新冠疫情对肺炎支原体感染影响的研究进展
Advances in Research on the Impact of COVID-19 on Mycoplasma pneumoniae Infections
DOI: 10.12677/acm.2024.1482275, PDF, HTML, XML,    科研立项经费支持
作者: 祝沙沙, 闫 莉*:重庆医科大学附属儿童医院呼吸科,国家儿童健康与疾病临床研究中心,儿童发育疾病研究教育部重点实验室,儿童发育重大疾病国家国际科技合作基地,儿科学重庆市重点实验室,重庆
关键词: 肺炎支原体新冠疫情大环内酯类耐药性治疗儿童Mycoplasma pneumoniae COVID-19 Macrolide Resistance Treatment Child
摘要: 肺炎支原体(Mycoplasma pneumoniae, MP)是儿童社区获得性肺炎的常见病原体,通过飞沫传播,周期性地引起地区性暴发流行。新冠疫情期间采取的非药物干预措施(non-pharmaceutical interventions, NPIs)在控制新型冠状病毒传播的同时,也显著影响了MP的流行病学特征、耐药性及临床表现。随着防控措施的放松,MP疫情出现了延迟但显著的反弹,这一现象可能与MP独特的生物学特征、免疫债务、病原体的交互影响以及抗生素经验性使用等多重因素有关。本文就新冠疫情期间及疫情后期MP流行病学、大环内酯类耐药性及临床表现进行了综述,了解新冠疫情对肺炎支原体感染的影响,并探讨了肺炎支原体肺炎的治疗进展。
Abstract: Mycoplasma pneumoniae is a common pathogen in community-acquired pneumonia in children, spreading through droplet transmission and periodically causing regional outbreaks. The non-pharmaceutical interventions implemented during the COVID-19 pandemic have significantly impacted the epidemiological characteristics, drug resistance, and clinical manifestations of M. pneumoniae while controlling the spread of the novel coronavirus. With the relaxation of containment measures, there has been a delayed but significant rebound in M. pneumoniae outbreaks. This phenomenon may be related to the unique biological characteristics of M. pneumoniae, immune debt, interactions with other pathogens, and the empirical use of antibiotics among multiple factors. This article reviews the epidemiology of M. pneumoniae, macrolide resistance, and clinical manifestations during and after the COVID-19 pandemic, aiming to understand the impact of the pandemic on M. pneumoniae infections, and explores the therapeutic advancements for M. pneumoniae pneumonia.
文章引用:祝沙沙, 闫莉. 新冠疫情对肺炎支原体感染影响的研究进展[J]. 临床医学进展, 2024, 14(8): 736-743. https://doi.org/10.12677/acm.2024.1482275

1. 引言

MP是社区获得性肺炎的常见病原,在儿童和青少年中尤为突出[1]。新型冠状病毒(Coronavirus disease, COVID-19)大流行期间,全球范围内实施了NPIs抗击疫情,包括鼓励个人层面的卫生(在户外佩戴口罩、保持社交距离、酒精消毒和勤洗手)和社区层面的预防措施(促进远程工作和学习、暂停大规模集会),这些措施不仅有效控制了SARS-CoV-2的传播,也显著降低了包括MP在内的呼吸道病原体的感染率[2]。然而,随着中国大陆突然完全放松城市封锁和NPIs,新一轮肺炎支原体暴发流行正在我国出现,其独特的流行模式引起了广泛关注。为了帮助临床医生更好地认识疫情对肺炎支原体感染(Mycoplasma pneumoniae infection, MPI)的影响和指导临床医生对肺炎支原体的诊治,本文综述了新冠疫情前、疫情期间及后疫情时代MP流行病学、大环内酯类耐药性、临床表现和肺炎支原体肺炎的治疗进展。

2. 流行病学

2.1. 新冠疫情对MP流行趋势变化的影响

MPI是肺炎的全球性病因,MP从感染者的鼻、咽、喉和气管分泌物中排出,并通过飞沫或气溶胶传播。由于其生长缓慢,潜伏期从1~3周不等。MPI每4~7年出现周期性流行模式[3],MP的周期性流行与从一种P1亚型向另一种P1亚型的转变有关[4],最近一次大流行发生在2019年底,主要发生在欧洲和亚洲[5],COVID-19大流行显著改变了MP的流行病学。

