[1]
|
Younossi, Z.M. (2019) Non-Alcoholic Fatty Liver Disease—A Global Public Health Perspective. Journal of Hepatology, 70, 531-544. https://doi.org/10.1016/j.jhep.2018.10.033
|
[2]
|
Younossi, Z.M., Golabi, P., Paik, J.M., Henry, A., Van Dongen, C. and Henry, L. (2023) The Global Epidemiology of Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review. Hepatology, 77, 1335-1347. https://doi.org/10.1097/hep.0000000000000004
|
[3]
|
Estes, C., Anstee, Q.M., Arias-Loste, M.T., Bantel, H., Bellentani, S., Caballeria, J., et al. (2018) Modeling NAFLD Disease Burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the Period 2016-2030. Journal of Hepatology, 69, 896-904. https://doi.org/10.1016/j.jhep.2018.05.036
|
[4]
|
Mantovani, A., Scorletti, E., Mosca, A., Alisi, A., Byrne, C.D. and Targher, G. (2020) Complications, Morbidity and Mortality of Nonalcoholic Fatty Liver Disease. Metabolism, 111, Article 154170. https://doi.org/10.1016/j.metabol.2020.154170
|
[5]
|
Lassailly, G., Caiazzo, R., Buob, D., Pigeyre, M., Verkindt, H., Labreuche, J., et al. (2015) Bariatric Surgery Reduces Features of Nonalcoholic Steatohepatitis in Morbidly Obese Patients. Gastroenterology, 149, 379-388. https://doi.org/10.1053/j.gastro.2015.04.014
|
[6]
|
Bell, L.N., Temm, C.J., Saxena, R., Vuppalanchi, R., Schauer, P., Rabinovitz, M., et al. (2010) Bariatric Surgery-Induced Weight Loss Reduces Hepatic Lipid Peroxidation Levels and Affects Hepatic Cytochrome P-450 Protein Content. Annals of Surgery, 251, 1041-1048. https://doi.org/10.1097/sla.0b013e3181dbb572
|
[7]
|
Mathurin, P., Hollebecque, A., Arnalsteen, L., Buob, D., Leteurtre, E., Caiazzo, R., et al. (2009) Prospective Study of the Long-Term Effects of Bariatric Surgery on Liver Injury in Patients without Advanced Disease. Gastroenterology, 137, 532-540. https://doi.org/10.1053/j.gastro.2009.04.052
|
[8]
|
Mummadi, R.R., Kasturi, K.S., Chennareddygari, S. and Sood, G.K. (2008) Effect of Bariatric Surgery on Nonalcoholic Fatty Liver Disease: Systematic Review and Meta-Analysis. Clinical Gastroenterology and Hepatology, 6, 1396-1402. https://doi.org/10.1016/j.cgh.2008.08.012
|
[9]
|
Lee, Y., Doumouras, A.G., Yu, J., Brar, K., Banfield, L., Gmora, S., et al. (2019) Complete Resolution of Nonalcoholic Fatty Liver Disease after Bariatric Surgery: A Systematic Review and Meta-Analysis. Clinical Gastroenterology and Hepatology, 17, 1040-1060.e11. https://doi.org/10.1016/j.cgh.2018.10.017
|
[10]
|
Lassailly, G., Caiazzo, R., Ntandja-Wandji, L., Gnemmi, V., Baud, G., Verkindt, H., et al. (2020) Bariatric Surgery Provides Long-Term Resolution of Nonalcoholic Steatohepatitis and Regression of Fibrosis. Gastroenterology, 159, 1290-1301.e5. https://doi.org/10.1053/j.gastro.2020.06.006
|
[11]
|
杨华, 陈缘, 董志勇, 等. 中国肥胖代谢外科数据库: 2020年度报告[J]. 中华肥胖与代谢病电子杂志, 2021, 7(1): 1-7.
