减重代谢手术对肠道微生物群的调节及其在NAFLD治疗中的作用
The Modulation of Gut Microbiota by Bariatric Metabolic Surgery and Its Role in NAFLD Treatment
DOI: 10.12677/acm.2024.1482288, PDF, HTML, XML,    科研立项经费支持
作者: 郝小磊, 牛剑祥*:内蒙古医科大学第一临床医学院,内蒙古 呼和浩特
关键词: 减重代谢手术非酒精性脂肪性肝病肠道微生物群疗效机制Bariatric Metabolic Surgery Non-Alcoholic Fatty Liver Disease Gut Microbiota Efficacy Mechanism
摘要: 减重代谢手术已被证实对非酒精性脂肪性肝病(NAFLD)患者具有显著的积极影响,这在很大程度上归功于它对肠道微生物群的调节作用。不同的手术方式对肠道微生物的影响也各不相同,对NAFLD治疗的重点也有所差异。肠道微生物群的失衡是NAFLD发展的重要因素,主要表现为“抗炎”菌群的减少和“促炎”菌群的增加,且NAFLD的病情进展与肠道微生物群的状态密切相关。减重手术通过改变肠道环境,促进有益菌群的增长和潜在有害菌群的减少,从而改善肠道功能,调节胆汁酸的组成和代谢,以及影响食物的消化和吸收。这些变化不仅重塑了肠道内环境,还可能通过肠–肝轴对宿主的生理和代谢状态产生重要影响,进而改善NAFLD的严重程度。
Abstract: Bariatric metabolic surgery has been proven to significantly benefit patients with nonalcoholic fatty liver disease (NAFLD), primarily due to its regulatory effect on the gut microbiota. Different surgical approaches have varying impacts on the gut microbiota and thus focus on different aspects of NAFLD treatment. The imbalance of the gut microbiota, characterized by a decrease in “anti-inflammatory” bacteria and an increase in “pro-inflammatory” bacteria, is a crucial factor in the development of NAFLD and is inextricably linked to the progression of the disease. Bariatric surgery improves intestinal function by altering the gut environment, promoting the growth of beneficial bacteria, and reducing potentially harmful bacteria. This leads to improved regulation of bile acid composition and metabolism, as well as the digestion and absorption of food. These changes not only reshape the intestinal environment but also significantly affect the host’s physiological and metabolic status through the gut-liver axis, thereby ameliorating the severity of NAFLD.
文章引用:郝小磊, 牛剑祥. 减重代谢手术对肠道微生物群的调节及其在NAFLD治疗中的作用[J]. 临床医学进展, 2024, 14(8): 817-825. https://doi.org/10.12677/acm.2024.1482288

1. 引言

非酒精性脂肪性肝病(Non-Alcoholic Fatty Liver Disease, NAFLD)的定义是存在代谢危险因素(特别是肥胖和2型糖尿病)且没有过度饮酒(男性每天 ≥ 30克,女性每天 ≥ 20克)或其他慢性肝病的情况下肝细胞脂肪变性超过5% [1]。近年来,NAFLD的患病率随着肥胖人群的增加而逐年升高。全球NAFLD患病率从1990~2006年的25.3%增加到2016~2019年的38.0% [2]。如果肥胖和糖尿病在未来会趋于平稳,研究预测在2016至2030年间,NAFLD病例数会中度增加(0~30%);其中,由于生活方式的变化,中国NAFLD病例增长最高[3]。随着NAFLD的病情进展,会出现非酒精性脂肪性肝炎病(Non-Alcoholic Steatohepatitis Disease, NASH)和肝纤维化,特别是肝纤维化会增加肝脏相关并发症的风险,例如肝硬化肝衰竭、肝细胞癌和死亡[4]。迄今为止,NAFLD最有效的治疗方法是减肥,3%~5%的体重减轻已被证明可减少脂肪变性,减重10%有望改善肝坏死性炎症[5]。然而,大多数NAFLD患者无法通过饮食限制实现减重,但BMS能够带来高达85%的NAFLD和NASH的改善率,这在组织学和生化标志物方面均有体现[6]。减重代谢手术(Bariatric Metabolic Surgery, BMS)通过影响胃肠的解剖和功能,从而影响食物通过时间、胆汁酸组成、远端肠道pH值以及进食行为,进而影响菌群结构和功能。尽管研究有限,但当前文献支持BMS后整体上菌群发生了有利的变化,包括增加多样性和丰富度,以及向“瘦身”微生物表型的转变。因此,进一步明确BMS后肠道菌群的变化,探索菌群改变在治疗NAFLD中的作用,有助于帮助我们理解BMS治疗NAFLD的机制,发现与微生物群相关的途径作为治疗NAFLD的潜在治疗靶点。

