阿尔茨海默病与肠道微生物群相关性的研究进展
Research Progress on the Correlation between Alzheimer’s Disease and Intestinal Microbiota
DOI: 10.12677/acm.2024.1482282, PDF, HTML, XML,    科研立项经费支持
作者: 张璐璐, 梁韫华, 豆瑞霞:甘肃中医药大学第一临床医学院,甘肃 兰州;张 毅*:甘肃省人民医院神经内科,甘肃 兰州
关键词: 阿尔茨海默病肠道微生物群微生物–肠–脑轴β-淀粉样蛋白Alzheimer’s Disease Intestinal Microbiota Microbiota-Gut-Brain Axis Amyloid β-Protein
摘要: 阿尔茨海默病是一种以进行性认知功能障碍为特征的神经系统退行性疾病,近年来的研究发现,阿尔茨海默病的发生与肠道微生物群密切相关,肠道微生物群失调可能通过介导神经炎症、淀粉样蛋白异常聚集和血脑屏障通透性受损等方面影响阿尔茨海默病的发生。该文围绕肠道微生物群与阿尔茨海默病的关系以及目前通过调节肠道微生物群在治疗阿尔茨海默病中的应用效果进行综述,以期为阿尔茨海默病的临床预防和治疗策略提供新的依据。
Abstract: Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive impairment. Recent studies have found that the occurrence of AD is closely related to the intestinal microbiota. Intestinal microbiome dysbiosis may affect the occurrence of AD by mediating neuroinflammation, abnormal amyloid protein aggregation, and impaired blood-brain barrier permeability. This paper reviews the relationship between AD and intestinal microbiota and the current application effect of AD by regulating intestinal microbiota to offer a new basis for the clinical prevention and treatment of AD.
文章引用:张璐璐, 梁韫华, 豆瑞霞, 张毅. 阿尔茨海默病与肠道微生物群相关性的研究进展[J]. 临床医学进展, 2024, 14(8): 780-786. https://doi.org/10.12677/acm.2024.1482282

1. 引言

阿尔茨海默病(Alzheimer’s disease, AD)是一种引起痴呆症状的神经退行性疾病[1]。其主要表现为进行性记忆和认知障碍、行为改变和功能衰退等,常见于65岁以上人群[2]。《2021年世界阿尔茨海默报告》称,全球有超过5500万人患有痴呆症,预计到2030年将增加到7800万人[3]。AD的发病机制较为复杂,包括β-淀粉样蛋白(amyloid β-protein, Aβ)沉积形成淀粉样斑块或老年斑、神经细胞内tau蛋白过度磷酸化形成神经元纤维缠结、血脑屏障损害、神经炎症、突触功能紊乱和数量减少以及神经元死亡等[4]。最近的研究表明,肠道微生物群与AD关系密切,肠道微生物群可能会通过微生物–肠–脑轴(microbiota-gut-brain axis, MGBA)影响宿主的脑功能和行为,例如,肠道微生物群可通过影响神经炎症、代谢及免疫系统等,从而在AD发展进程中发挥重要作用[5] [6]。因此,本文就AD与肠道微生物群相关性的研究进展进行综述,并为治疗AD提供新思路。

2. 肠道微生物群与微生物–肠–脑轴

2.1. 肠道微生物群

肠道微生物群是指生活在胃肠道中的微生物[7]。胃肠道是人体最复杂的微生态系统,它由比人体细胞多10倍的细菌细胞和比人体基因多150倍的细菌基因组成。肠道微生物群主要由细菌组成,真菌、病毒、古细菌和原生动物的比例较小。肠道微生物群之间存在着复杂而活跃的相互作用,共同维持着肠道微生态的平衡,且具有多种生物学功能,如外源代谢、膳食纤维发酵、维生素合成、病原体防御、免疫调节等[8]。而肠道微生物群失调可能会引起胃肠疾病、代谢性疾病以及AD和帕金森病等神经系统疾病的发生[4]

