[1]
|
Li, Z., Hu, M., Wang, P., Liu, J., Yao, J. and Li, C. (2021) Heterojunction Catalyst in Electrocatalytic Water Splitting. Coordination Chemistry Reviews, 439, Article 213953. https://doi.org/10.1016/j.ccr.2021.213953
|
[2]
|
Chandrasekaran, S., Yao, L., Deng, L., Bowen, C., Zhang, Y., Chen, S., et al. (2019) Recent Advances in Metal Sulfides: From Controlled Fabrication to Electrocatalytic, Photocatalytic and Photoelectrochemical Water Splitting and Beyond. Chemical Society Reviews, 48, 4178-4280. https://doi.org/10.1039/c8cs00664d
|
[3]
|
Duan, C., Tang, C., Yu, S., Li, L., Li, J. and Zhou, Y. (2023) Efficient Electrocatalytic Desulfuration and Synchronous Hydrogen Evolution from H2S via Anti-Sulfuretted Nise Nanowire Array Catalyst. Applied Catalysis B: Environmental, 324, Article 122255. https://doi.org/10.1016/j.apcatb.2022.122255
|
[4]
|
Song, J., Wei, C., Huang, Z., Liu, C., Zeng, L., Wang, X., et al. (2020) A Review on Fundamentals for Designing Oxygen Evolution Electrocatalysts. Chemical Society Reviews, 49, 2196-2214. https://doi.org/10.1039/c9cs00607a
|
[5]
|
Liu, Y., Chen, Y., Tian, Y., Sakthivel, T., Liu, H., Guo, S., et al. (2022) Synergizing Hydrogen Spillover and Deprotonation by the Internal Polarization Field in a MoS2/NiPS3 Vertical Heterostructure for Boosted Water Electrolysis. Advanced Materials, 34, Article 2203615. https://doi.org/10.1002/adma.202203615
|
[6]
|
Shaikh, N., Mukhopadhyay, I. and Ray, A. (2022) Heterointerfaces of Nickel Sulphides and Selenides on Ni-Foam as Efficient Bifunctional Electrocatalysts in Acidic Environments. Journal of Materials Chemistry A, 10, 12733-12746. https://doi.org/10.1039/d2ta01630c
|
[7]
|
Li, M., Zhu, H., Yuan, Q., Li, T., Wang, M., Zhang, P., et al. (2022) Proximity Electronic Effect of Ni/Co Diatomic Sites for Synergistic Promotion of Electrocatalytic Oxygen Reduction and Hydrogen Evolution. Advanced Functional Materials, 33, Article 2210867. https://doi.org/10.1002/adfm.202210867
|
[8]
|
Sun, L., Reddu, V. and Wang, X. (2022) Multi-Atom Cluster Catalysts for Efficient Electrocatalysis. Chemical Society Reviews, 51, 8923-8956. https://doi.org/10.1039/d2cs00233g
|
[9]
|
Dai, W., Zhu, Y., Ye, Y., Pan, Y., Lu, T. and Huang, S. (2022) Electrochemical Incorporation of Heteroatom into Surface Reconstruction Induced Ni Vacancy of Nixo Nanosheet for Enhanced Water Oxidation. Journal of Colloid and Interface Science, 608, 3030-3039. https://doi.org/10.1016/j.jcis.2021.11.026
|
[10]
|
Pei, Z., Lu, X.F., Zhang, H., Li, Y., Luan, D. and Lou, X.W. (2022) Highly Efficient Electrocatalytic Oxygen Evolution Over Atomically Dispersed Synergistic Ni/Co Dual Sites. Angewandte Chemie International Edition, 61, e202207537. https://doi.org/10.1002/anie.202207537
|
[11]
|
Li, Y., Zeng, Y., Chen, Y., Luan, D., Gao, S. and Lou, X.W. (2022) Mesoporous N‐Rich Carbon with Single‐Ni Atoms as a Multifunctional Sulfur Host for Li‐S Batteries. Angewandte Chemie International Edition, 61, e202212680. https://doi.org/10.1002/anie.202212680
|
[12]
|
Liu, Y., Sakthivel, T., Hu, F., Tian, Y., Wu, D., Ang, E.H., et al. (2023) Enhancing the d/p‐Band Center Proximity with Amorphous‐Crystalline Interface Coupling for Boosted pH‐Robust Water Electrolysis. Advanced Energy Materials, 13, Article 2203797. https://doi.org/10.1002/aenm.202203797
|
[13]
|
Wang, S., Jiang, Q., Ju, S., Hsu, C., Chen, H.M., Zhang, D., et al. (2022) Identifying the Geometric Catalytic Active Sites of Crystalline Cobalt Oxyhydroxides for Oxygen Evolution Reaction. Nature Communications, 13, Article No. 6650. https://doi.org/10.1038/s41467-022-34380-9