2. 减重代谢手术与非酒精性脂肪肝病

减重外科起源于20世纪50年代,经过不断的发展与改良,现已成为治疗肥胖症等代谢性疾病的有效手段。一项纳入381例样本量的前瞻性研究发现:对于非NASH患者,进行BMS后1年发现肝脏脂肪变性和肝细胞球状变性均有减少,部分患者的NASH病理甚至完全消失;另外,对比手术前后肝脏活检结果发现,对于轻度NASH患者,超过90%的人在术后1年内病理好转,而对于重度NASH患者,也有70%的人取得了病理改善[7]。2008年Mummadi等人的系统评价和元分析指出,BMS可以改善NAFLD的脂肪变性、肝炎和纤维化问题。具体改善率分别为脂肪变性91.6%,肝炎81.3%,纤维化65.5% [8]。2019年Lee等人的系统评价和元分析显示,BMS在肥胖患者中能够实现NAFLD的组织学特征缓解,尤其是在脂肪变性(66%)、炎症(50%)、气球样变性(76%)和纤维化(40%)方面[9]。尽管如此,仍有12%的患者手术后NAFLD特征有所恶化。近年来,一项包括180名接受BMS的活检证实的NASH患者的5年前瞻性研究显示,84%的患者NASH得到解决且纤维化没有恶化,其中70%的患者纤维化得到改善,56%的患者纤维化消失[10]。由此可见,大多数患者在BMS后,NAFLD的组织学特征得到改善或缓解,但需要更多的研究来评估BMS后肝硬化患者的长期预后。

BMS通过改变患者的消化系统功能来实现减肥,根据手术对胃肠道功能的影响,可分为限制性手术、吸收不良手术和混合手术三种类型。限制性手术通过缩小胃容量减少食物摄入,例如可调节胃束带术、袖式胃切除术(Sleeve Gastrectomy);吸收不良手术则通过缩短小肠长度减少营养吸收,例如肠–回肠吻合术和胆胰旁路术;混合手术则兼具两者的特点,例如Roux-en-Y胃旁路术(Roux-en-Y Gastric Bypass Surgery),最流行和最常用的BMS是RYGB和SG。据统计数据显示,2020年度我国减重手术总数量较2019年大幅增加,SG是数量最多手术之一[11]。不同类型的BMS对NAFLD疗效存在差异。Seeberg等人的单中心随机试验对100名肥胖患者进行了研究,随机分配到RYGB或SG手术组,并在术后1年进行了随访,结果显示,两种BMS在减少肝脂肪分数上均有效,SG组减少20%,RYGB组减少22%;在NAFLD改善率上,SG组有94%患者改善,而RYGB组达到100%,这表明RYGB可能在改善NAFLD方面更优[12]。SG可显著改善天冬氨酸转氨酶、丙氨酸转氨酶、甘油三酯和高密度脂蛋白血清水平[13]。而RYGB更能降低脂肪变性、肝小叶炎症、气球样变性以及肝小叶中央区/窦周纤维化程度[14] [15]

Ooi等人的一项观察性研究表明,在BMS后三个月内,血清丙氨酸氨基转移酶和g-谷氨酰转移酶的下降速度快于体重、血清甘油三酯和葡萄糖的改善[16]。同时,两项研究证实肥胖症手术后3~6个月内NAFLD的组织学显著改善[17]。这表明BMS后NAFLD的改善早于体重下降的发生,提示BMS对NAFLD的治疗效果在机制上有独立于体重减轻的因素。这种改善可能与术后早期出现的脂肪组织和脂质代谢的变化有关[18]。最近有研究显示,BMS后肠道菌群和胆汁酸循环的变化可能对NAFLD的改善有一定作用[19]。此外,动物研究也显示了BMS调节的肠道菌群在改善代谢命运中的作用[20]。这表明NAFLD对BMS的早期治疗反应可能与肠道菌群对手术创造的新肠道环境的快速适应有关。基于临床和基础证据,提示BMS后NAFLD的改善可能是通过改变肠–肝轴发挥作用。