2.2. 微生物–肠–脑轴

肠道微生物群影响营养物质的吸收代谢,影响大脑发育和神经发生[9]。2012年,微生物–肠–脑轴(MGBA)的概念被正式提出,MGBA是中枢神经系统、肠道及其微生物群之间的双向通信途径[10]。肠道微生物群可以通过自主神经系统、神经内分泌系统和神经免疫系统等多种途径与大脑进行交流[11]

近年来,越来越多的研究表明[12]-[14],肠道微生物群在AD发病过程中起着重要作用。特别是肠道微生物群生物失调导致对MGBA的调节异常,从而对脑功能和宿主行为产生负面影响[15],提示其在AD的发展中具有潜在的作用。

3. AD与肠道微生物群的相关性

3.1. 肠道微生物群参与AD的作用机制

3.1.1. 肠道微生物群促进神经炎症

在所有胶质细胞中,小胶质细胞是中枢神经系统细胞因子的主要来源,也是能够驱动先天免疫反应的重要的免疫细胞,并且在神经炎症中起着重要作用[16]。肠道微生物群控制着小胶质细胞的发育、成熟和激活。活化的小胶质细胞会释放大量的促炎因子,如肿瘤坏死因子α (tumor necrosis factor alpha, TNF-α)、IL-1、IL-6等,从而诱发神经炎症[17]。而越来越多的证据表明[18] [19],神经炎症是AD发展和恶化的重要因素。在小胶质细胞中高表达的Toll样受体4 (Toll-like receptor 4, TLR4)通过识别外源性和内源性配体在促进AD进展的神经炎症中发挥关键作用,而肠道微生物群失调可导致TLR4/TNF-α信号通路激活,进而导致AD的发生发展[20]

3.1.2. 肠道微生物群引起β淀粉样蛋白(Aβ)沉积

Aβ由淀粉样前体蛋白通过β-和γ-分泌酶的催化作用形成,是错误折叠形成的不溶性蛋白的聚集体,在AD的发生和发展过程中起着重要作用[21]。传统上,Aβ被认为主要是由神经元通过大脑中的淀粉样蛋白加工产生的,然而Jin等[22]的研究表明,肠道可能是大脑中Aβ的重要来源,肠道微生物群可以进一步提高肠道Aβ的产生,从而参与AD的发病机制。Jung等[23]的研究表明,在无菌条件下饲养的转基因AD小鼠比常规饲养的AD小鼠大脑Aβ沉积更少,说明肠道微生物群可影响Aβ的沉积。

3.1.3. 肠道微生物群可增加血脑屏障的通透性

血脑屏障是由周围细胞和星形胶质细胞端足突起所包围的内皮紧密连接所组成,在脑内稳态中起着重要作用[24]。血脑屏障的功能主要是保护中枢神经系统免受毒素、免疫细胞和病原体的伤害,同时允许营养物质进入中枢神经系统并将代谢废物排出中枢神经系统。而肠道微生物群失调可能会引起血脑屏障的通透性增加,这可能导致神经毒性废物的积累和外周免疫细胞大量进入中枢神经系统,引发一系列的免疫和炎症反应,导致AD的发生[25]

3.1.4. 肠道微生物群促进内分泌紊乱

除短链脂肪酸(Short chain fatty acids, SCFAs)外,肠道微生物产生的代谢物还包括γ-氨基丁酸(γ-aminobutyric acid, GABA)、谷氨酸和多巴胺等。这些神经递质可通过传递信息,从而调节大脑的功能和认知[26]

SCFAs是肠道微生物通过膳食纤维发酵产生的重要代谢产物,主要由梭菌属、真细菌属和丁弧菌属产生的乙酸盐、丙酸盐和丁酸盐组成[6]。其中,丁酸盐是一种具有神经保护特性的分子,它对大脑功能有积极影响并具有抗炎和免疫调节功能。此外,它还是一种重要的能量底物,能增加ATP的线粒体产量。在AD转基因小鼠中,通过给予丁酸盐,发现小鼠的学习和记忆能力均有明显的改善,即使是在疾病的晚期[27]