COVID-19大流行期间采取的NPIs不仅减少了SARS-CoV-2的传播,还影响了其他病原体的流行,尤其是呼吸道病原体和MP,发病率显著下降[6]-[10]。一项全球研究表明,自2020年3月,针对新冠肺炎的NPIs的引入使全球范围内MP检测的显著下降。与疫情之前MP的发病率(8.61%, 2017~2020)相比,在实施NPIs后的第一年观察到MPI (1.69%, 2020~2021)显著下降,与其他呼吸道病原体的发病率相似[8]

疫情后,随着中国内地突然全面放松城市封锁及其他非药物措施,儿童常见呼吸道感染病原体开始大幅反弹,其中,MP出现了延迟但显著的反弹,2021~2022年,肺炎支原体的发病率仍保持在较低水平,与其他呼吸道病原体的死灰复燃形成鲜明对比,观察到MP的发病率(0.70%, 2021~2022)进一步出现前所未有的大幅下降[11] [12]。首个MP全球前瞻性监测研究[10] (ESGMAC MAPS研究)也发现了同样的现象,从2022年4月到2023年3月,MP的发病率持续非常低(0.82%),直到2023年4月后,MP平均发病率显著升高(4.12%),欧洲和亚洲明显高于美洲和大洋洲[5]。还有一些研究也发现MP有延迟反弹现象,SARS-CoV-2快速反弹之后,MP反弹较慢,新型冠状病毒和MP反弹峰值之间的间隔约为5个月[5] [13]。这种延迟反弹是惊人的,并且可能是该种病原体特有的。另外,MPI通常在秋冬季更为普遍,值得注意的是,2023年MPI的流行模式与往年不同,本次在夏秋季高峰流行,且在全球范围内一致[14]

2.2. 新冠疫情与大环内酯类耐药性变化的关系

目前大环内酯类药物仍然是肺炎支原体感染的一线治疗药物,由于口服生物利用度高和每日服用一次,大环内酯类药物已广泛用于门诊,但近年来耐药菌株的出现成为全球关注的问题。MP对大环内酯类抗生素耐药主要是其作用靶点改变,主要机制是23S rRNA V区的A2063G和A2064G基因突变[15]

21世纪初,日本出现了对大环内酯类药物耐药的肺炎支原体[16],之后在全球范围内不断检测到耐药性肺炎支原体。然而,在过去的十年中,大环内酯类耐药肺炎支原体(macrolide-resistant Mycoplasma pneumoniae, MRMP)在世界范围内出现,尤其是东亚地区,耐大环内酯类MP菌株的比例逐年上升,患病率为13.6%~100% [17]。在日本和中国,在某些流行年份,耐药率为>90% [18]。江岳等人[19]回顾性分析了2013年1月至2019年12月期间中国部分地区MRPP情况,北京肺炎支原体PCR阳性率最高,为74.5%,上海耐药率最高,为100%,甘肃最低,为20%。

新冠疫情期间,不同地区的MRMP患病率有所不同,但总体呈现出下降趋势。Chen等人[20]在COVID-19大流行期间对中国患有轻度呼吸道感染的门诊儿童进行的一项前瞻性、多中心的监测研究报告称,MRMP发生率降至7.7%,然而,Ting-Ting Jiang等人[21]发现,COVID-19大流行期间,保定地区的住院社区获得性肺炎患者MRMP菌株患病率极高,达92.7%。Heng Li等人[22]的研究表明,从2021年到2022年,华北地区P1-2 MRMP毒株导致的感染人数异常增加。

大流行后,部分地区的耐药率又有所回升[13] [14],Chen等人[23]的一项关于MP全基因组测序的多中心研究表明,疫情后,MRMP一直在中国大陆蔓延,显示了MP耐药性的复杂性和动态变化。Leng等人[24]发现,中国河南省在2023年7~12月,MP高发时期,MP阳性患者总百分比为51.1%,大环内酯类耐药菌株百分比为91%,但MP大环内酯类药物耐药率无明显变化。

