[1]
|
Knopman, D.S., Amieva, H., Petersen, R.C., Chételat, G., Holtzman, D.M., Hyman, B.T., et al. (2021) Alzheimer disease. Nature Reviews Disease Primers, 7, Article No. 33. https://doi.org/10.1038/s41572-021-00269-y
|
[2]
|
Tarawneh, R. and Penhos, E. (2022) The Gut Microbiome and Alzheimer’s Disease: Complex and Bidirectional Interactions. Neuroscience & Biobehavioral Reviews, 141, Article ID: 104814. https://doi.org/10.1016/j.neubiorev.2022.104814
|
[3]
|
Zhu, G., Zhao, J., Zhang, H., Wang, G. and Chen, W. (2023) Gut Microbiota and Its Metabolites: Bridge of Dietary Nutrients and Alzheimer’s Disease. Advances in Nutrition, 14, 819-839. https://doi.org/10.1016/j.advnut.2023.04.005
|
[4]
|
Susmitha, G. and Kumar, R. (2023) Role of Microbial Dysbiosis in the Pathogenesis of Alzheimer’s Disease. Neuropharmacology, 229, Article ID: 109478. https://doi.org/10.1016/j.neuropharm.2023.109478
|
[5]
|
Hung, C., Chang, C., Huang, C., Nouchi, R. and Cheng, C. (2022) Gut Microbiota in Patients with Alzheimer’s Disease Spectrum: A Systematic Review and Meta-Analysis. Aging, 14, 477-496. https://doi.org/10.18632/aging.203826
|
[6]
|
Bicknell, B., Liebert, A., Borody, T., Herkes, G., McLachlan, C. and Kiat, H. (2023) Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. International Journal of Molecular Sciences, 24, Article 9577. https://doi.org/10.3390/ijms24119577
|
[7]
|
Nguyen, N.M., Cho, J. and Lee, C. (2023) Gut Microbiota and Alzheimer’s Disease: How to Study and Apply Their Relationship. International Journal of Molecular Sciences, 24, Article 4047. https://doi.org/10.3390/ijms24044047
|
[8]
|
Liu, L., Wang, H., Chen, X. and Xie, P. (2023) Gut Microbiota: A New Insight into Neurological Diseases. Chinese Medical Journal, 136, 1261-1277. https://doi.org/10.1097/cm9.0000000000002212
|
[9]
|
Cuartero, M.I., García‐Culebras, A., Nieto‐Vaquero, C., Fraga, E., Torres‐López, C., Pradillo, J., et al. (2023) The Role of Gut Microbiota in Cerebrovascular Disease and Related Dementia. British Journal of Pharmacology, 181, 816-839. https://doi.org/10.1111/bph.16167
|
[10]
|
Yin, J., Xu, X., Jin, C., Yuan, X. and Wang, X. (2023) The Influence of the Gut Microbiota on Alzheimer’s Disease: A Narrative Review. Journal of Integrative Neuroscience, 22, Article 38. https://doi.org/10.31083/j.jin2202038
|
[11]
|
Cryan, J.F. and Dinan, T.G. (2012) Mind-altering Microorganisms: The Impact of the Gut Microbiota on Brain and Behaviour. Nature Reviews Neuroscience, 13, 701-712. https://doi.org/10.1038/nrn3346
|
[12]
|
Shabbir, U., Arshad, M.S., Sameen, A. and Oh, D. (2021) Crosstalk between Gut and Brain in Alzheimer’s Disease: The Role of Gut Microbiota Modulation Strategies. Nutrients, 13, Article 690. https://doi.org/10.3390/nu13020690
|
[13]
|
Janeiro, M.H., Ramírez, M.J. and Solas, M. (2021) Dysbiosis and Alzheimer’s Disease: Cause or Treatment Opportunity? Cellular and Molecular Neurobiology, 42, 377-387. https://doi.org/10.1007/s10571-020-01024-9
|
[14]
|
Bostanciklioğlu, M. (2019) The Role of Gut Microbiota in Pathogenesis of Alzheimer’s Disease. Journal of Applied Microbiology, 127, 954-967. https://doi.org/10.1111/jam.14264
|
[15]
|
Zou, B., Li, J., Ma, R., Cheng, X., Ma, R., Zhou, T., et al. (2023) Gut Microbiota Is an Impact Factor Based on the Brain-Gut Axis to Alzheimer’s Disease: A Systematic Review. Aging and Disease, 14, 964-1678. https://doi.org/10.14336/ad.2022.1127
|
[16]
|
Bairamian, D., Sha, S., Rolhion, N., Sokol, H., Dorothée, G., Lemere, C.A., et al. (2022) Microbiota in Neuroinflammation and Synaptic Dysfunction: A Focus on Alzheimer’s Disease. Molecular Neurodegeneration, 17, Article No. 19. https://doi.org/10.1186/s13024-022-00522-2
|
[17]
|
Davoli-Ferreira, M., Thomson, C.A. and McCoy, K.D. (2021) Microbiota and Microglia Interactions in ASD. Frontiers in Immunology, 12, Article 676255. https://doi.org/10.3389/fimmu.2021.676255