3. 肠道微生物群与非酒精性脂肪肝病

目前,NAFLD的发病机制尚未十分明确,“多因素共同打击”假说成为NAFLD发病机制的主要理论。除胰岛素抵抗、脂质代谢紊乱、炎症和氧化应激外,肠道菌群及代谢物,肠屏道障功能异常也参与了NAFLD的发生发展[21]。粪便移植实验为肠道微生物群在NAFLD发展中的因果作用提供了证据。Farrell等人将肥胖小鼠的粪便微生物群移植到无菌小鼠体内,发现无菌小鼠肝脏中甘油三酯含量的升高,以及与脂质代谢相关的基因表达的增加,这些基因参与了脂质的摄取、脂肪的生成、脂肪酸的分解以及极低密度脂蛋白的输出过程[22]。Hoyles等人将患有肝脂肪变性的肥胖妇女的粪便转移到喂食普通食物的常规小鼠中,结果发现小鼠肝脏中甘油三酯含量增加[23]

先前的研究已经提供了大量证据证明生态失调与NAFLD之间的联系机制[24]。首先,肠道屏障在防止有害物质(包括移位细菌、LPS和内毒素以及分泌的细胞因子)从肠道转移到门静脉系统中具有重要作用。菌群紊乱通过破坏肠道屏障增加肠道通透性,从而增加肝脏炎症和纤维化[25]。其次,菌群紊乱会影响胆汁酸的组成。核胆汁酸受体法尼醇X受体缺陷小鼠通过抑制NF-κ B的表达,引起肝胆固醇和甘油三酯含量增加[26]。此外,微生物组的变化也会改变食物基质的代谢,例如某些短链脂肪酸(Short-Chain Fatty Acids)的产生增加和胆碱的消耗。SCFA,包括乙酸、丙酸和丁酸等进一步影响能量代谢、免疫力和脂肪组织扩张。而胆碱缺乏会阻止VLDL的合成和排泄,导致肝脏甘油三酯蓄积[27]

NAFLD患者在门水平上观察到一致的改变的特征,但是,在科、属和种的不同结果的研究中发现了很大的差异。以下是与健康个体对照组相比,NAFLD患者在肠道菌群组成上较为一致的特征变化。在门分类层面,观察到变形菌门的丰度有所增加[23] [28] [29]。进一步到科分类层面,发现肠杆菌科的数量上升,而拟杆菌科和Ruminoccaceae科的数量则有所下降[28]-[32]。在属分类层面,大肠杆菌、Dorea、Peptoniphilus的丰度增加,与此同时,AnaerosporobacterCoprococcusEubacteriumFaecalibacteriumPrevotella的丰度则呈现减少趋势[23] [29]-[32]。肠道微生物区系的紊乱与NAFLD的发生发展密切相关,通常体现为有益微生物种类的减少和致病菌种类的增加,从而影响NAFLD的病理进程。近期一项荟萃分析表明,NAFLD患者的肠道微生物区系发生了显著的组成变化,这些变化主要表现为具有抗炎作用的有益微生物,如Ruminococcaceae和Coprococcus的减少,以及与炎症相关的有害微生物,如梭杆菌属和大肠杆菌的增多[33]。晚期纤维化患者相比肝脏病变较轻的个体或健康个体对照,表现出革兰氏阴性细菌的丰度增加,梭杆菌门的丰度增加,肠杆菌科的丰度下降[34]。相反,革兰氏阳性细菌、厚壁菌门、拟杆菌科家族和拟杆菌属的丰度减少[35]。Canivet等人通过对96名非酒精NAFLD患者的肠道菌群功能组成进行分析,揭示了肠道菌群中某些细菌可能通过多种机制促进NAFLD发展为NASH和肝纤维化的潜在途径,这些机制包括硫化氢的产生、柠檬酸的运输、半纤维素的降解、醛类的产生以及维生素B12的合成[36]。尽管目前缺乏大规模前瞻性临床试验的数据支持,但近期的动物实验和有限的小规模人群研究已经揭示了特定肠道菌群影响NAFLD中的潜在机制。Akkermansia muciniphila (A. muciniphila)通过激活肝脏中的法尼醇X受体(FXR)表达和增强肠粘膜紧密连接蛋白,发挥其预防NAFLD的作用,同时它还通过协调Toll样受体2激活的γδT17细胞和巨噬细胞的极化来抑制非酒精性脂肪性肝炎的发展[37] [38]Bacteroides uniformis通过降低胰岛素抵抗和调节肥胖小鼠的从头脂肪生成来改善HFD诱导的NAFLD [39]Bacteroides fragilis导致脂多糖水平升高以及葡萄糖和脂质代谢功能障碍,从而加剧NAFLD [40]。近期姜长涛教授团队发现Bacteroides uniformis菌株能有效生产3-琥珀酰化胆酸(与NAFLD患者肝损伤呈负相关),并通过促进A. muciniphila的生长来缓解NASH。