GABA是一种抑制信号转导的神经递质,由乳杆菌属和其他双歧杆菌属细菌产生。当GABA系统的功能受损时,会导致认知和记忆障碍[28]。Bravo等[29]的研究发现,与对照组相比,鼠李糖杆菌(JB-1)慢性处理可以降低小鼠海马和杏仁核中GABA B1b受体的表达,导致GABA水平降低,进而影响小鼠认知功能。

谷氨酸是中枢神经系统一种主要的兴奋性神经递质。谷氨酸主要作用于突触周围星形胶质细胞的N-甲基-D-天冬氨酸受体,可损害认知功能。此外,谷氨酸棒状杆菌、乳酸发酵短杆菌和鸟短杆菌等可以将L-谷氨酸转化为D-谷氨酸[30]。Chang等[31]的研究表明,健康对照组的D-谷氨酸水平明显高于AD患者,提示D-谷氨酸有可能改善AD患者的认知。

3.2. AD患者的肠道微生物群变化

Vogt等[32]研究发现,与健康人相比,AD患者肠道微生物群的多样性明显下降。在AD患者的粪便中观察到厚壁菌门和双歧杆菌门的丰富度下降,而拟杆菌门的丰富度增加。此外,微生物菌属差异与AD脑脊液生物标志物之间具有相关性。Liu等[33]通过对比轻度认知障碍患者、AD患者和健康人群的肠道微生物群发现,与轻度认知障碍患者和健康人群相比,AD患者肠道微生物多样性降低,其中,厚壁菌门丰富度显著降低,而变形菌门丰富度明显增高,且AD患者的临床严重程度与改变的微生物丰度之间有显著的相关性。以上的研究表明,AD患者的肠道微生物群与健康人的肠道微生物群有差异性,且肠道微生物群的变化与AD的严重程度有明显的相关性。

4. 肠道微生物群对AD的防治

4.1. 饮食干预

不同饮食模式会引起肠道微生物群的不同变化,对AD也有不同的影响。根据最近的证据[34],地中海饮食和生酮饮食可能是AD最有希望的饮食疗法。

地中海饮食的特点是富含单不饱和脂肪酸、多不饱和脂肪酸以及健康食品,如蔬菜、水果、坚果、种子、低脂乳制品、鱼和全麦制品[35]。有研究表明[36] [37],地中海饮食能促进纤维降解,有利于产生SCFAs的细菌,从而产生大量的有益SCFAs。此外,地中海饮食可以减少Aβ沉积和神经炎症,降低AD的风险[38]

生酮饮食的特点是摄入低碳水化合物,但高脂肪和蛋白质的食物。生酮饮食显著影响肠道微生物群的重塑,主要使肠杆菌数量增加,而双歧杆菌和流线型杆菌减少[39]。此外,生酮饮食还可以减轻神经炎症、减少Aβ沉积以及减轻小胶质细胞激活,从而促进其在AD等中枢神经系统疾病中的保护作用[40]

4.2. 益生菌干预

益生菌是对宿主健康有益的活性微生物。研究表明,机体通过补充益生菌可以改善肠道微生物群组成、改善肠道屏障功能、减少神经炎症以及改善认知[41]。最近,一项对AD小鼠的研究表明,服用益生菌使小鼠肠道微生物群的丰富度更高,改善了AD小鼠的认知能力[42]。在一项随机双盲对照试验中,30名AD患者每日给予含嗜酸乳杆菌、干酪乳杆菌、双歧杆菌、发酵乳杆菌的益生菌乳,在持续干预12周后,结果显示使用益生菌乳的AD患者在认知方面有显著改善[42]。这些结果表明,益生菌在改善AD患者的认知功能方面显示出巨大的潜力,然而,益生菌治疗AD的适宜菌种、剂量、治疗时间、给药途径和安全使用等问题有待进一步研究。

4.3. 粪菌移植

粪菌移植(fecal microbiota trans-plantation, FMT)是将粪便中的微生物群从健康个体转移到疾病个体的胃肠道,以纠正接受者的肠道微生物群失调,改善其肠道微生态,从而治疗胃肠道疾病以及神经系统相关疾病[43]