3. 新冠疫情对大流行后MPI延迟复发机制

大流行后,MP这种延迟复发是非典型且可能是其特有的,其中,MP独特的生物学特征、相对较低的传播率、病原体的交互影响和抗生素的经验性使用可能是导致在人群中重新建立肺炎支原体感染所需的较长时间间隔的因素,具体分析如下:

生物学特征:MP具有独特的生物学特征,其生长速度慢,世代时间为6 h,此外,它有1~3周的长潜伏期。感染的传播需要个体之间的密切接触,在取消非药物干预后,可能需要更长的时间间隔才能在人群中重新建立,这些因素可能导致感染延迟复发[25]

免疫债务:COVID-19大流行后,一些研究将常见季节性病原体引起的急性呼吸道感染发病率急剧增加归因于“免疫债务”的概念[26]-[28]。当为控制大流行采取NPI的措施时间越长,这些病毒或细菌“低暴露”的时间也就越长,未来流行的可能性就越大,这是由于“易感”人群比例的增加和人群中群体免疫力的下降,最终会导致易感人群中的高发病率[26]。Liu等人[29]的最新一项数据首次提供了MP“免疫差距”的证据,其特征是体液免疫力减弱,研究还指出,新的易感出生队列和对肺炎支原体的免疫力减弱的叠加有助于扩大免疫差距,从而增加2023年肺炎支原体暴发的风险。

另外,病原体之间交互影响也可能是其原因之一,Yuquan Gao等人[30]的一项数据表明,大流行后,SARS-CoV-2、流感病毒和MP存在交互影响可能导致MP延迟反弹,在流感病毒和新冠病毒流行的1月到5月,MP感染率较低,间隔5个月后,MP感染率达到峰值,在2023年最后两个月,流感病毒再次卷土重来,MP感染率出现明显降低。

抗生素的经验性使用:在门诊和住院的日常诊疗中,由于儿童下呼吸道分泌物很难获取及病原学检查的敏感性和特异性的限制,当儿童患社区获得性肺炎时,临床症状仍然是决定开始抗生素治疗的主要标准,医生常倾向于使用大环内酯类如阿奇霉素,或β-内酰胺类如阿莫西林克拉维酸盐和头孢类作为首选抗生素[31]。对于感染常见典型肺炎病原体,如肺炎链球菌、流感嗜血杆菌和金黄色葡萄球菌的儿童,这些抗生素通常能取得显著疗效。然而,对于MRMP的患者,这种基于经验的用药策略可能效果有限。值得注意的是,使用大环内酯类治疗MRMP时,可能抑制原本对大环内酯类药物敏感的正常菌群,为支原体感染提供了竞争优势,甚至可能延长细菌脱落,延长病情爆发期[13]

4. 新冠疫情对肺炎支原体肺炎临床表现的影响

肺炎支原体肺炎(Mycoplasma pneumoniae, MPP)是一种以肺间质疾病为特征的非典型肺炎,以发热、咳嗽为主要临床表现,许多人可能会出现类似于上呼吸道感染的非特异性症状,如头痛、流涕、咽痛、耳痛等。部分患儿有喘息表现,以婴幼儿多见。肺部早期体征可不明显,随病情进展可出现呼吸音降低和干湿性啰音。仅根据症状和体征无法诊断MPP,要结合实验室检查结果[32]。MRMP与其临床表现之间的关系也同样如此,Chen等人[33]对MRMP进行系统评价和META分析发现,MRMP和大环内酯类敏感肺炎支原体(Macrolide-Sensitive Mycoplasma pneumoniae, MSMP)感染在临床严重程度上没有差异,然而,和其他研究报告一样[34] [35],与MSMP感染者相比,MRMP感染患者的发热期、住院时间、抗生素药物疗程和大环内酯类药物治疗后的退热时间更长。然而,另一项在保定地区的研究表明,在COVID-19大流行期间,MRMP菌株感染患者临床特征更严重,如呼吸困难和胸腔积液[21]