近年来的一些研究发现,饮食、中药、BMS或进行菌群移植,可以通过调节肠道菌群,改善肠道微生物失衡,从而改善NAFLD。贾伟平教授团队研究表明,抗性淀粉的摄入通过肠道微生物组的改变,有效地降低了NAFLD患者的肝内甘油三酯含量,特别是,Bacteroides stercoris这一关键菌种在NAFLD的进展中起着重要作用[41]。Shi等人发现人参皂苷Rg5可以通过增加了有益菌群如拟杆菌属和Akkermansia的丰度,同时降低了有害菌群如Olsenella的相对丰度从而改善NAFLD [42]。Xue等人研究发现,粪便微生物移植通过调节肠道菌群失衡,显著降低了肝脏中的脂肪积累,对于缓解脂肪肝病显示出积极的影响[43]。Tien等人将接受SG前后患者的粪便菌群分别移植到经抗生素处理的小鼠中。结果显示,接受手术后患者微生物群的小鼠肝脏甘油三酯含量较低、炎症和纤维化的迹象减轻[44]

4. 减重代谢手术与肠道微生物群

研究表明,BMS可以促进肠道微生物群组成的明显变化。RYGB和SG后肠道微生物群多样性和丰富度增加的文献数据一致[45]。这些手术与疣微菌门(例如Akkermansia muciniphila)、变形菌门(包括HemophilusRothiaAggregatibacterCitrobacterKlebsiella属)以及γ-变形菌纲的增加有关联[46] [47]。同时,这些手术也会导致潜在有害菌如大肠杆菌的相对数量下降[48]。无论是手术前还是手术后,拟杆菌门和厚壁菌门始终占据肠道微生物群的主要地位[45]。在极度肥胖的个体中,这两大门类的细菌也是最为活跃的,手术前后的活动水平没有显著变化。BMS可改变拟杆菌/厚壁菌门的比例,导致拟杆菌增加和厚壁菌门减少[49]。但这一变化具有争议。Chen等人观察到RYGB和SG后拟杆菌减少,而厚壁菌门丰度无差异,但手术后改变的属中有57.14%属于厚壁菌门[45]。Ilhan等人对接受RYGB的患者粪便样本进行分析,发现厚壁菌门内的分类型有所改变。在手术后,StreptococcusEnterococcusLactococcusVeillonellaGranulicatella增加,而RuminococcusBlautiaRoseburia减少[48]。对于具体的菌群而言,例如Akkermansia muciniphila,该细菌属在RYGB的17项实验中有4项和SG的9项研究中有3项具有较高的相对丰度,然而,在接受RYGB治疗的三名参与者中观察到了下降[49]

BMS通过改变胃肠道的解剖结构,从而对消化吸收功能进行调整,短时间可引起肠道菌群的变化。RYGB手术后胃酸分泌的减少,与革兰氏阳性菌数量的增多和乳酸菌数量的减少有关[50]。同时,RYGB手术后小肠总长度的调整,为兼性厌氧菌的生长提供了有利条件[51]。Sánchez等人通过对比14例接受SG和14例接受RYGB的肥胖患者的粪便菌群与代谢产物,术后3个月发现RYGB相较于SG对肠道菌群的组成影响更大,SG的AkkermansiaEubacteriumHaemophilusBlautia水平较高,而VeillonellaSlackiaGranucatiellaAcidaminococcus在RYGB中的水平更高,其中Blautia属是SG的特征,而Veillonella是RYGB的特征[52]。Coimbra等人研究表明,RYGB后观察到较高比例的Actinobacteria,但在SG手术中未观察到同样的情况[49]

BMS对肠道微生物群落的组成产生显著影响,这种变化不仅重塑了肠道内环境,还可能通过肠-脑轴对宿主的生理和代谢状态产生重要影响。手术后,特定的微生物如Enterococcus spp.数量增加,这些微生物能够促进γ-氨基丁酸与SCFAs的生成[53] [54]。GABA作为一种神经活性物质,对肠道蠕动具有调节作用,进而影响食物在肠道中的传输和消化,对食欲和能量摄取产生间接影响。而SCFAs在维持肠道屏障完整性方面具有重要的抗炎作用。此外,在RYGB和SG后,AggregatibacterLachnospiraceaeRothiaRuminococcaceaeStreptococcus等SCFAs产生菌的增加,有助于减轻术后的炎症状态,改善NAFLD。

