[1]
|
Yu, L., Wu, L., McElhenny, B., Song, S., Luo, D., Zhang, F., et al. (2020) Ultrafast Room-Temperature Synthesis of Porous S-Doped Ni/Fe (oxy)Hydroxide Electrodes for Oxygen Evolution Catalysis in Seawater Splitting. Energy & Environmental Science, 13, 3439-3446. https://doi.org/10.1039/d0ee00921k
|
[2]
|
Hegner, F.S., Garcés-Pineda, F.A., González-Cobos, J., Rodríguez-García, B., Torréns, M., Palomares, E., et al. (2021) Understanding the Catalytic Selectivity of Cobalt Hexacyanoferrate toward Oxygen Evolution in Seawater Electrolysis. ACS Catalysis, 11, 13140-13148. https://doi.org/10.1021/acscatal.1c03502
|
[3]
|
Lv, S., Liu, D., Sun, Y., Li, M., Zhou, Y., Song, C., et al. (2022) Graphene Oxide Coupled High-Index Facets CdZnS with Rich Sulfur Vacancies for Synergistic Boosting Visible-Light-Catalytic Hydrogen Evolution in Natural Seawater: Experimental and DFT Study. Journal of Colloid and Interface Science, 623, 34-43. https://doi.org/10.1016/j.jcis.2022.05.008
|
[4]
|
Hanan, A., Lakhan, M.N., Bibi, F., Khan, A., Soomro, I.A., Hussain, A., et al. (2024) MOFs Coupled Transition Metals, Graphene, and MXenes: Emerging Electrocatalysts for Hydrogen Evolution Reaction. Chemical Engineering Journal, 482, Article 148776. https://doi.org/10.1016/j.cej.2024.148776
|
[5]
|
Bhardwaj, A.A., Vos, J.G., Beatty, M.E.S., Baxter, A.F., Koper, M.T.M., Yip, N.Y., et al. (2021) Ultrathin Silicon Oxide Overlayers Enable Selective Oxygen Evolution from Acidic and Unbuffered pH-Neutral Seawater. ACS Catalysis, 11, 1316-1330. https://doi.org/10.1021/acscatal.0c04343
|
[6]
|
Jiang, S., Liu, Y., Qiu, H., Su, C. and Shao, Z. (2022) High Selectivity Electrocatalysts for Oxygen Evolution Reaction and Anti-Chlorine Corrosion Strategies in Seawater Splitting. Catalysts, 12, Article 261. https://doi.org/10.3390/catal12030261
|
[7]
|
Xiu, L., Pei, W., Zhou, S., Wang, Z., Yang, P., Zhao, J., et al. (2020) Multilevel Hollow MXene Tailored Low-Pt Catalyst for Efficient Hydrogen Evolution in Full-pH Range and Seawater. Advanced Functional Materials, 30, Article 1910028. https://doi.org/10.1002/adfm.201910028
|
[8]
|
Yang, T., Xu, Y., Lv, H., Wang, M., Cui, X., Liu, G., et al. (2021) Triggering the Intrinsic Catalytic Activity of Ni-Doped Molybdenum Oxides via Phase Engineering for Hydrogen Evolution and Application in Mg/Seawater Batteries. ACS Sustainable Chemistry & Engineering, 9, 13106-13113. https://doi.org/10.1021/acssuschemeng.1c05184
|
[9]
|
Wang, X.H., Ling, Y., Wu, B., Li, B.L., Li, X.L., Lei, J.L., et al. (2021) Doping Modification, Defects Construction, and Surface Engineering: Design of Cost-Effective High-Performance Electrocatalysts and Their Application in Alkaline Seawater Splitting. Nano Energy, 87, Article 106160. https://doi.org/10.1016/j.nanoen.2021.106160
|
[10]
|
Wang, T., Cao, X. and Jiao, L. (2021) Ni2P/NiMoP Heterostructure as a Bifunctional Electrocatalyst for Energy-Saving Hydrogen Production. eScience, 1, 69-74. https://doi.org/10.1016/j.esci.2021.09.002
|
[11]
|
Li, J., Wang, Y., Gao, H., Song, S., Lu, B., Tian, X., et al. (2021) Nickel Boride/Boron Carbide Particles Embedded in Boron-Doped Phenolic Resin-Derived Carbon Coating on Nickel Foam for Oxygen Evolution Catalysis in Water and Seawater Splitting. ChemSusChem, 14, 5499-5507. https://doi.org/10.1002/cssc.202101800