随着大环内酯类药物在儿童中的广泛应用,一些儿童在治疗1周后仍无法有效治疗,导致支原体耐药性并进展为难治性肺炎支原体肺炎(refractory Mycoplasma pneumoniae pneumonia, RMPP)伴有肺实变、肺不张、胸腔积液等多系统受累,RMPP比普通肺炎支原体肺炎临床症状和肺部影像学表现更严重,肺外并发症发生率更高,住院时间更长[36]。对于在大环内酯类治疗期间容易出现临床和放射学加重的患者,为了预防进展和减少相关并发症,早期识别和诊断RMPP至关重要。研究表明[36]-[38],血清D-二聚体、C反应蛋白(reactive protein, CRP)、白介素-6和乳酸脱氢酶(lactate dehydrogenase, LDH)是RMPP的独立危险因素,白介素-6、CRP、LDH、血沉、中性粒细胞百分比和肺实变是RMPP的重要预测因子,发热10天以上,CRP > 40 mg/L与RMPP风险显著相关。

Qiu等人[9]回顾性分析杭州2019~2022 MP住院患儿的特征后发现,MP引起的重症肺炎在大流行前的比例最高,在2020年最低。同样,另一项对中国南方地区大流行后进行的多中心回顾性研究表明,2023年的儿童MP的严重程度并没有变强[14]

5. 新冠疫情前后肺炎支原体肺炎治疗策略的调整

MRMP和RMPP是临床上经常能遇到的主要治疗效果欠佳的疾病,大环内酯类药物可有效治疗MSMP感染,但治疗大环内酯类药物耐药的MP感染具有一定的挑战。

由于大环内酯类药物具有免疫调节功能[39],与未治疗或无效抗生素(如β-内酰胺类)治疗的患者相比,接受大环内酯类药物治疗的MRMP感染患者退热时间较短[13],因此用其治疗一些耐药菌株感染仍然是有效的。

喹诺酮类药物(莫西沙星或左氧氟沙星)和新一代四环素类药物(多西环素或米诺环素)作为替代药物对治疗RMPP是有效的[40]。两类药物在治疗MP感染的儿科患者方面没有明显的优势或劣势[41]。然而,考虑到对儿童的副作用,在儿科患者中需要慎重使用喹诺酮类或四环素类药物。最初是由于有篇关于第一代四环素类药物治疗儿童恒牙变色和牙釉质发育不全的报道,后推荐将四环素类药物仅用于≥8岁儿童[42]。目前,新一代四环素与牙齿着色之间相关性的数据尚有限。美国儿科学会(American Academy of Paediatrics)的最新建议是支持在所有年龄段的儿童中使用多西环素,最大剂量为21天,理由是与其他四环素药物相比,多西环素对钙的亲和力较低,从而降低了短期使用引起的牙齿染色的风险[43]。Shen等人[44]一项Meta分析的数据显示,米诺环素对RMPP患儿具有良好疗效。最新一项Meta分析结果显示[41],新一代四环素类药物可能是治疗≥8岁儿童MRMP感染的首选,莫西沙星在治疗≤8岁肺炎支原体人群中与其他喹诺酮类药物相比具有很大的疗效和安全性优势。

对于MPI的药物治疗,除了使用抗菌药物治疗,糖皮质激素在RMPP的治疗中显示出良好的疗效,特别是当皮质类固醇与适当的抗菌药物联合使用[45] [46]。但糖皮质激素使用的时机、剂量和疗程仍无统一方案,需要进一步系统的研究[47]

6. 总结与展望

综上所述,新冠疫情对MPI产生了显著影响,不仅改变了其流行病学特征,还影响了耐药性和临床表现。MP独特的生物学特征和传播机制等因素可能是导致其延迟暴发流行的特殊模式。为了控制当前和未来的肺炎支原体暴发流行,我们需要采取必要的预防和控制措施,包括加强监测、提高公众卫生意识、合理使用抗生素等。目前全球前瞻性监测已经建立,我们需要持续关注MP流行趋势、耐药性的变化、严重程度以及治疗药物的研究进展,为临床治疗提供更多有效的手段,同时,针对儿童患者的治疗需要更加谨慎和个体化。