研究表明,NAFLD患者的血浆中初级胆汁酸(Primary Bile Acids, PBAs)与次级胆汁酸(Secondary Bile Acids, SBAs)的比值较健康人群显著升高,并且这一比值与NAFLD的严重程度相关[55]。BMS能够持续降低PBAs/SBA的比值,这可能与其改善NAFLD患者代谢状况的效果有关[56]。RYGB通过绕过胃和十二指肠的某些部分,减少了胆汁酸的消耗,并加速了它们到达下肠道的过程。这种解剖学上的改变影响了胆汁酸的肠肝循环,进而可能改善接受手术的患者的糖代谢和脂代谢。肠道菌群与胆汁酸之间的相互作用通过肠肝循环实现,菌群不仅促进胆汁酸的重吸收,还受到胆汁酸水平的调控[57]。胆汁酸进入肠道后,可以直接调节肠道菌群,也可以通过激活肠上皮细胞中的法尼X受体和G蛋白偶联胆汁酸受体1,来促进肠黏膜保护基因的表达,并通过信号转导途径间接调节肠道微生物的组成[58]。由此可见,BMS可以通过改变腔内回肠环境,导致肠道菌群显著重新繁殖,循环PBAs/SBA比值逆转,从而改善NAFLD。

5. 总结

当前的文献支持BMS通过改变肠道菌群结构和功能,以及影响胆汁酸循环,对NAFLD具有积极治疗作用,但这些发现大多基于短期研究和动物实验。未来的研究应集中于长期随访研究,以评估BMS后NAFLD患者的长期预后,以及探索BMS如何通过肠–肝轴影响肝脏健康。此外,肠道微生物群与NAFLD之间的相互作用是一个新兴的研究领域,需要更多的临床试验来揭示特定微生物群如何影响NAFLD的发展和治疗。未来的研究还应考虑个体差异,如遗传背景和生活方式因素,以及它们如何与肠道微生物群相互作用,共同影响NAFLD的治疗效果。

