[1]
|
Ling, S., Wang, Y., Qin, X., Chen, C., Lu, C., Chen, J., et al. (2024) Design of Eu3+-Doped Fluoride Phosphor with Zero Thermal Quenching Property Based on Density Functional Theory. Inorganic Chemistry, 63, 6660-6673. https://doi.org/10.1021/acs.inorgchem.3c04524
|
[2]
|
Dey, A., Acharya, J. and Chandrasekhar, V. (2019) Heterometallic 3d-4f Complexes as Single‐Molecule Magnets. Chemistry—An Asian Journal, 14, 4433-4453. https://doi.org/10.1002/asia.201900897
|
[3]
|
Rinehart, J.D. and Long, J.R. (2011) Exploiting Single-Ion Anisotropy in the Design of F-Element Single-Molecule Magnets. Chemical Science, 2, 2078-2085. https://doi.org/10.1039/c1sc00513h
|
[4]
|
Liu, K., Shi, W. and Cheng, P. (2015) Toward Heterometallic Single-Molecule Magnets: Synthetic Strategy, Structures and Properties of 3d-4f Discrete Complexes. Coordination Chemistry Reviews, 289, 74-122. https://doi.org/10.1016/j.ccr.2014.10.004
|
[5]
|
Chakraborty, A., Goura, J., Kalita, P., Swain, A., Rajaraman, G. and Chandrasekhar, V. (2018) Heterometallic 3d-4f Single Molecule Magnets Containing Diamagnetic Metal Ions. Dalton Transactions, 47, 8841-8864. https://doi.org/10.1039/c8dt01883a
|
[6]
|
Li, G., Tang, H., Gao, R., Wang, Y., Sun, X. and Zhang, K. (2023) Tuning Quantum Tunneling in Isomorphic {mII2dyIII2} “Butterfly” System via 3d-4f Magnetic Interaction. Crystal Growth & Design, 23, 1575-1580. https://doi.org/10.1021/acs.cgd.2c01198
|
[7]
|
Peng, Y. and Powell, A.K. (2021) What Do 3d-4f Butterflies Tell Us? Coordination Chemistry Reviews, 426, Article ID: 213490. https://doi.org/10.1016/j.ccr.2020.213490
|
[8]
|
Oyarzabal, I., Echenique-Errandonea, E., San Sebastián, E., Rodríguez-Diéguez, A., Seco, J.M. and Colacio, E. (2021) Synthesis, Structural Features and Physical Properties of a Family of Triply Bridged Dinuclear 3d-4f Complexes. Magnetochemistry, 7, Article No. 22. https://doi.org/10.3390/magnetochemistry7020022
|
[9]
|
Yin, J., Chen, C., Zhuang, G., Zheng, J., Zheng, X. and Kong, X. (2020) Anion-dependent Assembly of 3d-4f Heterometallic Clusters Ln5Cr2 and Ln8Cr4. Inorganic Chemistry, 59, 1959-1966. https://doi.org/10.1021/acs.inorgchem.9b03308
|
[10]
|
Salerno, E.V., Kampf, J.W., Pecoraro, V.L. and Mallah, T. (2021) Magnetic Properties of Two GdIIIFeIII4 Metallacrowns and Strategies for Optimizing the Magnetocaloric Effect of This Topology. Inorganic Chemistry Frontiers, 8, 2611-2623. https://doi.org/10.1039/d1qi00207d
|
[11]
|
Rosado Piquer, L. and Sañudo, E.C. (2015) Heterometallic 3d-4f Single-Molecule Magnets. Dalton Transactions, 44, 8771-8780. https://doi.org/10.1039/c5dt00549c
|
[12]
|
Ghosh, A., Roy, R., Sahoo, R.C., Sarangi, S.N., Ghosh, M., Mazumdar, D., et al. (2023) Magnetic Anisotropy and Magnetocaloric Effect in Gd2NiMnO6 Thin Films. Physical Review B, 108, Article ID: 214423. https://doi.org/10.1103/physrevb.108.214423
|
[13]
|
Wang, J., Sun, C., Zheng, Q., Wang, D., Chen, Y., Ju, J., et al. (2023) Lanthanide Single‐Molecule Magnets: Synthetic Strategy, Structures, Properties and Recent Advances. Chemistry—An Asian Journal, 18, e202201297. https://doi.org/10.1002/asia.202201297
|
[14]
|
Shukla, P., Das, S., Bag, P. and Dey, A. (2023) Magnetic Materials Based on Heterometallic CrII/Iii-Lniii Complexes. Inorganic Chemistry Frontiers, 10, 4322-4357. https://doi.org/10.1039/d3qi00193h