|
[18]
|
Łuc, M., Misiak, B., Pawłowski, M., Stańczykiewicz, B., Zabłocka, A., Szcześniak, D., et al. (2021) Gut Microbiota in Dementia. Critical Review of Novel Findings and Their Potential Application. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 104, Article ID: 110039. https://doi.org/10.1016/j.pnpbp.2020.110039
|
[19]
|
Bhatt, S., Nagappa, A.N. and Patil, C.R. (2020) Role of Oxidative Stress in Depression. Drug Discovery Today, 25, 1270-1276. https://doi.org/10.1016/j.drudis.2020.05.001
|
[20]
|
Wu, L., Xian, X., Xu, G., Tan, Z., Dong, F., Zhang, M., et al. (2022) Toll-like Receptor 4: A Promising Therapeutic Target for Alzheimer’s Disease. Mediators of Inflammation, 2022, Article ID: 7924199. https://doi.org/10.1155/2022/7924199
|
[21]
|
Kuruva, C.S. and Reddy, P.H. (2017) Amyloid β Modulators and Neuroprotection in Alzheimer’s Disease: A Critical Appraisal. Drug Discovery Today, 22, 223-233. https://doi.org/10.1016/j.drudis.2016.10.010
|
[22]
|
Jin, J., Xu, Z., Zhang, L., Zhang, C., Zhao, X., Mao, Y., et al. (2023) Gut-Derived β-Amyloid: Likely a Centerpiece of the Gut-Brain Axis Contributing to Alzheimer’s Pathogenesis. Gut Microbes, 15, Article ID: 2167172. https://doi.org/10.1080/19490976.2023.2167172
|
[23]
|
Jung, J.H., Kim, G., Byun, M.S., Lee, J.H., Yi, D., Park, H., et al. (2022) Gut Microbiome Alterations in Preclinical Alzheimer’s Disease. PLOS ONE, 17, e0278276. https://doi.org/10.1371/journal.pone.0278276
|
[24]
|
Sweeney, M.D., Sagare, A.P. and Zlokovic, B.V. (2018) Blood-Brain Barrier Breakdown in Alzheimer Disease and Other Neurodegenerative Disorders. Nature Reviews Neurology, 14, 133-150. https://doi.org/10.1038/nrneurol.2017.188
|
[25]
|
Trichka, J. and Zou, W. (2021) Modulation of Neuroinflammation by the Gut Microbiota in Prion and Prion-Like Diseases. Pathogens, 10, Article 887. https://doi.org/10.3390/pathogens10070887
|
[26]
|
Chen, Y., Xu, J. and Chen, Y. (2021) Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients, 13, Article 2099.
|
[27]
|
Sochocka, M., Donskow-Łysoniewska, K., Diniz, B.S., Kurpas, D., Brzozowska, E. and Leszek, J. (2018) The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease—A Critical Review. Molecular Neurobiology, 56, 1841-1851. https://doi.org/10.1007/s12035-018-1188-4
|
[28]
|
de De-Paula, J.R.V., Forlenza, A.S. and Forlenza, O.V. (2018) Relevance of Gutmicrobiota in Cognition, Behaviour and Alzheimer’s Disease. Pharmacological Research, 136, 29-34. https://doi.org/10.1016/j.phrs.2018.07.007
|
[29]
|
Bravo, J.A., Forsythe, P., Chew, M.V., Escaravage, E., Savignac, H.M., Dinan, T.G., et al. (2011) Ingestion of lactobacillus Strain Regulates Emotional Behavior and Central GABA Receptor Expression in a Mouse via the Vagus Nerve. Proceedings of the National Academy of Sciences of the United States of America, 108, 16050-16055. https://doi.org/10.1073/pnas.1102999108
|
[30]
|
Chang, C., Lin, C. and Lane, H. (2020) D-Glutamate and Gut Microbiota in Alzheimer’s Disease. International Journal of Molecular Sciences, 21, Article 2676. https://doi.org/10.3390/ijms21082676
|
[31]
|
Chang, C., Lin, C., Liu, C., Huang, C., Chen, S., Lin, W., et al. (2021) Plasma D-Glutamate Levels for Detecting Mild Cognitive Impairment and Alzheimer’s Disease: Machine Learning Approaches. Journal of Psychopharmacology, 35, 265-272. https://doi.org/10.1177/0269881120972331
|
[32]
|
Vogt, N.M., Kerby, R.L., Dill-McFarland, K.A., Harding, S.J., Merluzzi, A.P., Johnson, S.C., et al. (2017) Gut Microbiome Alterations in Alzheimer’s Disease. Scientific Reports, 7, Article No. 13537. https://doi.org/10.1038/s41598-017-13601-y
|
[33]
|
Liu, P., Wu, L., Peng, G., Han, Y., Tang, R., Ge, J., et al. (2019) Altered Microbiomes Distinguish Alzheimer’s Disease from Amnestic Mild Cognitive Impairment and Health in a Chinese Cohort. Brain, Behavior, and Immunity, 80, 633-643. https://doi.org/10.1016/j.bbi.2019.05.008