基金项目

内蒙古医科大学联合项目(YKD2023LH046)。

NOTES

*通讯作者。

参考文献

[1] Younossi, Z.M. (2019) Non-Alcoholic Fatty Liver Disease—A Global Public Health Perspective. Journal of Hepatology, 70, 531-544.
https://doi.org/10.1016/j.jhep.2018.10.033
[2] Younossi, Z.M., Golabi, P., Paik, J.M., Henry, A., Van Dongen, C. and Henry, L. (2023) The Global Epidemiology of Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review. Hepatology, 77, 1335-1347.
https://doi.org/10.1097/hep.0000000000000004
[3] Estes, C., Anstee, Q.M., Arias-Loste, M.T., Bantel, H., Bellentani, S., Caballeria, J., et al. (2018) Modeling NAFLD Disease Burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the Period 2016-2030. Journal of Hepatology, 69, 896-904.
https://doi.org/10.1016/j.jhep.2018.05.036
[4] Mantovani, A., Scorletti, E., Mosca, A., Alisi, A., Byrne, C.D. and Targher, G. (2020) Complications, Morbidity and Mortality of Nonalcoholic Fatty Liver Disease. Metabolism, 111, Article 154170.
https://doi.org/10.1016/j.metabol.2020.154170
[5] Lassailly, G., Caiazzo, R., Buob, D., Pigeyre, M., Verkindt, H., Labreuche, J., et al. (2015) Bariatric Surgery Reduces Features of Nonalcoholic Steatohepatitis in Morbidly Obese Patients. Gastroenterology, 149, 379-388.
https://doi.org/10.1053/j.gastro.2015.04.014
[6] Bell, L.N., Temm, C.J., Saxena, R., Vuppalanchi, R., Schauer, P., Rabinovitz, M., et al. (2010) Bariatric Surgery-Induced Weight Loss Reduces Hepatic Lipid Peroxidation Levels and Affects Hepatic Cytochrome P-450 Protein Content. Annals of Surgery, 251, 1041-1048.
https://doi.org/10.1097/sla.0b013e3181dbb572
[7] Mathurin, P., Hollebecque, A., Arnalsteen, L., Buob, D., Leteurtre, E., Caiazzo, R., et al. (2009) Prospective Study of the Long-Term Effects of Bariatric Surgery on Liver Injury in Patients without Advanced Disease. Gastroenterology, 137, 532-540.
https://doi.org/10.1053/j.gastro.2009.04.052
[8] Mummadi, R.R., Kasturi, K.S., Chennareddygari, S. and Sood, G.K. (2008) Effect of Bariatric Surgery on Nonalcoholic Fatty Liver Disease: Systematic Review and Meta-Analysis. Clinical Gastroenterology and Hepatology, 6, 1396-1402.
https://doi.org/10.1016/j.cgh.2008.08.012
[9] Lee, Y., Doumouras, A.G., Yu, J., Brar, K., Banfield, L., Gmora, S., et al. (2019) Complete Resolution of Nonalcoholic Fatty Liver Disease after Bariatric Surgery: A Systematic Review and Meta-Analysis. Clinical Gastroenterology and Hepatology, 17, 1040-1060.e11.
https://doi.org/10.1016/j.cgh.2018.10.017
[10] Lassailly, G., Caiazzo, R., Ntandja-Wandji, L., Gnemmi, V., Baud, G., Verkindt, H., et al. (2020) Bariatric Surgery Provides Long-Term Resolution of Nonalcoholic Steatohepatitis and Regression of Fibrosis. Gastroenterology, 159, 1290-1301.e5.
https://doi.org/10.1053/j.gastro.2020.06.006
[11] 杨华, 陈缘, 董志勇, 等. 中国肥胖代谢外科数据库: 2020年度报告[J]. 中华肥胖与代谢病电子杂志, 2021, 7(1): 1-7.
[12] Seeberg, K.A., Borgeraas, H., Hofsø, D., Småstuen, M.C., Kvan, N.P., Grimnes, J.O., et al. (2022) Gastric Bypass versus Sleeve Gastrectomy in Type 2 Diabetes: Effects on Hepatic Steatosis and Fibrosis. Annals of Internal Medicine, 175, 74-83.
https://doi.org/10.7326/m21-1962
[13] Hofsø, D., Fatima, F., Borgeraas, H., Birkeland, K.I., Gulseth, H.L., Hertel, J.K., et al. (2019) Gastric Bypass versus Sleeve Gastrectomy in Patients with Type 2 Diabetes (Oseberg): A Single-Centre, Triple-Blind, Randomised Controlled Trial. The Lancet Diabetes & Endocrinology, 7, 912-924.
https://doi.org/10.1016/s2213-8587(19)30344-4
[14] Srivastava, A., Stevenson, M., Lee, J., Hall, C., Palaia, T., Zhao, C.L., et al. (2022) Reversal of NAFLD after VSG Is Independent of Weight-Loss but RYGB Offers More Efficacy When Maintained on a High-Fat Diet. Obesity Surgery, 32, 2010-2022.
https://doi.org/10.1007/s11695-022-06053-5
[15] Furuya, C.K., De Oliveira, C.P.M.S., De Mello, E.S., Faintuch, J., Raskovski, A., Matsuda, M., et al. (2007) Effects of Bariatric Surgery on Nonalcoholic Fatty Liver Disease: Preliminary Findings after 2 Years. Journal of Gastroenterology and Hepatology, 22, 510-514.
https://doi.org/10.1111/j.1440-1746.2007.04833.x
