[1]
|
Chandrasekaran, S., Yao, L., Deng, L., Bowen, C., Zhang, Y., Chen, S., et al. (2019) Recent Advances in Metal Sulfides: From Controlled Fabrication to Electrocatalytic, Photocatalytic and Photoelectrochemical Water Splitting and Beyond. Chemical Society Reviews, 48, 4178-4280. https://doi.org/10.1039/c8cs00664d
|
[2]
|
Guo, L., Yu, Q., Zhai, X., Chi, J., Cui, T., Zhang, Y., et al. (2022) Reduction-Induced Interface Reconstruction to Fabricate MoNi4-Based Hollow Nanorods for Hydrazine Oxidation Assisted Energy-Saving Hydrogen Production in Seawater. Nano Research, 15, 8846-8856. https://doi.org/10.1007/s12274-022-4614-x
|
[3]
|
Zhou, L., Yang, C., Zhu, W., Li, R., Pang, X., Zhen, Y., et al. (2022) Boosting Alkaline Hydrogen Evolution Reaction via an Unexpected Dynamic Evolution of Molybdenum and Selenium on MoSe2 Electrode. Advanced Energy Materials, 12, Article ID: 2202367. https://doi.org/10.1002/aenm.202202367
|
[4]
|
Wang, M., Saad, A., Li, X., Peng, T., Zhang, Q., Kumar, M., et al. (2021) Solid-State Synthesis of Single-Phase Nickel Monophosphosulfide for the Oxygen Evolution Reaction. Dalton Transactions, 50, 12870-12878. https://doi.org/10.1039/d1dt02343h
|
[5]
|
Wang, T., Wang, T., Chou, W., Wu, L. and Lin, S. (2021) First-principles Investigation of the Hydrogen Evolution Reaction of Transition Metal Phosphides CrP, MnP, FeP, CoP, and NiP. Physical Chemistry Chemical Physics, 23, 2305-2312. https://doi.org/10.1039/d0cp04789a
|
[6]
|
Zheng, H., Wang, S., Liu, S., Wu, J., Guan, J., Li, Q., et al. (2023) The Heterointerface between Fe1/NC and Selenides Boosts Reversible Oxygen Electrocatalysis. Advanced Functional Materials, 33, Article ID: 2300815. https://doi.org/10.1002/adfm.202300815
|
[7]
|
Hansen, J.N., Prats, H., Toudahl, K.K., Mørch Secher, N., Chan, K., Kibsgaard, J., et al. (2021) Is There Anything Better than Pt for Her? ACS Energy Letters, 6, 1175-1180. https://doi.org/10.1021/acsenergylett.1c00246
|
[8]
|
Schmidt, T.O., Ngoipala, A., Arevalo, R.L., Watzele, S.A., Lipin, R., Kluge, R.M., et al. (2022) Elucidation of Structure-Activity Relations in Proton Electroreduction at Pd Surfaces: Theoretical and Experimental Study. Small, 18, Article ID: 2202410. https://doi.org/10.1002/smll.202202410
|
[9]
|
Xu, L., Papanikolaou, K.G., Lechner, B.A.J., Je, L., Somorjai, G.A., Salmeron, M., et al. (2023) Formation of Active Sites on Transition Metals through Reaction-Driven Migration of Surface Atoms. Science, 380, 70-76. https://doi.org/10.1126/science.add0089
|
[10]
|
Cui, Y., Zhang, C., Li, Y., Du, Z., Wang, C., Yu, S., et al. (2023) Active-Site-Enriched Dendritic Crystal Co/Fe-Doped Ni3S2 Electrocatalysts for Efficient Oxygen Evolution Reaction. Dalton Transactions, 52, 8747-8755. https://doi.org/10.1039/d3dt01071f
|
[11]
|
Bai, J., Wang, Y., Wang, Y., Zhang, T., Dong, G. and Geng, D. (2022) Self‐Reconstruction‐Induced C‐CoSe2 Coupled with Co(OH)2 from Co0.85Se for Efficient her Electrocatalysis in Alkaline Media. International Journal of Energy Research, 46, 12476-12484. https://doi.org/10.1002/er.8013
|
[12]
|
Cheng, C., Lin, T., Ting, Y., Lin, S., Choi, Y. and Lu, S. (2023) Metal-Organic Frameworks Stabilized Mo and W Binary Single-Atom Catalysts as High Performance Bifunctional Electrocatalysts for Water Electrolysis. Nano Energy, 112, Article ID: 108450. https://doi.org/10.1016/j.nanoen.2023.108450
|
[13]
|
Luo, Y., Zhang, Z., Yang, F., Li, J., Liu, Z., Ren, W., et al. (2021) Stabilized Hydroxide-Mediated Nickel-Based Electrocatalysts for High-Current-Density Hydrogen Evolution in Alkaline Media. Energy & Environmental Science, 14, 4610-4619. https://doi.org/10.1039/d1ee01487k
|
[14]
|
Chen, B., Kim, D., Zhang, Z., Lee, M. and Yong, K. (2021) MOF-Derived NiCoZnP Nanoclusters Anchored on Hierarchical N-Doped Carbon Nanosheets Array as Bifunctional Electrocatalysts for Overall Water Splitting. Chemical Engineering Journal, 422, Article ID: 130533. https://doi.org/10.1016/j.cej.2021.130533
|
[15]
|