基金项目

重庆医科大学未来医学青年创新团队支持计划(项目编号W0063)。

NOTES

*通讯作者。

参考文献

[1] Atkinson, T.P., Balish, M.F. and Waites, K.B. (2008) Epidemiology, Clinical Manifestations, Pathogenesis and Laboratory Detection of Mycoplasma pneumoniae Infections. FEMS Microbiology Reviews, 32, 956-973.
https://doi.org/10.1111/j.1574-6976.2008.00129.x
[2] Yum, S., Hong, K., Sohn, S., Kim, J. and Chun, B.C. (2021) Trends in Viral Respiratory Infections during COVID-19 Pandemic, South Korea. Emerging Infectious Diseases, 27, 1685-1688.
https://doi.org/10.3201/eid2706.210135
[3] Vervloet, L.A., Marguet, C. and Camargos, P.A.M. (2007) Infection by Mycoplasma pneumoniae and Its Importance as an Etiological Agent in Childhood Community-Acquired Pneumonias. Brazilian Journal of Infectious Diseases, 11, 507-514.
https://doi.org/10.1590/s1413-86702007000500012
[4] Dumke, R., Catrein, I., Herrmann, R. and Jacobs, E. (2004) Preference, Adaptation and Survival of Mycoplasma pneumoniae Subtypes in an Animal Model. International Journal of Medical Microbiology, 294, 149-155.
https://doi.org/10.1016/j.ijmm.2004.06.020
[5] Meyer Sauteur, P.M., Beeton, M.L., Pereyre, S., Bébéar, C., Gardette, M., Hénin, N., et al. (2024) Mycoplasma pneumoniae: Delayed Re-Emergence after COVID-19 Pandemic Restrictions. The Lancet Microbe, 5, e100-e101.
https://doi.org/10.1016/s2666-5247(23)00344-0
[6] Chen, M., Zhou, Y., Jin, S., Bai, S., Tang, X., Liu, Q., et al. (2024) Changing Clinical Characteristics of Pediatric Inpatients with Pneumonia during COVID-19 Pandamic: A Retrospective Study. Italian Journal of Pediatrics, 50, Article No. 84.
https://doi.org/10.1186/s13052-024-01651-8
[7] Clark, S.A., Campbell, H., Ribeiro, S., Bertran, M., Walsh, L., Walker, A., et al. (2023) Epidemiological and Strain Characteristics of Invasive Meningococcal Disease Prior To, during and after COVID-19 Pandemic Restrictions in England. Journal of Infection, 87, 385-391.
https://doi.org/10.1016/j.jinf.2023.09.002
[8] Meyer Sauteur, P.M., Beeton, M.L., Uldum, S.A., Bossuyt, N., Vermeulen, M., Loens, K., et al. (2022) Mycoplasma pneumoniae Detections before and during the COVID-19 Pandemic: Results of a Global Survey, 2017 to 2021. Eurosurveillance, 27, Article 2100746.
https://doi.org/10.2807/1560-7917.es.2022.27.19.2100746
[9] Qiu, W., Ding, J., Zhang, H., Huang, S., Huang, Z., Lin, M., et al. (2024) Mycoplasma pneumoniae Detections in Children with Lower Respiratory Infection before and during the COVID-19 Pandemic: A Large Sample Study in China from 2019 to 2022. BMC Infectious Diseases, 24, Article No. 549.
https://doi.org/10.1186/s12879-024-09438-2
[10] Meyer Sauteur, P.M., Beeton, M.L., Pereyre, S., Bébéar, C., Gardette, M., Hénin, N., et al. (2023) Mycoplasma pneumoniae: Gone Forever? The Lancet Microbe, 4, e763.
https://doi.org/10.1016/s2666-5247(23)00182-9
[11] Sauteur, P.M.M., Chalker, V.J., Berger, C., Nir-Paz, R., Beeton, M.L., Pereyre, S., et al. (2022) Mycoplasma pneumoniae Beyond the COVID-19 Pandemic: Where Is It? The Lancet Microbe, 3, e897.