[16] Praveen Raj, P., Gomes, R.M., Kumar, S., Senthilnathan, P., Karthikeyan, P., Shankar, A., et al. (2015) The Effect of Surgically Induced Weight Loss on Nonalcoholic Fatty Liver Disease in Morbidly Obese Indians: “NASHOST” Prospective Observational Trial. Surgery for Obesity and Related Diseases, 11, 1315-1322.
https://doi.org/10.1016/j.soard.2015.02.006
[17] Wree, A., Schlattjan, M., Bechmann, L.P., Claudel, T., Sowa, J., Stojakovic, T., et al. (2014) Adipocyte Cell Size, Free Fatty Acids and Apolipoproteins Are Associated with Non-Alcoholic Liver Injury Progression in Severely Obese Patients. Metabolism, 63, 1542-1552.
https://doi.org/10.1016/j.metabol.2014.09.001
[18] Wang, G., Wang, Y., Bai, J., Li, G., Liu, Y., Deng, S., et al. (2023) Increased Plasma Genistein after Bariatric Surgery Could Promote Remission of NAFLD in Patients with Obesity. Frontiers in Endocrinology, 13, Article 1024769.
https://doi.org/10.3389/fendo.2022.1024769
[19] Liou, A.P., Paziuk, M., Luevano, J., Machineni, S., Turnbaugh, P.J. and Kaplan, L.M. (2013) Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Adiposity. Science Translational Medicine, 5, 178ra41.
https://doi.org/10.1126/scitranslmed.3005687
[20] Pérez-Rubio, Á., Soluyanova, P., Moro, E., Quintás, G., Rienda, I., Periañez, M.D., et al. (2023) Gut Microbiota and Plasma Bile Acids Associated with Non-Alcoholic Fatty Liver Disease Resolution in Bariatric Surgery Patients. Nutrients, 15, Article 3187.
https://doi.org/10.3390/nu15143187
[21] Buzzetti, E., Pinzani, M. and Tsochatzis, E.A. (2016) The Multiple-Hit Pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD). Metabolism, 65, 1038-1048.
https://doi.org/10.1016/j.metabol.2015.12.012
[22] Le Roy, T., Llopis, M., Lepage, P., Bruneau, A., Rabot, S., Bevilacqua, C., et al. (2012) Intestinal Microbiota Determines Development of Non-Alcoholic Fatty Liver Disease in Mice. Gut, 62, 1787-1794.
https://doi.org/10.1136/gutjnl-2012-303816
[23] Hoyles, L., Fernández-Real, J., Federici, M., Serino, M., Abbott, J., Charpentier, J., et al. (2018) Molecular Phenomics and Metagenomics of Hepatic Steatosis in Non-Diabetic Obese Women. Nature Medicine, 24, 1070-1080.
https://doi.org/10.1038/s41591-018-0061-3
[24] Kolodziejczyk, A.A., Zheng, D., Shibolet, O. and Elinav, E. (2018) The Role of the Microbiome in NAFLD and NASH. EMBO Molecular Medicine, 11, e9302.
https://doi.org/10.15252/emmm.201809302
[25] Ke, Z., Huang, Y., Xu, J., Liu, Y., Zhang, Y., Wang, Y., et al. (2024) Escherichia coli NF73-1 Disrupts the Gut-Vascular Barrier and Aggravates High-Fat Diet-Induced Fatty Liver Disease via Inhibiting Wnt/β-Catenin Signalling Pathway. Liver International, 44, 776-790.
https://doi.org/10.1111/liv.15823
[26] Ridlon, J.M., Kang, D.J., Hylemon, P.B. and Bajaj, J.S. (2014) Bile Acids and the Gut Microbiome. Current Opinion in Gastroenterology, 30, 332-338.
https://doi.org/10.1097/mog.0000000000000057
[27] Leung, C., Rivera, L., Furness, J.B. and Angus, P.W. (2016) The Role of the Gut Microbiota in NAFLD. Nature Reviews Gastroenterology & Hepatology, 13, 412-425.
https://doi.org/10.1038/nrgastro.2016.85
[28] Shen, F., Zheng, R., Sun, X., Ding, W., Wang, X. and Fan, J. (2017) Gut Microbiota Dysbiosis in Patients with Non-Alcoholic Fatty Liver Disease. Hepatobiliary & Pancreatic Diseases International, 16, 375-381.
https://doi.org/10.1016/s1499-3872(17)60019-5
[29] Raman, M., Ahmed, I., Gillevet, P.M., Probert, C.S., Ratcliffe, N.M., Smith, S., et al. (2013) Fecal Microbiome and Volatile Organic Compound Metabolome in Obese Humans with Nonalcoholic Fatty Liver Disease. Clinical Gastroenterology and Hepatology, 11, 868-875.e3.
https://doi.org/10.1016/j.cgh.2013.02.015
[30] Wang, B., Jiang, X., Cao, M., Ge, J., Bao, Q., Tang, L., et al. (2016) Altered Fecal Microbiota Correlates with Liver Biochemistry in Nonobese Patients with Non-Alcoholic Fatty Liver Disease. Scientific Reports, 6, Article No. 32002.
https://doi.org/10.1038/srep32002
[31] Zhu, L., Baker, S.S., Gill, C., Liu, W., Alkhouri, R., Baker, R.D., et al. (2013) Characterization of Gut Microbiomes in Nonalcoholic Steatohepatitis (NASH) Patients: A Connection between Endogenous Alcohol and Nash. Hepatology, 57, 601-609.