|
[12]
|
Seeberg, K.A., Borgeraas, H., Hofsø, D., Småstuen, M.C., Kvan, N.P., Grimnes, J.O., et al. (2022) Gastric Bypass versus Sleeve Gastrectomy in Type 2 Diabetes: Effects on Hepatic Steatosis and Fibrosis. Annals of Internal Medicine, 175, 74-83. https://doi.org/10.7326/m21-1962
|
[13]
|
Hofsø, D., Fatima, F., Borgeraas, H., Birkeland, K.I., Gulseth, H.L., Hertel, J.K., et al. (2019) Gastric Bypass versus Sleeve Gastrectomy in Patients with Type 2 Diabetes (Oseberg): A Single-Centre, Triple-Blind, Randomised Controlled Trial. The Lancet Diabetes & Endocrinology, 7, 912-924. https://doi.org/10.1016/s2213-8587(19)30344-4
|
[14]
|
Srivastava, A., Stevenson, M., Lee, J., Hall, C., Palaia, T., Zhao, C.L., et al. (2022) Reversal of NAFLD after VSG Is Independent of Weight-Loss but RYGB Offers More Efficacy When Maintained on a High-Fat Diet. Obesity Surgery, 32, 2010-2022. https://doi.org/10.1007/s11695-022-06053-5
|
[15]
|
Furuya, C.K., De Oliveira, C.P.M.S., De Mello, E.S., Faintuch, J., Raskovski, A., Matsuda, M., et al. (2007) Effects of Bariatric Surgery on Nonalcoholic Fatty Liver Disease: Preliminary Findings after 2 Years. Journal of Gastroenterology and Hepatology, 22, 510-514. https://doi.org/10.1111/j.1440-1746.2007.04833.x
|
[16]
|
Praveen Raj, P., Gomes, R.M., Kumar, S., Senthilnathan, P., Karthikeyan, P., Shankar, A., et al. (2015) The Effect of Surgically Induced Weight Loss on Nonalcoholic Fatty Liver Disease in Morbidly Obese Indians: “NASHOST” Prospective Observational Trial. Surgery for Obesity and Related Diseases, 11, 1315-1322. https://doi.org/10.1016/j.soard.2015.02.006
|
[17]
|
Wree, A., Schlattjan, M., Bechmann, L.P., Claudel, T., Sowa, J., Stojakovic, T., et al. (2014) Adipocyte Cell Size, Free Fatty Acids and Apolipoproteins Are Associated with Non-Alcoholic Liver Injury Progression in Severely Obese Patients. Metabolism, 63, 1542-1552. https://doi.org/10.1016/j.metabol.2014.09.001
|
[18]
|
Wang, G., Wang, Y., Bai, J., Li, G., Liu, Y., Deng, S., et al. (2023) Increased Plasma Genistein after Bariatric Surgery Could Promote Remission of NAFLD in Patients with Obesity. Frontiers in Endocrinology, 13, Article 1024769. https://doi.org/10.3389/fendo.2022.1024769
|
[19]
|
Liou, A.P., Paziuk, M., Luevano, J., Machineni, S., Turnbaugh, P.J. and Kaplan, L.M. (2013) Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Adiposity. Science Translational Medicine, 5, 178ra41. https://doi.org/10.1126/scitranslmed.3005687
|
[20]
|
Pérez-Rubio, Á., Soluyanova, P., Moro, E., Quintás, G., Rienda, I., Periañez, M.D., et al. (2023) Gut Microbiota and Plasma Bile Acids Associated with Non-Alcoholic Fatty Liver Disease Resolution in Bariatric Surgery Patients. Nutrients, 15, Article 3187. https://doi.org/10.3390/nu15143187
|
[21]
|
Buzzetti, E., Pinzani, M. and Tsochatzis, E.A. (2016) The Multiple-Hit Pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD). Metabolism, 65, 1038-1048. https://doi.org/10.1016/j.metabol.2015.12.012
|
[22]
|
Le Roy, T., Llopis, M., Lepage, P., Bruneau, A., Rabot, S., Bevilacqua, C., et al. (2012) Intestinal Microbiota Determines Development of Non-Alcoholic Fatty Liver Disease in Mice. Gut, 62, 1787-1794. https://doi.org/10.1136/gutjnl-2012-303816
|
[23]
|
Hoyles, L., Fernández-Real, J., Federici, M., Serino, M., Abbott, J., Charpentier, J., et al. (2018) Molecular Phenomics and Metagenomics of Hepatic Steatosis in Non-Diabetic Obese Women. Nature Medicine, 24, 1070-1080. https://doi.org/10.1038/s41591-018-0061-3
|
[24]
|
Kolodziejczyk, A.A., Zheng, D., Shibolet, O. and Elinav, E. (2018) The Role of the Microbiome in NAFLD and NASH. EMBO Molecular Medicine, 11, e9302. https://doi.org/10.15252/emmm.201809302