Zhang, C., Du, X., Zhang, X., Wang, Y. and Hu, T. (2023) In Situ Construction of WNiM-WNi LDH (M = Se, S, or P) with Heterostructure as Highly Efficient Electrocatalyst for Overall Water Splitting and Urea Oxidation Reaction. Dalton Transactions, 52, 6052-6060. https://doi.org/10.1039/d3dt00065f
|
[16]
|
Dou, X., Yuan, D., Liang, X., Song, K., Hu, R., Zhang, L., et al. (2023) Synergy between Mo Dopants and Ni Vacancies in NiOOH for Enhanced Oxygen Evolution Reaction. Chemical Engineering Journal, 468, Article ID: 143715. https://doi.org/10.1016/j.cej.2023.143715
|
[17]
|
Nie, Z., Zhang, L., Du, Z., Hu, J., Huang, X., Zhou, C., et al. (2023) Vacancy and Doping Engineering of Ni-Based Charge-Buffer Electrode for Highly-Efficient Membrane-Free and Decoupled Hydrogen/oxygen Evolution. Journal of Colloid and Interface Science, 642, 714-723. https://doi.org/10.1016/j.jcis.2023.04.001
|
[18]
|
Chen, Z., Ha, Y., Jia, H., Yan, X., Chen, M., Liu, M., et al. (2019) Oriented Transformation of Co‐LDH into 2D/3D ZIF‐67 to Achieve Co-N-C Hybrids for Efficient Overall Water Splitting. Advanced Energy Materials, 9, Article ID: 1803918. https://doi.org/10.1002/aenm.201803918
|
[19]
|
Tian, L., Chen, Z., Wang, T., Cao, M., Lu, X., Cheng, W., et al. (2023) Mo Doping and Se Vacancy Engineering for Boosting Electrocatalytic Water Oxidation by Regulating the Electronic Structure of Self-Supported Co9Se8@NiSe. Nanoscale, 15, 259-265. https://doi.org/10.1039/d2nr05410h
|
[20]
|
Duan, C., Tang, C., Yu, S., Li, L., Li, J. and Zhou, Y. (2023) Efficient Electrocatalytic Desulfuration and Synchronous Hydrogen Evolution from H2S via Anti-Sulfuretted Nise Nanowire Array Catalyst. Applied Catalysis B: Environmental, 324, Article ID: 122255. https://doi.org/10.1016/j.apcatb.2022.122255
|
[21]
|
Li, C., Zhang, H., Liu, M., Lang, F., Pang, J. and Bu, X. (2023) Recent Progress in Metal-organic Frameworks (MOFs) for Electrocatalysis. Industrial Chemistry & Materials, 1, 9-38. https://doi.org/10.1039/d2im00063f
|
[22]
|
Radwan, A., Jin, H., He, D. and Mu, S. (2021) Design Engineering, Synthesis Protocols, and Energy Applications of Mof-Derived Electrocatalysts. Nano-Micro Letters, 13, Article No. 132. https://doi.org/10.1007/s40820-021-00656-w
|
[23]
|
玄翠娟, 王杰, 朱静, 等. 基于金属有机框架化合物纳米电催化剂的研究进展[J]. 物理化学学报, 2017, 33(1): 149-164.
|
[24]
|
Du, J., Li, F. and Sun, L. (2021) Metal-Organic Frameworks and Their Derivatives as Electrocatalysts for the Oxygen Evolution Reaction. Chemical Society Reviews, 50, 2663-2695. https://doi.org/10.1039/d0cs01191f
|
[25]
|
He, X. (2023) Fundamental Perspectives on the Electrochemical Water Applications of Metal-Organic Frameworks. Nano-Micro Letters, 15, Article No. 148. https://doi.org/10.1007/s40820-023-01124-3
|
[26]
|
Lyu, S., Guo, C., Wang, J., Li, Z., Yang, B., Lei, L., et al. (2022) Exceptional Catalytic Activity of Oxygen Evolution Reaction via Two-Dimensional Graphene Multilayer Confined Metal-Organic Frameworks. Nature Communications, 13, Article No. 6171. https://doi.org/10.1038/s41467-022-33847-z
|
[27]
|
Zheng, X., Sun, A., Qiu, Y., Wang, Z., Xu, J. and Liu, J. (2023) Controllable Atoms Implantation for Inducing High Valency Nickel Towards Optimizing Electronic Structure for Enhanced Overall Water Splitting. Journal of Colloid and Interface Science, 650, 1966-1973. https://doi.org/10.1016/j.jcis.2023.07.131
|
[28]
|
Nie, F., Li, Z., Dai, X., Yin, X., Gan, Y., Yang, Z., et al. (2022) Interfacial Electronic Modulation on Heterostructured NiSe@CoFe LDH Nanoarrays for Enhancing Oxygen Evolution Reaction and Water Splitting by Facilitating the Deprotonation of OH to O. Chemical Engineering Journal, 431, Article ID: 134080. https://doi.org/10.1016/j.cej.2021.134080
|
[29]
|
Li, S., Ren, P., Yang, C., Liu, X., Yin, Z., Li, W., et al. (2018) Fe5C2 Nanoparticles as Low-Cost HER Electrocatalyst: The Importance of Co Substitution. Science Bulletin, 63, 1358-1363. https://doi.org/10.1016/j.scib.2018.09.016
|
[30]
|
Gu, Y., Wang, X., Humayun, M., Li, L., Sun, H., Xu, X., et al. (2022) Spin Regulation on (Co, Ni)Se2/C@FeOOH Hollow Nanocage Accelerates Water Oxidation. Chinese Journal of Catalysis, 43, 839-850. https://doi.org/10.1016/s1872-2067(21)63922-0
|