|
[15]
|
Wang, H., Zhang, K., Song, Y. and Pan, Z. (2021) Recent Advances in 3d-4f Magnetic Complexes with Several Types of Non-Carboxylate Organic Ligands. Inorganica Chimica Acta, 521, Article ID: 120318. https://doi.org/10.1016/j.ica.2021.120318
|
[16]
|
Wang, H., Zhu, Z., Peng, J. and Zou, H. (2021) Heterometallic 3d/4f-Metal Complexes: Structure and Magnetism. Journal of Cluster Science, 33, 1299-1325. https://doi.org/10.1007/s10876-021-02084-7
|
[17]
|
Wang, J., Li, Q., Wu, S., Chen, Y., Wan, R., Huang, G., et al. (2021) Opening Magnetic Hysteresis by Axial Ferromagnetic Coupling: From Mono‐Decker to Double‐Decker Metallacrown. Angewandte Chemie International Edition, 60, 5299-5306. https://doi.org/10.1002/anie.202014993
|
[18]
|
Dey, A., Bag, P., Kalita, P. and Chandrasekhar, V. (2021) Heterometallic CuII-Lniii Complexes: Single Molecule Magnets and Magnetic Refrigerants. Coordination Chemistry Reviews, 432, Article ID: 213707. https://doi.org/10.1016/j.ccr.2020.213707
|
[19]
|
An, Z., Gao, Y., Xu, S., Zhang, W. and Yao, M. (2023) 3d Ion-Driven Hexanuclear Heterometallic Clusters with Amazing Structures and Magnetic Properties. Crystal Growth & Design, 23, 1412-1421. https://doi.org/10.1021/acs.cgd.2c00940
|
[20]
|
Rinck, J., Novitchi, G., Van den Heuvel, W., Ungur, L., Lan, Y., Wernsdorfer, W., et al. (2010) An Octanuclear [CrIII4DyIII4] 3d-4f Single‐Molecule Magnet. Angewandte Chemie International Edition, 49, 7583-7587. https://doi.org/10.1002/anie.201002690
|
[21]
|
Langley, S.K., Forsyth, C.M., Moubaraki, B. and Murray, K.S. (2015) A Fluoride Bridged {CrIII4DyIII4} Single Molecule Magnet. Dalton Transactions, 44, 912-915. https://doi.org/10.1039/c4dt03100h
|
[22]
|
Langley, S.K., Wielechowski, D.P., Vieru, V., Chilton, N.F., Moubaraki, B., Abrahams, B.F., et al. (2013) A {CrIII2DyIII2} Single‐Molecule Magnet: Enhancing the Blocking Temperature through 3d Magnetic Exchange. Angewandte Chemie International Edition, 52, 12014-12019. https://doi.org/10.1002/anie.201306329
|
[23]
|
Langley, S.K., Wielechowski, D.P., Moubaraki, B. and Murray, K.S. (2016) Enhancing the Magnetic Blocking Temperature and Magnetic Coercivity of {CrIII2DyIII2} Single-Molecule Magnets via Bridging Ligand Modification. Chemical Communications, 52, 10976-10979. https://doi.org/10.1039/c6cc06152d
|
[24]
|
Langley, S.K., Le, C., Ungur, L., Moubaraki, B., Abrahams, B.F., Chibotaru, L.F., et al. (2015) Heterometallic 3d-4f Single-Molecule Magnets: Ligand and Metal Ion Influences on the Magnetic Relaxation. Inorganic Chemistry, 54, 3631-3642. https://doi.org/10.1021/acs.inorgchem.5b00219
|
[25]
|
Li, S., Xiong, J., Yuan, Q., Zhu, W., Gong, H., Wang, F., et al. (2021) Effect of the Transition Metal Ions on the Single-Molecule Magnet Properties in a Family of Air-Stable 3d-4f Ion-Pair Compounds with Pentagonal Bipyramidal Ln(III) Ions. Inorganic Chemistry, 60, 18990-19000. https://doi.org/10.1021/acs.inorgchem.1c02828
|
[26]
|
Chauhan, D., Vignesh, K.R., Swain, A., et al. (2022) Exploiting Strong {CrIII-DyIII} Ferromagnetic Exchange Coupling to Quench Quantum Tunneling of Magnetization in a Novel {CrIII2DyIII3} Single-Molecule Magnet. Crystal Growth & Design, 23, 197-206.