|
[14]
|
Nie, F., Li, Z., Dai, X., Yin, X., Gan, Y., Yang, Z., et al. (2022) Interfacial Electronic Modulation on Heterostructured NiSe@CoFe LDH Nanoarrays for Enhancing Oxygen Evolution Reaction and Water Splitting by Facilitating the Deprotonation of OH to O. Chemical Engineering Journal, 431, Article 134080. https://doi.org/10.1016/j.cej.2021.134080
|
[15]
|
Wang, J., Zhang, J., Hu, Y., Jiang, H. and Li, C. (2022) Activating Multisite High-Entropy Alloy Nanocrystals via Enriching M-Pyridinic N-C Bonds for Superior Electrocatalytic Hydrogen Evolution. Science Bulletin, 67, 1890-1897. https://doi.org/10.1016/j.scib.2022.08.022
|
[16]
|
Lei, H., Ma, L., Wan, Q., Tan, S., Yang, B., Wang, Z., et al. (2022) Promoting Surface Reconstruction of NiFe Layered Double Hydroxide for Enhanced Oxygen Evolution. Advanced Energy Materials, 12, Article 2202522. https://doi.org/10.1002/aenm.202202522
|
[17]
|
Hu, J., Liang, Y.Q., Wu, S.L., Li, Z.Y., Shi, C.S., Luo, S.Y., et al. (2022) Hierarchical Nickle-Iron Layered Double Hydroxide Composite Electrocatalyst for Efficient Oxygen Evolution Reaction. Materials Today Nano, 17, Article 100150. https://doi.org/10.1016/j.mtnano.2021.100150
|
[18]
|
Nai, J., Xu, X., Xie, Q., Lu, G., Wang, Y., Luan, D., et al. (2021) Construction of Ni(CN)2/NiSe2 Heterostructures by Stepwise Topochemical Pathways for Efficient Electrocatalytic Oxygen Evolution. Advanced Materials, 34, Article 2104405. https://doi.org/10.1002/adma.202104405
|
[19]
|
Chang, K., Tran, D.T., Wang, J., Kim, N.H. and Lee, J.H. (2022) A 3D Hierarchical Network Derived from 2D Fe-Doped NiSe Nanosheets/Carbon Nanotubes with Enhanced OER Performance for Overall Water Splitting. Journal of Materials Chemistry A, 10, 3102-3111. https://doi.org/10.1039/d1ta07393a
|
[20]
|
Jeghan, S.M.N., Kim, D., Lee, Y., Kim, M. and Lee, G. (2022) Designing a Smart Heterojunction Coupling of Cobalt-Iron Layered Double Hydroxide on Nickel Selenide Nanosheets for Highly Efficient Overall Water Splitting Kinetics. Applied Catalysis B: Environmental, 308, Article 121221. https://doi.org/10.1016/j.apcatb.2022.121221
|
[21]
|
Bao, W., Yang, C., Ai, T., Zhang, J., Zhou, L., li, Y., et al. (2023) Modulating Interfacial Charge Distribution of NiSe Nanoarrays with NiFe-LDH Nanosheets for Boosting Oxygen Evolution Reaction. Fuel, 332, Article 126227. https://doi.org/10.1016/j.fuel.2022.126227
|
[22]
|
Pan, Z., Tang, Z., Yaseen, M. and Zhan, Y. (2022) NiSe and Fe-Based Layerd Double Hydroxide Nanosheet/Ni Foam Bifunctional Catalyst for Water Splitting. ACS Applied Nano Materials, 5, 16793-16803. https://doi.org/10.1021/acsanm.2c03764
|
[23]
|
Zheng, X., Sun, A., Qiu, Y., Wang, Z., Xu, J. and Liu, J. (2023) Controllable Atoms Implantation for Inducing High Valency Nickel towards Optimizing Electronic Structure for Enhanced Overall Water Splitting. Journal of Colloid and Interface Science, 650, 1966-1973. https://doi.org/10.1016/j.jcis.2023.07.131
|
[24]
|
Tian, L., Chen, Z., Wang, T., Cao, M., Lu, X., Cheng, W., et al. (2023) Mo Doping and Se Vacancy Engineering for Boosting Electrocatalytic Water Oxidation by Regulating the Electronic Structure of Self-Supported CO9Se8@NiSe. Nanoscale, 15, 259-265. https://doi.org/10.1039/d2nr05410h
|
[25]
|
Li, Y., Bao, W., Zhang, J., Ai, T., Wu, D., Wang, H., et al. (2023) Ultrathin MoS2 Nanosheets Decorated on Nise Nanowire Arrays as Advanced Trifunctional Electrocatalyst for Overall Water Splitting and Urea Electrolysis. Journal of Industrial and Engineering Chemistry, 121, 510-518. https://doi.org/10.1016/j.jiec.2023.02.006
|