Elangovan等[44]研究表明,FMT可通过调节肠道微生物群、增加AD小鼠Aβ的清除和抑制神经炎症来改善小鼠认知。在人类研究方面,第一个发现FMT后改进的病例研究发表于2020年,一名82岁的男性AD患者接受了他85岁的妻子FMT后,AD症状(包括认知功能、记忆和情绪)明显改善[45]。第二个病例研究于次年发表,一名90岁的女性AD患者接受了来自健康年轻捐赠者的FMT治疗后,认知功能显著改善[46]。这些研究表明,FMT在治疗AD方面同样展现了巨大的潜力,FMT能有效地恢复AD患者肠道微生物群失调和认知功能障碍,对AD的治疗有积极作用。然而,现有的证据仍然很少,已经进行或正在进行的人类研究数量有限,仍需要进一步在人体中确认并设计良好的大型双盲随机对照试验来进一步阐明FMT在AD的作用[47]

5. 小结及展望

综上所述,肠道微生物群在AD的发生发展过程中起着重要的作用,肠道微生物群失调可引起神经炎症、Aβ沉积、血脑屏障通透性改变以及内分泌紊乱等,并通过MGBA影响AD的发病。通过饮食干预、益生菌干预、粪菌移植等方式来调节肠道微生物群能有效改善AD患者的症状。然而,关于肠道微生物群的研究多在动物模型中进行,临床研究仅限于小样本量。因此,有关AD与肠道微生物群的相关性仍需要更多的临床数据来证实,为肠道微生物群在AD防治中的应用提供新的科学依据。

