diabetes, 52, 2795-2804. https://doi.org/10.2337/diabetes.52.11.2795
|
[34]
|
Ceriello, A., Esposito, K., Piconi, L., Ihnat, M.A., Thorpe, J.E., Testa, R., et al. (2008) Oscillating Glucose Is More Deleterious to Endothelial Function and Oxidative Stress than Mean Glucose in Normal and Type 2 Diabetic Patients. Diabetes, 57, 1349-1354. https://doi.org/10.2337/db08-0063
|
[35]
|
Bragd, J., Adamson, U., Bäcklund, L.B., Lins, P.E., Moberg, E. and Oskarsson, P. (2008) Can Glycaemic Variability, as Calculated from Blood Glucose Self-Monitoring, Predict the Development of Complications in Type 1 Diabetes over a Decade? Diabetes & Metabolism, 34, 612-616. https://doi.org/10.1016/j.diabet.2008.04.005
|
[36]
|
Maciejczyk, M., Żebrowska, E. and Chabowski, A. (2019) Insulin Resistance and Oxidative Stress in the Brain: What’s New? International Journal of Molecular Sciences, 20, Article 874. https://doi.org/10.3390/ijms20040874
|
[37]
|
Li, L., Zhang, H., Chen, B., Xia, B., Zhu, R., Liu, Y., et al. (2022) BaZiBuShen Alleviates Cognitive Deficits and Regulates Sirt6/NRF2/HO-1 and Sirt6/P53-PGC-1α-Tert Signaling Pathways in Aging Mice. Journal of Ethnopharmacology, 282, Article 114653. https://doi.org/10.1016/j.jep.2021.114653
|
[38]
|
Luo, A., Xie, Z., Wang, Y., Wang, X., Li, S., Yan, J., et al. (2022) Type 2 Diabetes Mellitus-Associated Cognitive Dysfunction: Advances in Potential Mechanisms and Therapies. Neuroscience & Biobehavioral Reviews, 137, Article 104642. https://doi.org/10.1016/j.neubiorev.2022.104642
|
[39]
|
Farbood, Y., Ghaderi, S., Rashno, M., Khoshnam, S.E., Khorsandi, L., Sarkaki, A., et al. (2019) Sesamin: A Promising Protective Agent against Diabetes-Associated Cognitive Decline in Rats. Life Sciences, 230, 169-177. https://doi.org/10.1016/j.lfs.2019.05.071
|
[40]
|
Yan, L. (2014) Pathogenesis of Chronic Hyperglycemia: From Reductive Stress to Oxidative Stress. Journal of Diabetes Research, 2014, Article 137919. https://doi.org/10.1155/2014/137919
|
[41]
|
Van Dyken, P. and Lacoste, B. (2018) Impact of Metabolic Syndrome on Neuroinflammation and the Blood-Brain Barrier. Frontiers in Neuroscience, 12, Article 930. https://doi.org/10.3389/fnins.2018.00930
|
[42]
|
Golan, H. (2004) Involvement of Tumor Necrosis Factor Alpha in Hippocampal Development and Function. Cerebral Cortex, 14, 97-105. https://doi.org/10.1093/cercor/bhg108
|
[43]
|
Vinuesa, A., Pomilio, C., Gregosa, A., Bentivegna, M., Presa, J., Bellotto, M., et al. (2021) Inflammation and Insulin Resistance as Risk Factors and Potential Therapeutic Targets for Alzheimer’s Disease. Frontiers in Neuroscience, 15, Article 653651. https://doi.org/10.3389/fnins.2021.653651
|
[44]
|
Hui, S.T.Y., Andres, A.M., Miller, A.K., Spann, N.J., Potter, D.W., Post, N.M., et al. (2008) Txnip Balances Metabolic and Growth Signaling via PTEN Disulfide Reduction. Proceedings of the National Academy of Sciences, 105, 3921-3926. https://doi.org/10.1073/pnas.0800293105
|
[45]
|
Zhou, R., Tardivel, A., Thorens, B., Choi, I. and Tschopp, J. (2009) Thioredoxin-Interacting Protein Links Oxidative Stress to Inflammasome Activation. Nature Immunology, 11, 136-140. https://doi.org/10.1038/ni.1831
|
[46]
|
Zhang, J., Xia, L., Zhang, F., Zhu, D., Xin, C., Wang, H., et al. (2017) A Novel Mechanism of Diabetic Vascular Endothelial Dysfunction: Hypoadiponectinemia-Induced NLRP3 Inflammasome Activation. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1863, 1556-1567. https://doi.org/10.1016/j.bbadis.2017.02.012
|
[47]
|
Zhai, Y., Meng, X., Ye, T., Xie, W., Sun, G. and Sun, X. (2018) Inhibiting the NLRP3 Inflammasome Activation with MCC950 Ameliorates Diabetic Encephalopathy in db/db Mice. Molecules, 23, Article 522. https://doi.org/10.3390/molecules23030522
|
[48]
|
van Sloten, T.T., Sedaghat, S., Carnethon, M.R., Launer, L.J. and Stehouwer, C.D.A. (2020) Cerebral Microvascular Complications of Type 2 Diabetes: Stroke, Cognitive Dysfunction, and Depression. The Lancet Diabetes & Endocrinology, 8, 325-336. https://doi.org/10.1016/s2213-8587(19)30405-x
|
[49]
|
Phoenix, A., Chandran, R. and Ergul, A. (2022) Cerebral Microvascular Senescence and Inflammation in Diabetes. Frontiers in Physiology, 13, Article 864758. https://doi.org/10.3389/fphys.2022.864758
|
[50]
|