|
[25]
|
Ke, Z., Huang, Y., Xu, J., Liu, Y., Zhang, Y., Wang, Y., et al. (2024) Escherichia coli NF73-1 Disrupts the Gut-Vascular Barrier and Aggravates High-Fat Diet-Induced Fatty Liver Disease via Inhibiting Wnt/β-Catenin Signalling Pathway. Liver International, 44, 776-790. https://doi.org/10.1111/liv.15823
|
[26]
|
Ridlon, J.M., Kang, D.J., Hylemon, P.B. and Bajaj, J.S. (2014) Bile Acids and the Gut Microbiome. Current Opinion in Gastroenterology, 30, 332-338. https://doi.org/10.1097/mog.0000000000000057
|
[27]
|
Leung, C., Rivera, L., Furness, J.B. and Angus, P.W. (2016) The Role of the Gut Microbiota in NAFLD. Nature Reviews Gastroenterology & Hepatology, 13, 412-425. https://doi.org/10.1038/nrgastro.2016.85
|
[28]
|
Shen, F., Zheng, R., Sun, X., Ding, W., Wang, X. and Fan, J. (2017) Gut Microbiota Dysbiosis in Patients with Non-Alcoholic Fatty Liver Disease. Hepatobiliary & Pancreatic Diseases International, 16, 375-381. https://doi.org/10.1016/s1499-3872(17)60019-5
|
[29]
|
Raman, M., Ahmed, I., Gillevet, P.M., Probert, C.S., Ratcliffe, N.M., Smith, S., et al. (2013) Fecal Microbiome and Volatile Organic Compound Metabolome in Obese Humans with Nonalcoholic Fatty Liver Disease. Clinical Gastroenterology and Hepatology, 11, 868-875.e3. https://doi.org/10.1016/j.cgh.2013.02.015
|
[30]
|
Wang, B., Jiang, X., Cao, M., Ge, J., Bao, Q., Tang, L., et al. (2016) Altered Fecal Microbiota Correlates with Liver Biochemistry in Nonobese Patients with Non-Alcoholic Fatty Liver Disease. Scientific Reports, 6, Article No. 32002. https://doi.org/10.1038/srep32002
|
[31]
|
Zhu, L., Baker, S.S., Gill, C., Liu, W., Alkhouri, R., Baker, R.D., et al. (2013) Characterization of Gut Microbiomes in Nonalcoholic Steatohepatitis (NASH) Patients: A Connection between Endogenous Alcohol and Nash. Hepatology, 57, 601-609. https://doi.org/10.1002/hep.26093
|
[32]
|
Del Chierico, F., Nobili, V., Vernocchi, P., Russo, A., De Stefanis, C., Gnani, D., et al. (2016) Gut Microbiota Profiling of Pediatric Nonalcoholic Fatty Liver Disease and Obese Patients Unveiled by an Integrated Meta-Omics-Based Approach. Hepatology, 65, 451-464. https://doi.org/10.1002/hep.28572
|
[33]
|
Su, X., Chen, S., Liu, J., Feng, Y., Han, E., Hao, X., et al. (2023) Composition of Gut Microbiota and Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Obesity Reviews, 25, e13646. https://doi.org/10.1111/obr.13646
|
[34]
|
Boursier, J., Mueller, O., Barret, M., Machado, M., Fizanne, L., Araujo-Perez, F., et al. (2016) The Severity of Nonalcoholic Fatty Liver Disease Is Associated with Gut Dysbiosis and Shift in the Metabolic Function of the Gut Microbiota. Hepatology, 63, 764-775. https://doi.org/10.1002/hep.28356
|
[35]
|
Loomba, R., Seguritan, V., Li, W., Long, T., Klitgord, N., Bhatt, A., et al. (2017) Gut Microbiome-Based Metagenomic Signature for Non-Invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metabolism, 25, 1054-1062.e5. https://doi.org/10.1016/j.cmet.2017.04.001
|
[36]
|
Canivet, C.M., David, N., Pailhoriès, H., Briand, M., Guy, C.D., Bouchez, O., et al. (2021) Cross-Linkage between Bacterial Taxonomy and Gene Functions: A Study of Metagenome-Assembled Genomes of Gut Microbiota in Adult Non-Alcoholic Fatty Liver Disease. Alimentary Pharmacology & Therapeutics, 53, 722-732. https://doi.org/10.1111/apt.16262
|
[37]
|
Nian, F., Wu, L., et al. (2023) Akkermansia muciniphila and Bifidobacterium bifidum Prevent NAFLD by Regulating FXR Expression and Gut Microbiota. Journal of Clinical and Translational Hepatology, 11, Article 763.