基金项目

甘肃省科技计划项目(编号:23JRRA1290);科技创新2030——“脑科学与类脑计划”重大项目(2021ZD0201800)。

NOTES

*通讯作者。

参考文献

[1] Knopman, D.S., Amieva, H., Petersen, R.C., Chételat, G., Holtzman, D.M., Hyman, B.T., et al. (2021) Alzheimer disease. Nature Reviews Disease Primers, 7, Article No. 33.
https://doi.org/10.1038/s41572-021-00269-y
[2] Tarawneh, R. and Penhos, E. (2022) The Gut Microbiome and Alzheimer’s Disease: Complex and Bidirectional Interactions. Neuroscience & Biobehavioral Reviews, 141, Article ID: 104814.
https://doi.org/10.1016/j.neubiorev.2022.104814
[3] Zhu, G., Zhao, J., Zhang, H., Wang, G. and Chen, W. (2023) Gut Microbiota and Its Metabolites: Bridge of Dietary Nutrients and Alzheimer’s Disease. Advances in Nutrition, 14, 819-839.
https://doi.org/10.1016/j.advnut.2023.04.005
[4] Susmitha, G. and Kumar, R. (2023) Role of Microbial Dysbiosis in the Pathogenesis of Alzheimer’s Disease. Neuropharmacology, 229, Article ID: 109478.
https://doi.org/10.1016/j.neuropharm.2023.109478
[5] Hung, C., Chang, C., Huang, C., Nouchi, R. and Cheng, C. (2022) Gut Microbiota in Patients with Alzheimer’s Disease Spectrum: A Systematic Review and Meta-Analysis. Aging, 14, 477-496.
https://doi.org/10.18632/aging.203826
[6] Bicknell, B., Liebert, A., Borody, T., Herkes, G., McLachlan, C. and Kiat, H. (2023) Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. International Journal of Molecular Sciences, 24, Article 9577.
https://doi.org/10.3390/ijms24119577
[7] Nguyen, N.M., Cho, J. and Lee, C. (2023) Gut Microbiota and Alzheimer’s Disease: How to Study and Apply Their Relationship. International Journal of Molecular Sciences, 24, Article 4047.
https://doi.org/10.3390/ijms24044047
[8] Liu, L., Wang, H., Chen, X. and Xie, P. (2023) Gut Microbiota: A New Insight into Neurological Diseases. Chinese Medical Journal, 136, 1261-1277.
https://doi.org/10.1097/cm9.0000000000002212
[9] Cuartero, M.I., García‐Culebras, A., Nieto‐Vaquero, C., Fraga, E., Torres‐López, C., Pradillo, J., et al. (2023) The Role of Gut Microbiota in Cerebrovascular Disease and Related Dementia. British Journal of Pharmacology, 181, 816-839.
https://doi.org/10.1111/bph.16167
[10] Yin, J., Xu, X., Jin, C., Yuan, X. and Wang, X. (2023) The Influence of the Gut Microbiota on Alzheimer’s Disease: A Narrative Review. Journal of Integrative Neuroscience, 22, Article 38.
https://doi.org/10.31083/j.jin2202038
[11] Cryan, J.F. and Dinan, T.G. (2012) Mind-altering Microorganisms: The Impact of the Gut Microbiota on Brain and Behaviour. Nature Reviews Neuroscience, 13, 701-712.
https://doi.org/10.1038/nrn3346
[12] Shabbir, U., Arshad, M.S., Sameen, A. and Oh, D. (2021) Crosstalk between Gut and Brain in Alzheimer’s Disease: The Role of Gut Microbiota Modulation Strategies. Nutrients, 13, Article 690.
https://doi.org/10.3390/nu13020690
[13] Janeiro, M.H., Ramírez, M.J. and Solas, M. (2021) Dysbiosis and Alzheimer’s Disease: Cause or Treatment Opportunity? Cellular and Molecular Neurobiology, 42, 377-387.
https://doi.org/10.1007/s10571-020-01024-9
[14] Bostanciklioğlu, M. (2019) The Role of Gut Microbiota in Pathogenesis of Alzheimer’s Disease. Journal of Applied Microbiology, 127, 954-967.
https://doi.org/10.1111/jam.14264
[15] Zou, B., Li, J., Ma, R., Cheng, X., Ma, R., Zhou, T., et al. (2023) Gut Microbiota Is an Impact Factor Based on the Brain-Gut Axis to Alzheimer’s Disease: A Systematic Review. Aging and Disease, 14, 964-1678.
https://doi.org/10.14336/ad.2022.1127
[16] Bairamian, D., Sha, S., Rolhion, N., Sokol, H., Dorothée, G., Lemere, C.A., et al. (2022) Microbiota in Neuroinflammation and Synaptic Dysfunction: A Focus on Alzheimer’s Disease. Molecular Neurodegeneration, 17, Article No. 19.
https://doi.org/10.1186/s13024-022-00522-2
[17] Davoli-Ferreira, M., Thomson, C.A. and McCoy, K.D. (2021) Microbiota and Microglia Interactions in ASD. Frontiers in Immunology, 12, Article 676255.