|
[34]
|
Samuelsson, J., Kern, S., Zetterberg, H., Blennow, K., Rothenberg, E., Wallengren, O., et al. (2021) A Western‐style Dietary Pattern Is Associated with Cerebrospinal Fluid Biomarker Levels for Preclinical Alzheimer’s Disease—A Population‐Based Cross‐Sectional Study among 70‐Year‐Olds. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 7, e12183. https://doi.org/10.1002/trc2.12183
|
[35]
|
Wang, D.D., Nguyen, L.H., Li, Y., Yan, Y., Ma, W., Rinott, E., et al. (2021) The Gut Microbiome Modulates the Protective Association between a Mediterranean Diet and Cardiometabolic Disease Risk. Nature Medicine, 27, 333-343. https://doi.org/10.1038/s41591-020-01223-3
|
[36]
|
Meslier, V., Laiola, M., Roager, H.M., De Filippis, F., Roume, H., Quinquis, B., et al. (2020) Mediterranean Diet Intervention in Overweight and Obese Subjects Lowers Plasma Cholesterol and Causes Changes in the Gut Microbiome and Metabolome Independently of Energy Intake. Gut, 69, 1258-1268. https://doi.org/10.1136/gutjnl-2019-320438
|
[37]
|
Díaz, G., Lengele, L., Sourdet, S., Soriano, G. and de Souto Barreto, P. (2022) Nutrients and Amyloid β Status in the Brain: A Narrative Review. Ageing Research Reviews, 81, Article ID: 101728. https://doi.org/10.1016/j.arr.2022.101728
|
[38]
|
Chu, C., Yu, L., Qi, G., Mi, Y., Wu, W., Lee, Y., et al. (2022) Can Dietary Patterns Prevent Cognitive Impairment and Reduce Alzheimer’s Disease Risk: Exploring the Underlying Mechanisms of Effects. Neuroscience & Biobehavioral Reviews, 135, Article ID: 104556. https://doi.org/10.1016/j.neubiorev.2022.104556
|
[39]
|
Dyńka, D., Kowalcze, K. and Paziewska, A. (2022) The Role of Ketogenic Diet in the Treatment of Neurological Diseases. Nutrients, 14, Article 5003. https://doi.org/10.3390/nu14235003
|
[40]
|
Anderson, R.C. (2022) Can Probiotics Mitigate Age-Related Neuroinflammation Leading to Improved Cognitive Outcomes? Frontiers in Nutrition, 9, Article ID: 1012076. https://doi.org/10.3389/fnut.2022.1012076
|
[41]
|
Zhu, J., Liu, S., Zhang, H., Zhao, W., Ding, J., Dai, R., et al. (2023) Dynamic Distribution of Gut Microbiota during Alzheimer’s Disease Progression in a Mice Model. APMIS, 131, 480-490. https://doi.org/10.1111/apm.13339
|
[42]
|
Akbari, E., Asemi, Z., Daneshvar Kakhaki, R., Bahmani, F., Kouchaki, E., Tamtaji, O.R., et al. (2016) Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer’s Disease: A Randomized, Double-Blind and Controlled Trial. Frontiers in Aging Neuroscience, 8, Article 256. https://doi.org/10.3389/fnagi.2016.00256
|
[43]
|
Matheson, J.T. and Holsinger, R.M.D. (2023) The Role of Fecal Microbiota Transplantation in the Treatment of Neurodegenerative Diseases: A Review. International Journal of Molecular Sciences, 24, Article 1001. https://doi.org/10.3390/ijms24021001
|
[44]
|
Elangovan, S., Borody, T.J. and Holsinger, R.M.D. (2022) Fecal Microbiota Transplantation Reduces Pathology and Improves Cognition in a Mouse Model of Alzheimer’s Disease. Cells, 12, Article 119. https://doi.org/10.3390/cells12010119
|
[45]
|
Hazan, S. (2020) Rapid Improvement in Alzheimer’s Disease Symptoms Following Fecal Microbiota Transplantation: A Case Report. Journal of International Medical Research, 48, 1-6. https://doi.org/10.1177/0300060520925930
|
[46]
|
Park, S., Lee, J.H., Shin, J., Kim, J., Cha, B., Lee, S., et al. (2021) Cognitive Function Improvement after Fecal Microbiota Transplantation in Alzheimer’s Dementia Patient: A Case Report. Current Medical Research and Opinion, 37, 1739-1744. https://doi.org/10.1080/03007995.2021.1957807
|
[47]
|
Vendrik, K.E.W., Ooijevaar, R.E., de Jong, P.R.C., Laman, J.D., van Oosten, B.W., van Hilten, J.J., et al. (2020) Fecal Microbiota Transplantation in Neurological Disorders. Frontiers in Cellular and Infection Microbiology, 10, Article 98. https://doi.org/10.3389/fcimb.2020.00098
|