https://doi.org/10.1016/s2666-5247(22)00190-2
[12] Li, X., Li, T., Chen, N., Kang, P. and Yang, J. (2023) Changes of Mycoplasma pneumoniae Prevalence in Children before and after COVID-19 Pandemic in Henan, China. Journal of Infection, 86, 256-308.
https://doi.org/10.1016/j.jinf.2022.12.030
[13] Xing, F., Chiu, K.H., Deng, C., Ye, H., Sun, L., Su, Y., et al. (2024) Post-Covid-19 Pandemic Rebound of Macrolide-Resistant Mycoplasma pneumoniae Infection: A Descriptive Study. Antibiotics, 13, Article 262.
https://doi.org/10.3390/antibiotics13030262
[14] Xu, Y., Yang, C., Sun, P., Zeng, F., Wang, Q., Wu, J., et al. (2024) Epidemic Features and Megagenomic Analysis of Childhood Mycoplasma pneumoniae Post COVID-19 Pandemic: A 6-Year Study in Southern China. Emerging Microbes & Infections, 13, Article 2353298.
https://doi.org/10.1080/22221751.2024.2353298
[15] Wang, A., Wu, Z., Huang, Y., Zhou, H., Wu, L., Jia, C., et al. (2021) A 3D-Printed Microfluidic Device for qPCR Detection of Macrolide-Resistant Mutations of Mycoplasma pneumoniae. Biosensors, 11, Article 427.
https://doi.org/10.3390/bios11110427
[16] Okazaki, N., Narita, M., Yamada, S., Izumikawa, K., Umetsu, M., Kenri, T., et al. (2001) Characteristics of Macrolide-Resistant Mycoplasma pneumoniae Strains Isolated from Patients and Induced with Erythromycin in Vitro. Microbiology and Immunology, 45, 617-620.
https://doi.org/10.1111/j.1348-0421.2001.tb01293.x
[17] Gao, L., Yin, J., Hu, Y., Liu, X., Feng, X., He, J., et al. (2019) The Epidemiology of Paediatric Mycoplasma pneumoniae Pneumonia in North China: 2006 to 2016. Epidemiology and Infection, 147, e192.
https://doi.org/10.1017/s0950268819000839
[18] Pereyre, S., Goret, J. and Bébéar, C. (2016) Mycoplasma pneumoniae: Current Knowledge on Macrolide Resistance and Treatment. Frontiers in Microbiology, 7, Article 974.
https://doi.org/10.3389/fmicb.2016.00974
[19] Jiang, Y., Dou, H., Xu, B., Xu, B., Zhou, W., Wang, H., et al. (2024) Macrolide Resistance of Mycoplasma pneumoniae in Several Regions of China from 2013 to 2019. Epidemiology and Infection, 152, e75.
https://doi.org/10.1017/s0950268824000323
[20] Chen, J., Zhang, J., Lu, Z., Chen, Y., Huang, S., Li, H., et al. (2022) Mycoplasma pneumoniae among Chinese Outpatient Children with Mild Respiratory Tract Infections during the Coronavirus Disease 2019 Pandemic. Microbiology Spectrum, 10, e01550-21.
https://doi.org/10.1128/spectrum.01550-21
[21] Jiang, T., Sun, L., Wang, T., Qi, H., Tang, H., Wang, Y., et al. (2023) The Clinical Significance of Macrolide Resistance in Pediatric Mycoplasma pneumoniae Infection during COVID-19 Pandemic. Frontiers in Cellular and Infection Microbiology, 13, Article 1181402.
https://doi.org/10.3389/fcimb.2023.1181402
[22] Li, H., Li, S., Yang, H., Chen, Z. and Zhou, Z. (2024) Resurgence of Mycoplasma pneumonia by Macrolide-Resistant Epidemic Clones in China. The Lancet Microbe, 5, e515.
https://doi.org/10.1016/s2666-5247(23)00405-6
