|
[1]
|
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., et al. (2016) SSD: Single Shot Multibox Detector. In: Computer Vision—ECCV 2016, Amsterdam, 11-14 October 2016, 21-37. [Google Scholar] [CrossRef]
|
|
[2]
|
Ren, S., He, K., Girshick, R. and Sun, J. (2015) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1440-1448.
|
|
[3]
|
Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. (2016) You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 779-788. [Google Scholar] [CrossRef]
|
|
[4]
|
Tian, Z., Shen, C., Chen, H. and He, T. (2019) FCOS: Fully Convolutional One-Stage Object Detection. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 27 October-2 November 2019, 9627-9636. [Google Scholar] [CrossRef]
|
|
[5]
|
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., et al. (2016) The Cityscapes Dataset for Semantic Urban Scene Understanding. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 3213-3223. [Google Scholar] [CrossRef]
|
|
[6]
|
Sakaridis, C., Dai, D. and Van Gool, L. (2018) Semantic Foggy Scene Understanding with Synthetic Data. International Journal of Computer Vision, 126, 973-992. [Google Scholar] [CrossRef]
|
|
[7]
|
Long, M., Cao, Y., Wang, J. and Jordan, M. (2015) Learning Transferable Features with Deep Adaptation Networks. Proceedings of the International Conference on Machine Learning, Lille, France, 6-11 July 2015, 97-105.
|
|
[8]
|
Tzeng, E., Hoffman, J., Zhang, N., Saenko, K. and Darrell, T. (2014) Deep Domain Confusion: Maximizing for Domain Invariance.
|
|
[9]
|
Yan, H., Ding, Y., Li, P., Wang, Q., Xu, Y. and Zuo, W. (2017) Mind the Class Weight Bias: Weighted Maximum Mean Discrepancy for Unsupervised Domain Adaptation. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 2272-2281. [Google Scholar] [CrossRef]
|
|
[10]
|
Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F. and Vaughan, J.W. (2009) A Theory of Learning from Different Domains. Machine Learning, 79, 151-175. [Google Scholar] [CrossRef]
|
|
[11]
|
Shen, J., Qu, Y., Zhang, W. and Yu, Y. (2018) Wasserstein Distance Guided Representation Learning for Domain Adaptation. Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, 2-7 February 2018, 4058-4065.
|
|
[12]
|
Ganin, Y. and Lempitsky, V. (2015) Unsupervised Domain Adaptation by Backpropagation. Proceedings of the International Conference on Machine Learning, Lille, France, 6-11 July 2015, 1180-1189.
|
|
[13]
|
Bousmalis, K., Silberman, N., Dohan, D., Erhan, D. and Krishnan, D. (2017) Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 22-25 July 2017, 3722-3731. [Google Scholar] [CrossRef]
|
|
[14]
|
Chen, Y., Li, W., Sakaridis, C., Dai, D. and Van Gool, L. (2018) Domain Adaptive Faster R-CNN for Object Detection in the Wild. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 19-21 June 2018, 3339-3348. [Google Scholar] [CrossRef]
|
|
[15]
|
He, Z. and Zhang, L. (2019) Multi-Adversarial Faster-R CNN for Unrestricted Object Detection. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 27 October-2 November 2019, 6668-6677. [Google Scholar] [CrossRef]
|
|
[16]
|
Saito, K., Ushiku, Y., Harada, T. and Saenko, K. (2019) Strong-Weak Distribution Alignment for Adaptive Object Detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, 16-20 June 2019, 6956-6965. [Google Scholar] [CrossRef]
|
|
[17]
|
Xu, C., Zhao, X., Jin, X. and Wei, X. (2020) Exploring Categorical Regularization for Domain Adaptive Object Detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 14-19 June 2020, 11724-11733. [Google Scholar] [CrossRef]
|
|
[18]
|
Xu, M., Wang, H., Ni, B., Tian, Q. and Zhang, W. (2020) Cross-Domain Detection via Graph-Induced Prototype Alignment. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 14-19 June 2020, 12355-12364. [Google Scholar] [CrossRef]
|
|
[19]
|
Li, W., Liu, X. and Yuan, Y. (2022) SIGMA: Semantic-Complete Graph Matching for Domain Adaptive Object Detection. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, 21-24 June 2022, 5291-5300. [Google Scholar] [CrossRef]
|
|
[20]
|
Rezaeianaran, F., Shetty, R., Aljundi, R., Reino, D.O., Zhang, S. and Schiele, B. (2021) Seeking Similarities over Differences: Similarity-Based Domain Alignment for Adaptive Object Detection. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, 11-17 October 2021, 9204-9213. [Google Scholar] [CrossRef]