|
[12]
|
Li, J., Sun, J., Li, Z. and Meng, X. (2022) Recent Advances in Electrocatalysts for Seawater Splitting in Hydrogen Evolution Reaction. International Journal of Hydrogen Energy, 47, 29685-29697. https://doi.org/10.1016/j.ijhydene.2022.06.288
|
[13]
|
Kim, C., Lee, S., Kim, S.H., Park, J., Kim, S., Kwon, S., et al. (2021) Cobalt-Iron-Phosphate Hydrogen Evolution Reaction Electrocatalyst for Solar-Driven Alkaline Seawater Electrolyzer. Nanomaterials, 11, Article 2989. https://doi.org/10.3390/nano11112989
|
[14]
|
Jin, H., Wang, X., Tang, C., Vasileff, A., Li, L., Slattery, A., et al. (2021) Stable and Highly Efficient Hydrogen Evolution from Seawater Enabled by an Unsaturated Nickel Surface Nitride. Advanced Materials, 33, Article 2007508. https://doi.org/10.1002/adma.202007508
|
[15]
|
Hu, J., Zhu, S., Liang, Y., Wu, S., Li, Z., Luo, S., et al. (2021) Self-Supported Ni3Se2@NiFe Layered Double Hydroxide Bifunctional Electrocatalyst for Overall Water Splitting. Journal of Colloid and Interface Science, 587, 79-89. https://doi.org/10.1016/j.jcis.2020.12.016
|
[16]
|
Pan, Y., Sanati, S., Abazari, R., Noveiri, V.N., Gao, J. and Kirillov, A.M. (2022) Pillared-Mof@NiV-LDH Composite as a Remarkable Electrocatalyst for Water Oxidation. Inorganic Chemistry, 61, 20913-20922. https://doi.org/10.1021/acs.inorgchem.2c03327
|
[17]
|
Abazari, R., Amani-Ghadim, A.R., Slawin, A.M.Z., Carpenter-Warren, C.L. and Kirillov, A.M. (2022) Non-Calcined Layer-Pillared Mn0.5Zn0.5 Bimetallic-Organic Framework as a Promising Electrocatalyst for Oxygen Evolution Reaction. Inorganic Chemistry, 61, 9514-9522. https://doi.org/10.1021/acs.inorgchem.2c00542
|
[18]
|
Zhang, X., Zhang, S., Tang, Y., Huang, X. and Pang, H. (2022) Recent Advances and Challenges of Metal-Organic Framework/Graphene-Based Composites. Composites Part B: Engineering, 230, Article 109532. https://doi.org/10.1016/j.compositesb.2021.109532
|
[19]
|
Fu, X., Ding, B. and D’Alessandro, D. (2023) Fabrication Strategies for Metal-Organic Framework Electrochemical Biosensors and Their Applications. Coordination Chemistry Reviews, 475, Article 214814. https://doi.org/10.1016/j.ccr.2022.214814
|
[20]
|
Qi, L., Li, A., Wang, M., Zhang, Y., Zhang, K. and Li, X. (2021) Stable and Efficient Oxygen Evolution from Seawater Enabled by Graphene-Supported Sub-Nanometer Arrays of Transition Metal Phosphides. Advanced Materials Interfaces, 9, Article 2101720. https://doi.org/10.1002/admi.202101720
|
[21]
|
Wang, S., Yang, P., Sun, X., Xing, H., Hu, J., Chen, P., et al. (2021) Synthesis of 3D Heterostructure Co-Doped Fe2P Electrocatalyst for Overall Seawater Electrolysis. Applied Catalysis B: Environmental, 297, Article 120386. https://doi.org/10.1016/j.apcatb.2021.120386
|
[22]
|
Sun, J. and Meng, X. (2021) Modulating the Electronic Properties of MoS2 Nanosheets for Electrochemical Hydrogen Production: A Review. ACS Applied Nano Materials, 4, 11413-11427. https://doi.org/10.1021/acsanm.1c02832
|
[23]
|
Li, Y., Ji, L., Liu, R., Zhang, C., Mak, C.H., Zou, X., et al. (2018) A Review on Morphology Engineering for Highly Efficient and Stable Hybrid Perovskite Solar Cells. Journal of Materials Chemistry A, 6, 12842-12875. https://doi.org/10.1039/c8ta04120b
|