[23] Chen, Y., Li, X., Fu, Y., Yu, Y. and Zhou, H. (2024) Whole-Genome Sequencing Unveils the Outbreak of Mycoplasma pneumoniae in Mainland of China. The Lancet Microbe, 2024, Article 100870.
https://doi.org/10.1016/s2666-5247(24)00086-7
[24] Leng, M., Yang, J. and Liu, X. (2024) Macrolide-Resistant Mycoplasma pneumoniae Infection in Children Observed during a Period of High Incidence in Henan, China. Heliyon, 10, e33697.
https://doi.org/10.1016/j.heliyon.2024.e33697
[25] Waites, K.B. and Talkington, D.F. (2004) Mycoplasma pneumoniae and Its Role as a Human Pathogen. Clinical Microbiology Reviews, 17, 697-728.
https://doi.org/10.1128/cmr.17.4.697-728.2004
[26] Cohen, R., Ashman, M., Taha, M., Varon, E., Angoulvant, F., Levy, C., et al. (2021) Pediatric Infectious Disease Group (GPIP) Position Paper on the Immune Debt of the COVID-19 Pandemic in Childhood, How Can We Fill the Immunity Gap? Infectious Diseases Now, 51, 418-423.
https://doi.org/10.1016/j.idnow.2021.05.004
[27] Li, T., Chu, C., Wei, B. and Lu, H. (2023) Immunity Debt: Hospitals Need to Be Prepared in Advance for Multiple Respiratory Diseases That Tend to Co-Occur. BioScience Trends, 17, 499-502.
https://doi.org/10.5582/bst.2023.01303
[28] Hatter, L., Eathorne, A., Hills, T., Bruce, P. and Beasley, R. (2021) Respiratory Syncytial Virus: Paying the Immunity Debt with Interest. The Lancet Child & Adolescent Health, 5, e44-e45.
https://doi.org/10.1016/s2352-4642(21)00333-3
[29] Liu, B., Xu, L., Ma, Y., Wang, H., Xu, X., Wang, Y., et al. (2024) Evidence of Immunity Gap: Decline in Antibodies against M. pneumoniae during the COVID-19 Pandemic. Journal of Infection, 89, Article 106209.
https://doi.org/10.1016/j.jinf.2024.106209
[30] Gao, Y., Feng, X., Yuan, T., Li, M., Wei, M. and Li, S. (2024) Post-Pandemic Trends: Epidemiological and Etiological Insights into Acute Respiratory Infections in Southern China. Diagnostic Microbiology and Infectious Disease, 109, Article 116293.
https://doi.org/10.1016/j.diagmicrobio.2024.116293
[31] Torres, A., Cilloniz, C., Niederman, M.S., Menéndez, R., Chalmers, J.D., Wunderink, R.G., et al. (2021) Pneumonia. Nature Reviews Disease Primers, 7, Article No. 25.
https://doi.org/10.1038/s41572-021-00259-0
[32] Wang, K., Gill, P., Perera, R., Thomson, A., Mant, D. and Harnden, A. (2012) Clinical Symptoms and Signs for the Diagnosis of Mycoplasma pneumoniae in Children and Adolescents with Community-Acquired Pneumonia. Cochrane Database of Systematic Reviews, 2012, Article No. CD009175.
https://doi.org/10.1002/14651858.cd009175.pub2
[33] Chen, Y., Hsu, W. and Chang, T. (2020) Macrolide-Resistant Mycoplasma pneumoniae Infections in Pediatric Community-Acquired Pneumonia. Emerging Infectious Diseases, 26, 1382-1391.
https://doi.org/10.3201/eid2607.200017
[34] Li, J., Maiwald, M., Loo, L.H., Soong, H.Y., Octavia, S., Thoon, K.C., et al. (2022) Clinical Characteristics of Macrolide-Resistant Mycoplasma pneumoniae Infections among Hospitalized Children in Singapore. Annals of the Academy of Medicine, Singapore, 51, 653-656.
https://doi.org/10.47102/annals-acadmedsg.2022213