|
[38]
|
Han, Y., Ling, Q., Wu, L., Wang, X., Wang, Z., Chen, J., et al. (2023) Akkermansia muciniphila inhibits Nonalcoholic Steatohepatitis by Orchestrating Tlr2-Activated Γδt17 Cell and Macrophage Polarization. Gut Microbes, 15, Article 2221485. https://doi.org/10.1080/19490976.2023.2221485
|
[39]
|
Lee, H., Do, M., Jhun, H., Ha, S., Song, H., Roh, S., et al. (2021) Amelioration of Hepatic Steatosis in Mice through Bacteroides Uniformis Cba7346-Mediated Regulation of High-Fat Diet-Induced Insulin Resistance and Lipogenesis. Nutrients, 13, Article 2989. https://doi.org/10.3390/nu13092989
|
[40]
|
Huang, Y., Cao, J., Zhu, M., Wang, Z., Jin, Z. and Xiong, Z. (2024) Bacteroides fragilis Aggravates High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease by Regulating Lipid Metabolism and Remodeling Gut Microbiota. Microbiology Spectrum, 12, e03393-23. https://doi.org/10.1128/spectrum.03393-23
|
[41]
|
Ni, Y., Qian, L., Siliceo, S.L., Long, X., Nychas, E., Liu, Y., et al. (2023) Resistant Starch Decreases Intrahepatic Triglycerides in Patients with NAFLD via Gut Microbiome Alterations. Cell Metabolism, 35, 1530-1547.e8. https://doi.org/10.1016/j.cmet.2023.08.002
|
[42]
|
Shi, Y., Chen, J., Qu, D., Sun, Q., Yu, Y., Zhang, H., et al. (2024) Ginsenoside Rg5 Activates the LKB1/AMPK/mTOR Signaling Pathway and Modifies the Gut Microbiota to Alleviate Nonalcoholic Fatty Liver Disease Induced by a High-Fat Diet. Nutrients, 16, Article 842. https://doi.org/10.3390/nu16060842
|
[43]
|
Xue, L., Deng, Z., Luo, W., He, X. and Chen, Y. (2022) Effect of Fecal Microbiota Transplantation on Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Frontiers in Cellular and Infection Microbiology, 12, Article 759306. https://doi.org/10.3389/fcimb.2022.759306
|
[44]
|
Dong, T.S., Katzka, W., Yang, J.C., Chang, C., Arias-Jayo, N., Lagishetty, V., et al. (2023) Microbial Changes from Bariatric Surgery Alters Glucose-Dependent Insulinotropic Polypeptide and Prevents Fatty Liver Disease. Gut Microbes, 15, Article 2167170. https://doi.org/10.1080/19490976.2023.2167170
|
[45]
|
Chen, G., Zhuang, J., Cui, Q., Jiang, S., Tao, W., Chen, W., et al. (2020) Two Bariatric Surgical Procedures Differentially Alter the Intestinal Microbiota in Obesity Patients. Obesity Surgery, 30, 2345-2361. https://doi.org/10.1007/s11695-020-04494-4
|
[46]
|
Faria, S.L., Santos, A., Magro, D.O., Cazzo, E., Assalin, H.B., Guadagnini, D., et al. (2020) Gut Microbiota Modifications and Weight Regain in Morbidly Obese Women after Roux-En-Y Gastric Bypass. Obesity Surgery, 30, 4958-4966. https://doi.org/10.1007/s11695-020-04956-9
|
[47]
|
Ilhan, Z.E., DiBaise, J.K., Dautel, S.E., Isern, N.G., Kim, Y., Hoyt, D.W., et al. (2020) Temporospatial Shifts in the Human Gut Microbiome and Metabolome after Gastric Bypass Surgery. npj Biofilms and Microbiomes, 6, Article No. 12. https://doi.org/10.1038/s41522-020-0122-5
|
[48]
|