|
[27]
|
Dreiser, J., Pedersen, K.S., Piamonteze, C., Rusponi, S., Salman, Z., Ali, M.E., et al. (2012) Direct Observation of a Ferri-to-Ferromagnetic Transition in a Fluoride-Bridged 3d-4f Molecular Cluster. Chemical Science, 3, 1024-1032. https://doi.org/10.1039/c2sc00794k
|
[28]
|
Thuesen, C.A., Pedersen, K.S., Schau-Magnussen, M., Evangelisti, M., Vibenholt, J., Piligkos, S., et al. (2012) Fluoride-Bridged {Ln2Cr2} Polynuclear Complexes from Semi-Labile Mer-[CrF3(py)3] and [Ln(hfac)3(H2O)2]. Dalton Transactions, 41, 11284-11292. https://doi.org/10.1039/c2dt31302b
|
[29]
|
Wang, X., Li, Z., Zhu, Z., Zhu, J., Liu, S., Ni, J., et al. (2013) Pentanuclear {Cr2Ln3} (Ln = Dy, Tb) Heterometallic Clusters Based on an Amino Acid Ligand: Slow Relaxation of Magnetization and Substitution Reactions. European Journal of Inorganic Chemistry, 2013, 5153-5160. https://doi.org/10.1002/ejic.201300665
|
[30]
|
Xiang, H., Lu, W., Zhang, W. and Jiang, L. (2013) A {Cr2Dy4} Compressed Octahedron: The First Sulfate-Based Single-Molecule Magnet. Dalton Transactions, 42, 867-870. https://doi.org/10.1039/c2dt32651e
|
[31]
|
Langley, S.K., Wielechowski, D.P., Moubaraki, B., Abrahams, B.F. and Murray, K.S. (2014) Magnetic Exchange Effects in {CrIII2DyIII2} Single Molecule Magnets Containing Alcoholamine Ligands. Australian Journal of Chemistry, 67, 1581-1587. https://doi.org/10.1071/ch14207
|
[32]
|
Langley, S.K., Wielechowski, D.P., Vieru, V., Chilton, N.F., Moubaraki, B., Chibotaru, L.F., et al. (2014) Modulation of Slow Magnetic Relaxation by Tuning Magnetic Exchange in {Cr2Dy2} Single Molecule Magnets. Chemical Science, 5, 3246-3256. https://doi.org/10.1039/c4sc01239a
|
[33]
|
Car, P., Favre, A., Caneschi, A. and Sessoli, R. (2015) Single Molecule Magnet Behaviour in a Rare Trinuclear {CrIIIDyIII2} Methoxo-Bridged Complex. Dalton Transactions, 44, 15769-15773. https://doi.org/10.1039/c5dt02459e
|
[34]
|
Langley, S.K., Wielechowski, D.P., Chilton, N.F., Moubaraki, B. and Murray, K.S. (2015) A Family of {CrIII2LnIII2} Butterfly Complexes: Effect of the Lanthanide Ion on the Single-Molecule Magnet Properties. Inorganic Chemistry, 54, 10497-10503. https://doi.org/10.1021/acs.inorgchem.5b01999
|
[35]
|
Xiang, H., Lu, W., Jiang, L., Zhang, W. and Lan, Y. (2016) A Family of Double Cubanes {CrIII2LnIII4O6} (Ln = Tb, Ho, Er, Yb, Y) Based on Sulfate: Single‐molecule Magnet Behavior in the Terbium and Erbium Analogues. European Journal of Inorganic Chemistry, 2016, 907-912. https://doi.org/10.1002/ejic.201501285
|
[36]
|
Han, H., Li, X., Zhu, X., Zhang, G., Wang, S., Hang, X., et al. (2017) Single‐Molecule‐Magnet Behavior in a Calix[8]arene‐capped {Tb6IIICrIII} Cluster. European Journal of Inorganic Chemistry, 2017, 2088-2093. https://doi.org/10.1002/ejic.201700013
|
[37]
|
Qin, L., Singleton, J., Chen, W., Nojiri, H., Engelhardt, L., Winpenny, R.E.P., et al. (2017) Quantum Monte Carlo Simulations and High‐Field Magnetization Studies of Antiferromagnetic Interactions in a Giant Hetero‐Spin Ring. Angewandte Chemie International Edition, 56, 16571-16574. https://doi.org/10.1002/anie.201709650