|
|
[21]
|
Hsu, C., Tsai, Y., Lin, Y. and Yang, M. (2020) Every Pixel Matters: Center-Aware Feature Alignment for Domain Adaptive Object Detector. Computer Vision—ECCV 2020, Glasgow, 23-28 August 2020, 733-748. [Google Scholar] [CrossRef]
|
|
[22]
|
Tian, K., Zhang, C., Wang, Y., Xiang, S. and Pan, C. (2021) Knowledge Mining and Transferring for Domain Adaptive Object Detection. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, 11-17 October 2021, 9133-9142. [Google Scholar] [CrossRef]
|
|
[23]
|
Li, W., Liu, X. and Yuan, Y. (2023) SIGMA++: Improved Semantic-Complete Graph Matching for Domain Adaptive Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 9022-9040. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Deng, J., Li, W., Chen, Y. and Duan, L. (2021) Unbiased Mean Teacher for Cross-Domain Object Detection. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 19-25 June 2021, 4091-4101. [Google Scholar] [CrossRef]
|
|
[25]
|
Li, Y., Dai, X., Ma, C., Liu, Y., Chen, K., Wu, B., et al. (2022) Cross-Domain Adaptive Teacher for Object Detection. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Montreal, 16-22 October 2022, 7581-7590. [Google Scholar] [CrossRef]
|
|
[26]
|
Zhao, L. and Wang, L. (2022) Task-specific Inconsistency Alignment for Domain Adaptive Object Detection. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, 21-24 June 2022, 14217-14226. [Google Scholar] [CrossRef]
|
|
[27]
|
Jiang, J., Chen, B., Wang, J. and Long, M. (2021) Decoupled Adaptation for Cross-Domain Object Detection.
|
|
[28]
|
Liu, D., Zhang, C., Song, Y., Huang, H., Wang, C., Barnett, M., et al. (2023) Decompose to Adapt: Cross-Domain Object Detection via Feature Disentanglement. IEEE Transactions on Multimedia, 25, 1333-1344. [Google Scholar] [CrossRef]
|
|
[29]
|
Li, X., Chen, W., Xie, D., Yang, S., Yuan, P., Pu, S., et al. (2021) A Free Lunch for Unsupervised Domain Adaptive Object Detection without Source Data. Proceedings of the AAAI Conference on Artificial Intelligence, 35, 8474-8481. [Google Scholar] [CrossRef]
|
|
[30]
|
Huang, J., Guan, D., Xiao, A. and Lu, S. (2021) Model Adaptation: Historical Contrastive Learning for Unsupervised Domain Adaptation without Source Data. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), 6-14 December 2021, 3635-3649.
|
|
[31]
|
Li, S., Ye, M., Zhu, X., Zhou, L. and Xiong, L. (2022) Source-Free Object Detection by Learning to Overlook Domain Style. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, 21-24 June 2022, 8014-8023. [Google Scholar] [CrossRef]
|
|
[32]
|
VS, V., Oza, P. and Patel, V.M. (2023) Instance Relation Graph Guided Source-Free Domain Adaptive Object Detection. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, 18-22 June 2023, 3520-3530. [Google Scholar] [CrossRef]
|
|
[33]
|
VS, V., Oza, P. and Patel, V.M. (2023) Towards Online Domain Adaptive Object Detection. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, 3-7 January 2023, 478-488. [Google Scholar] [CrossRef]
|
|
[34]
|
Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K. and Vasudevan, R. (2017) Driving in the Matrix: Can Virtual Worlds Replace Human-Generated Annotations for Real World Tasks? 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May-3 June 2017, 746-753. [Google Scholar] [CrossRef]
|
|
[35]
|
Geiger, A., Lenz, P. and Urtasun, R. (2012) Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, 16-21 June 2012, 3354-3361. [Google Scholar] [CrossRef]
|
|
[36]
|
Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V. and Darrell, T. (2018) Bdd100k: A Diverse Driving Video Database with Scalable Annotation Tooling.
|
|
[37]
|
Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J. and Zisserman, A. (2014) The Pascal Visual Object Classes Challenge: A Retrospective. International Journal of Computer Vision, 111, 98-136. [Google Scholar] [CrossRef]
|
|
[38]
|
Inoue, N., Furuta, R., Yamasaki, T. and Aizawa, K. (2018) Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-22 June 2018, 5001-5009. [Google Scholar] [CrossRef]
|