Lu, C., Li, Y., Li, L., Kong, Y., Shi, T., Xiao, H., et al. (2020) Alterations of Serum Uric Acid Level and Gut Microbiota after Roux-En-Y Gastric Bypass and Sleeve Gastrectomy in a Hyperuricemic Rat Model. Obesity Surgery, 30, 1799-1807. https://doi.org/10.1007/s11695-019-04328-y
|
[49]
|
Sanchez-Carrillo, S., Ciordia, S., Rojo, D., Zubeldia-Varela, E., Méndez-García, C., Martínez-Martínez, M., et al. (2021) A Body Weight Loss-and Health-Promoting Gut Microbiota Is Established after Bariatric Surgery in Individuals with Severe Obesity. Journal of Pharmaceutical and Biomedical Analysis, 193, Article 113747. https://doi.org/10.1016/j.jpba.2020.113747
|
[50]
|
Furet, J., Kong, L., Tap, J., Poitou, C., Basdevant, A., Bouillot, J., et al. (2010) Differential Adaptation of Human Gut Microbiota to Bariatric Surgery-Induced Weight Loss. Diabetes, 59, 3049-3057. https://doi.org/10.2337/db10-0253
|
[51]
|
Zhang, H., DiBaise, J.K., Zuccolo, A., Kudrna, D., Braidotti, M., Yu, Y., et al. (2009) Human Gut Microbiota in Obesity and after Gastric Bypass. Proceedings of the National Academy of Sciences, 106, 2365-2370. https://doi.org/10.1073/pnas.0812600106
|
[52]
|
Sánchez-Alcoholado, L., Gutiérrez-Repiso, C., Gómez-Pérez, A.M., García-Fuentes, E., Tinahones, F.J. and Moreno-Indias, I. (2019) Gut Microbiota Adaptation after Weight Loss by Roux-En-Y Gastric Bypass or Sleeve Gastrectomy Bariatric Surgeries. Surgery for Obesity and Related Diseases, 15, 1888-1895. https://doi.org/10.1016/j.soard.2019.08.551
|
[53]
|
Seyfried, F., Phetcharaburanin, J., Glymenaki, M., Nordbeck, A., Hankir, M., Nicholson, J.K., et al. (2021) Roux-en-Y Gastric Bypass Surgery in Zucker Rats Induces Bacterial and Systemic Metabolic Changes Independent of Caloric Restriction-Induced Weight Loss. Gut Microbes, 13, Article 1875108. https://doi.org/10.1080/19490976.2021.1875108
|
[54]
|
Koh, A., De Vadder, F., Kovatcheva-Datchary, P. and Bäckhed, F. (2016) From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165, 1332-1345. https://doi.org/10.1016/j.cell.2016.05.041
|
[55]
|
Puri, P., Daita, K., Joyce, A., Mirshahi, F., Santhekadur, P.K., Cazanave, S., et al. (2017) The Presence and Severity of Nonalcoholic Steatohepatitis Is Associated with Specific Changes in Circulating Bile Acids. Hepatology, 67, 534-548. https://doi.org/10.1002/hep.29359
|
[56]
|
Talavera-Urquijo, E., Beisani, M., Balibrea, J.M. and Alverdy, J.C. (2020) Is Bariatric Surgery Resolving NAFLD via Microbiota-Mediated Bile Acid Ratio Reversal? A Comprehensive Review. Surgery for Obesity and Related Diseases, 16, 1361-1369. https://doi.org/10.1016/j.soard.2020.03.013
|
[57]
|
Cerreto, M., Santopaolo, F., Gasbarrini, A., Pompili, M. and Ponziani, F. (2021) Bariatric Surgery and Liver Disease: General Considerations and Role of the Gut-Liver Axis. Nutrients, 13, Article 2649. https://doi.org/10.3390/nu13082649
|
[58]
|
Jia, W., Xie, G. and Jia, W. (2017) Bile Acid-Microbiota Crosstalk in Gastrointestinal Inflammation and Carcinogenesis. Nature Reviews Gastroenterology & Hepatology, 15, 111-128. https://doi.org/10.1038/nrgastro.2017.119
|