|
[38]
|
Chen, S., Mereacre, V., Zhao, Z., Zhang, W., Zhang, M. and He, Z. (2018) Targeted Replacement: Systematic Studies of Dodecanuclear {MIII6LnIII6} Coordination Clusters (M = Cr, Co; Ln = Dy, Y). Dalton Transactions, 47, 7456-7462. https://doi.org/10.1039/c8dt01289j
|
[39]
|
Li, Z., Zhang, J., Liu, S., Zhang, H., Sun, Y., Liu, X., et al. (2018) Heterometallic Hexanuclear [Ln4Cr2] Cluster-Based Three-Dimensional Sulfate Frameworks as a Magnetic Refrigerant and Single Molecular Magnet. Crystal Growth & Design, 18, 7335-7342. https://doi.org/10.1021/acs.cgd.8b00966
|
[40]
|
Liu, C., Zhang, D., Hao, X. and Zhu, D. (2018) Arraying Octahedral {Cr2Dy4} Units into 3D Single-Molecule-Magnet-Like Inorganic Compounds with Sulfate Bridges. Inorganic Chemistry, 57, 6803-6806. https://doi.org/10.1021/acs.inorgchem.8b01210
|
[41]
|
Vignesh, K.R., Langley, S.K., Swain, A., Moubaraki, B., Damjanović, M., Wernsdorfer, W., et al. (2017) Slow Magnetic Relaxation and Single‐molecule Toroidal Behaviour in a Family of Heptanuclear {CrIIILnIII6} (Ln = Tb, Ho, Er) Complexes. Angewandte Chemie International Edition, 57, 779-784. https://doi.org/10.1002/anie.201711844
|
[42]
|
Zhao, X., Xiang, S., Wang, J., Bao, D. and Li, Y. (2018) Magnetic Nature of the CrIII-LnIII Interactions in [CrIII2LnIII3] Clusters with Slow Magnetic Relaxation. ChemistryOpen, 7, 192-200. https://doi.org/10.1002/open.201700165
|
[43]
|
Koroteev, P.S., Dobrokhotova, Z.V., Ilyukhin, A.B., Belova, E.V., Yapryntsev, A.D., Rouzières, M., et al. (2021) Tetranuclear Cr-Ln Ferrocenecarboxylate Complexes with a Defect-Dicubane Structure: Synthesis, Magnetism, and Thermolysis. Dalton Transactions, 50, 16990-16999. https://doi.org/10.1039/d1dt02562g
|
[44]
|
Ling, B., Zhai, Y., Jin, P., Ding, H., Zhang, X., Lv, Y., et al. (2022) Suppression of Zero-Field Quantum Tunneling of Magnetization by a Fluorido Bridge for a “Very Hard” 3d-4f Single-Molecule Magnet. Matter, 5, 3485-3498. https://doi.org/10.1016/j.matt.2022.07.009
|
[45]
|
Mecchia Ortiz, J.H., Cabrosi, D., Carrella, L.M., Rentschler, E. and Alborés, P. (2022) SMM Behaviour of the Butterfly {CrIII2DyIII2} Pivalate Complex and Magneto‐Structurally Correlated Relaxation Thermal Barrier. Chemistry—A European Journal, 28, e202201450. https://doi.org/10.1002/chem.202201450
|
[46]
|
Mecchia Ortiz, J.H., Cabrosi, D., Cruz, C., Paredes-García, V. and Alborés, P. (2022) Synthesis, Structural Characterization, and Magnetic Property Study of {Cr3Ln3}, Ln = Gd and Dy Complexes. Dalton Transactions, 51, 624-637. https://doi.org/10.1039/d1dt03176g
|
[47]
|
Gu, Y., Zhao, D., Yu, H., Ge, R., Li, Z., Tian, C., et al. (2019) Incorporating Polyoxometalates and Organic Ligands to Pursue 3d-4f Heterometallic Clusters: A Series of {Cr4Ln4} Clusters Stabilized by Phthalic Acid and [SiW12O40]4−. RSC Advances, 9, 13543-13549. https://doi.org/10.1039/c9ra01731c
|