https://doi.org/10.3389/fimmu.2021.676255
[18] Łuc, M., Misiak, B., Pawłowski, M., Stańczykiewicz, B., Zabłocka, A., Szcześniak, D., et al. (2021) Gut Microbiota in Dementia. Critical Review of Novel Findings and Their Potential Application. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 104, Article ID: 110039.
https://doi.org/10.1016/j.pnpbp.2020.110039
[19] Bhatt, S., Nagappa, A.N. and Patil, C.R. (2020) Role of Oxidative Stress in Depression. Drug Discovery Today, 25, 1270-1276.
https://doi.org/10.1016/j.drudis.2020.05.001
[20] Wu, L., Xian, X., Xu, G., Tan, Z., Dong, F., Zhang, M., et al. (2022) Toll-like Receptor 4: A Promising Therapeutic Target for Alzheimer’s Disease. Mediators of Inflammation, 2022, Article ID: 7924199.
https://doi.org/10.1155/2022/7924199
[21] Kuruva, C.S. and Reddy, P.H. (2017) Amyloid β Modulators and Neuroprotection in Alzheimer’s Disease: A Critical Appraisal. Drug Discovery Today, 22, 223-233.
https://doi.org/10.1016/j.drudis.2016.10.010
[22] Jin, J., Xu, Z., Zhang, L., Zhang, C., Zhao, X., Mao, Y., et al. (2023) Gut-Derived β-Amyloid: Likely a Centerpiece of the Gut-Brain Axis Contributing to Alzheimer’s Pathogenesis. Gut Microbes, 15, Article ID: 2167172.
https://doi.org/10.1080/19490976.2023.2167172
[23] Jung, J.H., Kim, G., Byun, M.S., Lee, J.H., Yi, D., Park, H., et al. (2022) Gut Microbiome Alterations in Preclinical Alzheimer’s Disease. PLOS ONE, 17, e0278276.
https://doi.org/10.1371/journal.pone.0278276
[24] Sweeney, M.D., Sagare, A.P. and Zlokovic, B.V. (2018) Blood-Brain Barrier Breakdown in Alzheimer Disease and Other Neurodegenerative Disorders. Nature Reviews Neurology, 14, 133-150.
https://doi.org/10.1038/nrneurol.2017.188
[25] Trichka, J. and Zou, W. (2021) Modulation of Neuroinflammation by the Gut Microbiota in Prion and Prion-Like Diseases. Pathogens, 10, Article 887.
https://doi.org/10.3390/pathogens10070887
[26] Chen, Y., Xu, J. and Chen, Y. (2021) Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients, 13, Article 2099.
[27] Sochocka, M., Donskow-Łysoniewska, K., Diniz, B.S., Kurpas, D., Brzozowska, E. and Leszek, J. (2018) The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease—A Critical Review. Molecular Neurobiology, 56, 1841-1851.
https://doi.org/10.1007/s12035-018-1188-4
[28] de De-Paula, J.R.V., Forlenza, A.S. and Forlenza, O.V. (2018) Relevance of Gutmicrobiota in Cognition, Behaviour and Alzheimer’s Disease. Pharmacological Research, 136, 29-34.
https://doi.org/10.1016/j.phrs.2018.07.007
[29] Bravo, J.A., Forsythe, P., Chew, M.V., Escaravage, E., Savignac, H.M., Dinan, T.G., et al. (2011) Ingestion of lactobacillus Strain Regulates Emotional Behavior and Central GABA Receptor Expression in a Mouse via the Vagus Nerve. Proceedings of the National Academy of Sciences of the United States of America, 108, 16050-16055.
https://doi.org/10.1073/pnas.1102999108
[30] Chang, C., Lin, C. and Lane, H. (2020) D-Glutamate and Gut Microbiota in Alzheimer’s Disease. International Journal of Molecular Sciences, 21, Article 2676.
https://doi.org/10.3390/ijms21082676
[31] Chang, C., Lin, C., Liu, C., Huang, C., Chen, S., Lin, W., et al. (2021) Plasma D-Glutamate Levels for Detecting Mild Cognitive Impairment and Alzheimer’s Disease: Machine Learning Approaches. Journal of Psychopharmacology, 35, 265-272.
https://doi.org/10.1177/0269881120972331
[32] Vogt, N.M., Kerby, R.L., Dill-McFarland, K.A., Harding, S.J., Merluzzi, A.P., Johnson, S.C., et al. (2017) Gut Microbiome Alterations in Alzheimer’s Disease. Scientific Reports, 7, Article No. 13537.
https://doi.org/10.1038/s41598-017-13601-y
[33] Liu, P., Wu, L., Peng, G., Han, Y., Tang, R., Ge, J., et al. (2019) Altered Microbiomes Distinguish Alzheimer’s Disease from Amnestic Mild Cognitive Impairment and Health in a Chinese Cohort. Brain, Behavior, and Immunity, 80, 633-643.