[35] Li, P., Wang, W., Zhang, X., Pan, J. and Gong, L. (2024) Observational Retrospective Clinical Study on Clinical Features of Macrolide-Resistant Mycoplasma pneumoniae Pneumonia in Chinese Pediatric Cases. Scientific Reports, 14, Article No. 5632.
https://doi.org/10.1038/s41598-024-55311-2
[36] Fan, F., Lv, J., Yang, Q. and Jiang, F. (2023) Clinical Characteristics and Serum Inflammatory Markers of Community-Acquired Mycoplasma pneumonia in Children. The Clinical Respiratory Journal, 17, 607-617.
https://doi.org/10.1111/crj.13620
[37] Gong, H., Sun, B., Chen, Y. and Chen, H. (2021) The Risk Factors of Children Acquiring Refractory Mycoplasma pneumoniae Pneumonia. Medicine, 100, e24894.
https://doi.org/10.1097/md.0000000000024894
[38] Chen, Q., Hu, T., Wu, L. and Chen, L. (2024) Clinical Features and Biomarkers for Early Prediction of Refractory Mycoplasma pneumoniae Pneumonia in Children. Emergency Medicine International, 2024, 1-7.
https://doi.org/10.1155/2024/9328177
[39] Yang, D., Chen, L. and Chen, Z. (2018) The Timing of Azithromycin Treatment Is Not Associated with the Clinical Prognosis of Childhood Mycoplasma pneumoniae Pneumonia in High Macrolide-Resistant Prevalence Settings. PLOS ONE, 13, e0191951.
https://doi.org/10.1371/journal.pone.0191951
[40] 赵顺英, 钱素云, 陈志敏, 等. 儿童肺炎支原体肺炎诊疗指南[J]. 传染病信息, 2023, 36(4): 291-297.
[41] Cai, F., Li, J., Liang, W., Wang, L. and Ruan, J. (2024) Effectiveness and Safety of Tetracyclines and Quinolones in People with Mycoplasma pneumonia: A Systematic Review and Network Meta-Analysis. eClinicalMedicine, 71, Article 102589.
https://doi.org/10.1016/j.eclinm.2024.102589
[42] Grossman, E.R., Walchek, A., Freedman, H. and Flanagan, C. (1971) Tetracyclines and Permanent Teeth: The Relation between Dose and Tooth Color. Pediatrics, 47, 567-570.
https://doi.org/10.1542/peds.47.3.567
[43] Kimberlin, D.W. (2018) Red Book: 2018-2021 Report of the Committee on Infectious Diseases. 31st Edition, American Academy of Pediatrics.
[44] Shen, H., Liu, C., Lin, H., Xu, L., Wang, G. and Yan, M. (2022) The Efficacy and Safety of Minocycline as Adjuvant Therapy in Refractory Mycoplasma pneumonia in Chinese Children: A Meta-Analysis. Italian Journal of Pediatrics, 48, Article No. 176.
https://doi.org/10.1186/s13052-022-01362-y
[45] Chen, Y., Dong, S., Tian, L., Chen, H., Chen, J. and He, C. (2022) Combination of Azithromycin and Methylprednisolone Alleviates Mycoplasma pneumoniae Induced Pneumonia by Regulating miR‑499a‑5p/STAT3 Axis. Experimental and Therapeutic Medicine, 24, 1-10.
https://doi.org/10.3892/etm.2022.11515
[46] Luo, Z., Luo, J., Liu, E., Xu, X., Liu, Y., Zeng, F., et al. (2013) Effects of Prednisolone on Refractory Mycoplasma pneumoniae Pneumonia in Children. Pediatric Pulmonology, 49, 377-380.
https://doi.org/10.1002/ppul.22752
[47] Ding, G., Zhang, X., Vinturache, A., van Rossum, A.M.C., Yin, Y. and Zhang, Y. (2024) Challenges in the Treatment of Pediatric Mycoplasma pneumoniae Pneumonia. European Journal of Pediatrics, 183, 3001-3011.
https://doi.org/10.1007/s00431-024-05519-1