Stehouwer, C.D.A. (2018) Microvascular Dysfunction and Hyperglycemia: A Vicious Cycle with Widespread Consequences. Diabetes, 67, 1729-1741. https://doi.org/10.2337/dbi17-0044
|
[51]
|
Marseglia, A., Fratiglioni, L., Kalpouzos, G., Wang, R., Bäckman, L. and Xu, W. (2018) Prediabetes and Diabetes Accelerate Cognitive Decline and Predict Microvascular Lesions: A Population‐Based Cohort Study. Alzheimer’s & Dementia, 15, 25-33. https://doi.org/10.1016/j.jalz.2018.06.3060
|
[52]
|
Orasanu, G. and Plutzky, J. (2009) The Pathologic Continuum of Diabetic Vascular Disease. Journal of the American College of Cardiology, 53, S35-S42. https://doi.org/10.1016/j.jacc.2008.09.055
|
[53]
|
Soares, E., Prediger, R.D., Nunes, S., Castro, A.A., Viana, S.D., Lemos, C., et al. (2013) Spatial Memory Impairments in a Prediabetic Rat Model. Neuroscience, 250, 565-577. https://doi.org/10.1016/j.neuroscience.2013.07.055
|
[54]
|
Snoek, F.J., Bremmer, M.A. and Hermanns, N. (2015) Constructs of Depression and Distress in Diabetes: Time for an Appraisal. The Lancet Diabetes & Endocrinology, 3, 450-460. https://doi.org/10.1016/s2213-8587(15)00135-7
|
[55]
|
Semenkovich, K., Brown, M.E., Svrakic, D.M. and Lustman, P.J. (2015) Depression in Type 2 Diabetes Mellitus: Prevalence, Impact, and Treatment. Drugs, 75, 577-587. https://doi.org/10.1007/s40265-015-0347-4
|
[56]
|
Fisher, L., Skaff, M.M., Mullan, J.T., Arean, P., Glasgow, R. and Masharani, U. (2008) A Longitudinal Study of Affective and Anxiety Disorders, Depressive Affect and Diabetes Distress in Adults with Type 2 Diabetes. Diabetic Medicine, 25, 1096-1101. https://doi.org/10.1111/j.1464-5491.2008.02533.x
|
[57]
|
Roy, T. and Lloyd, C.E. (2012) Epidemiology of Depression and Diabetes: A Systematic Review. Journal of Affective Disorders, 142, S8-S21. https://doi.org/10.1016/s0165-0327(12)70004-6
|
[58]
|
Grigsby, A.B., Anderson, R.J., Freedland, K.E., Clouse, R.E. and Lustman, P.J. (2002) Prevalence of Anxiety in Adults with Diabetes. Journal of Psychosomatic Research, 53, 1053-1060. https://doi.org/10.1016/s0022-3999(02)00417-8
|
[59]
|
Kessler, R.C., Berglund, P., Demler, O., Jin, R., Merikangas, K.R. and Walters, E.E. (2005) Lifetime Prevalence and Age-of-Onset Distributions of DSM-IV Disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 593-602. https://doi.org/10.1001/archpsyc.62.6.593
|
[60]
|
Leray, E., Camara, A., Drapier, D., Riou, F., Bougeant, N., Pelissolo, A., et al. (2011) Prevalence, Characteristics and Comorbidities of Anxiety Disorders in France: Results from the “Mental Health in General Population” Survey (MHGP). European Psychiatry, 26, 339-345. https://doi.org/10.1016/j.eurpsy.2009.12.001
|
[61]
|
Minelli, A., Pedrini, L., Magni, L.R. and Rotondo, A. (2009) Personality Traits in an Italian Sample: Relationship with Anxiety and Depression. Clinical Practice & Epidemiology in Mental Health, 5, 26-30. https://doi.org/10.2174/1745017900905010026
|
[62]
|
Egede, L. (2005) Effect of Depression on Self-Management Behaviors and Health Outcomes in Adults with Type 2 Diabetes. Current Diabetes Reviews, 1, 235-243. https://doi.org/10.2174/157339905774574356
|
[63]
|
Smith, K.J., Béland, M., Clyde, M., Gariépy, G., Pagé, V., Badawi, G., et al. (2013) Association of Diabetes with Anxiety: A Systematic Review and Meta-Analysis. Journal of Psychosomatic Research, 74, 89-99. https://doi.org/10.1016/j.jpsychores.2012.11.013
|
[64]
|
Xu, Y., Zhou, H. and Zhu, Q. (2017) The Impact of Microbiota-Gut-Brain Axis on Diabetic Cognition Impairment. Frontiers in Aging Neuroscience, 9, Article 106. https://doi.org/10.3389/fnagi.2017.00106
|
[65]
|
Singhal, K. and Sandhir, R. (2014) L‐Type Calcium Channel Blocker Ameliorates Diabetic Encephalopathy by Modulating Dysregulated Calcium Homeostasis. Journal of Neuroscience Research, 93, 296-308. https://doi.org/10.1002/jnr.23478
|
[66]
|
Kong, F., Ma, L., Guo, J., Xu, L., Li, Y. and Qu, S. (2018) Endoplasmic Reticulum Stress/Autophagy Pathway Is Involved in Diabetes-Induced Neuronal Apoptosis and Cognitive Decline in Mice. Clinical Science, 132, 111-125. https://doi.org/10.1042/cs20171432
|
[67]
|
Tang, S., Ren, Y., Ren, X., Cao, J., Hong, H., Ji, H., et al. (2019) ERα and/or ERβ Activation Ameliorates Cognitive Impairment, Neurogenesis and Apoptosis in Type 2 Diabetes Mellitus Mice. Experimental Neurology, 311, 33-43. https://doi.org/10.1016/j.expneurol.2018.09.002
|