https://doi.org/10.1016/j.bbi.2019.05.008
[34] Samuelsson, J., Kern, S., Zetterberg, H., Blennow, K., Rothenberg, E., Wallengren, O., et al. (2021) A Western‐style Dietary Pattern Is Associated with Cerebrospinal Fluid Biomarker Levels for Preclinical Alzheimer’s Disease—A Population‐Based Cross‐Sectional Study among 70‐Year‐Olds. Alzheimers & Dementia: Translational Research & Clinical Interventions, 7, e12183.
https://doi.org/10.1002/trc2.12183
[35] Wang, D.D., Nguyen, L.H., Li, Y., Yan, Y., Ma, W., Rinott, E., et al. (2021) The Gut Microbiome Modulates the Protective Association between a Mediterranean Diet and Cardiometabolic Disease Risk. Nature Medicine, 27, 333-343.
https://doi.org/10.1038/s41591-020-01223-3
[36] Meslier, V., Laiola, M., Roager, H.M., De Filippis, F., Roume, H., Quinquis, B., et al. (2020) Mediterranean Diet Intervention in Overweight and Obese Subjects Lowers Plasma Cholesterol and Causes Changes in the Gut Microbiome and Metabolome Independently of Energy Intake. Gut, 69, 1258-1268.
https://doi.org/10.1136/gutjnl-2019-320438
[37] Díaz, G., Lengele, L., Sourdet, S., Soriano, G. and de Souto Barreto, P. (2022) Nutrients and Amyloid β Status in the Brain: A Narrative Review. Ageing Research Reviews, 81, Article ID: 101728.
https://doi.org/10.1016/j.arr.2022.101728
[38] Chu, C., Yu, L., Qi, G., Mi, Y., Wu, W., Lee, Y., et al. (2022) Can Dietary Patterns Prevent Cognitive Impairment and Reduce Alzheimer’s Disease Risk: Exploring the Underlying Mechanisms of Effects. Neuroscience & Biobehavioral Reviews, 135, Article ID: 104556.
https://doi.org/10.1016/j.neubiorev.2022.104556
[39] Dyńka, D., Kowalcze, K. and Paziewska, A. (2022) The Role of Ketogenic Diet in the Treatment of Neurological Diseases. Nutrients, 14, Article 5003.
https://doi.org/10.3390/nu14235003
[40] Anderson, R.C. (2022) Can Probiotics Mitigate Age-Related Neuroinflammation Leading to Improved Cognitive Outcomes? Frontiers in Nutrition, 9, Article ID: 1012076.
https://doi.org/10.3389/fnut.2022.1012076
[41] Zhu, J., Liu, S., Zhang, H., Zhao, W., Ding, J., Dai, R., et al. (2023) Dynamic Distribution of Gut Microbiota during Alzheimer’s Disease Progression in a Mice Model. APMIS, 131, 480-490.
https://doi.org/10.1111/apm.13339
[42] Akbari, E., Asemi, Z., Daneshvar Kakhaki, R., Bahmani, F., Kouchaki, E., Tamtaji, O.R., et al. (2016) Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer’s Disease: A Randomized, Double-Blind and Controlled Trial. Frontiers in Aging Neuroscience, 8, Article 256.
https://doi.org/10.3389/fnagi.2016.00256
[43] Matheson, J.T. and Holsinger, R.M.D. (2023) The Role of Fecal Microbiota Transplantation in the Treatment of Neurodegenerative Diseases: A Review. International Journal of Molecular Sciences, 24, Article 1001.
https://doi.org/10.3390/ijms24021001
[44] Elangovan, S., Borody, T.J. and Holsinger, R.M.D. (2022) Fecal Microbiota Transplantation Reduces Pathology and Improves Cognition in a Mouse Model of Alzheimer’s Disease. Cells, 12, Article 119.
https://doi.org/10.3390/cells12010119
[45] Hazan, S. (2020) Rapid Improvement in Alzheimer’s Disease Symptoms Following Fecal Microbiota Transplantation: A Case Report. Journal of International Medical Research, 48, 1-6.
https://doi.org/10.1177/0300060520925930
[46] Park, S., Lee, J.H., Shin, J., Kim, J., Cha, B., Lee, S., et al. (2021) Cognitive Function Improvement after Fecal Microbiota Transplantation in Alzheimer’s Dementia Patient: A Case Report. Current Medical Research and Opinion, 37, 1739-1744.
https://doi.org/10.1080/03007995.2021.1957807
[47] Vendrik, K.E.W., Ooijevaar, R.E., de Jong, P.R.C., Laman, J.D., van Oosten, B.W., van Hilten, J.J., et al. (2020) Fecal Microbiota Transplantation in Neurological Disorders. Frontiers in Cellular and Infection Microbiology, 10, Article 98.
https://doi.org/10.3389/fcimb.2020.00098