https://doi.org/10.1002/hep.26093
[32] Del Chierico, F., Nobili, V., Vernocchi, P., Russo, A., De Stefanis, C., Gnani, D., et al. (2016) Gut Microbiota Profiling of Pediatric Nonalcoholic Fatty Liver Disease and Obese Patients Unveiled by an Integrated Meta-Omics-Based Approach. Hepatology, 65, 451-464.
https://doi.org/10.1002/hep.28572
[33] Su, X., Chen, S., Liu, J., Feng, Y., Han, E., Hao, X., et al. (2023) Composition of Gut Microbiota and Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Obesity Reviews, 25, e13646.
https://doi.org/10.1111/obr.13646
[34] Boursier, J., Mueller, O., Barret, M., Machado, M., Fizanne, L., Araujo-Perez, F., et al. (2016) The Severity of Nonalcoholic Fatty Liver Disease Is Associated with Gut Dysbiosis and Shift in the Metabolic Function of the Gut Microbiota. Hepatology, 63, 764-775.
https://doi.org/10.1002/hep.28356
[35] Loomba, R., Seguritan, V., Li, W., Long, T., Klitgord, N., Bhatt, A., et al. (2017) Gut Microbiome-Based Metagenomic Signature for Non-Invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metabolism, 25, 1054-1062.e5.
https://doi.org/10.1016/j.cmet.2017.04.001
[36] Canivet, C.M., David, N., Pailhoriès, H., Briand, M., Guy, C.D., Bouchez, O., et al. (2021) Cross-Linkage between Bacterial Taxonomy and Gene Functions: A Study of Metagenome-Assembled Genomes of Gut Microbiota in Adult Non-Alcoholic Fatty Liver Disease. Alimentary Pharmacology & Therapeutics, 53, 722-732.
https://doi.org/10.1111/apt.16262
[37] Nian, F., Wu, L., et al. (2023) Akkermansia muciniphila and Bifidobacterium bifidum Prevent NAFLD by Regulating FXR Expression and Gut Microbiota. Journal of Clinical and Translational Hepatology, 11, Article 763.
[38] Han, Y., Ling, Q., Wu, L., Wang, X., Wang, Z., Chen, J., et al. (2023) Akkermansia muciniphila inhibits Nonalcoholic Steatohepatitis by Orchestrating Tlr2-Activated Γδt17 Cell and Macrophage Polarization. Gut Microbes, 15, Article 2221485.
https://doi.org/10.1080/19490976.2023.2221485
[39] Lee, H., Do, M., Jhun, H., Ha, S., Song, H., Roh, S., et al. (2021) Amelioration of Hepatic Steatosis in Mice through Bacteroides Uniformis Cba7346-Mediated Regulation of High-Fat Diet-Induced Insulin Resistance and Lipogenesis. Nutrients, 13, Article 2989.
https://doi.org/10.3390/nu13092989
[40] Huang, Y., Cao, J., Zhu, M., Wang, Z., Jin, Z. and Xiong, Z. (2024) Bacteroides fragilis Aggravates High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease by Regulating Lipid Metabolism and Remodeling Gut Microbiota. Microbiology Spectrum, 12, e03393-23.
https://doi.org/10.1128/spectrum.03393-23
[41] Ni, Y., Qian, L., Siliceo, S.L., Long, X., Nychas, E., Liu, Y., et al. (2023) Resistant Starch Decreases Intrahepatic Triglycerides in Patients with NAFLD via Gut Microbiome Alterations. Cell Metabolism, 35, 1530-1547.e8.
https://doi.org/10.1016/j.cmet.2023.08.002
[42] Shi, Y., Chen, J., Qu, D., Sun, Q., Yu, Y., Zhang, H., et al. (2024) Ginsenoside Rg5 Activates the LKB1/AMPK/mTOR Signaling Pathway and Modifies the Gut Microbiota to Alleviate Nonalcoholic Fatty Liver Disease Induced by a High-Fat Diet. Nutrients, 16, Article 842.
https://doi.org/10.3390/nu16060842
[43] Xue, L., Deng, Z., Luo, W., He, X. and Chen, Y. (2022) Effect of Fecal Microbiota Transplantation on Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Frontiers in Cellular and Infection Microbiology, 12, Article 759306.
https://doi.org/10.3389/fcimb.2022.759306
[44] Dong, T.S., Katzka, W., Yang, J.C., Chang, C., Arias-Jayo, N., Lagishetty, V., et al. (2023) Microbial Changes from Bariatric Surgery Alters Glucose-Dependent Insulinotropic Polypeptide and Prevents Fatty Liver Disease. Gut Microbes, 15, Article 2167170.
https://doi.org/10.1080/19490976.2023.2167170
[45] Chen, G., Zhuang, J., Cui, Q., Jiang, S., Tao, W., Chen, W., et al. (2020) Two Bariatric Surgical Procedures Differentially Alter the Intestinal Microbiota in Obesity Patients. Obesity Surgery, 30, 2345-2361.
https://doi.org/10.1007/s11695-020-04494-4
[46] Faria, S.L., Santos, A., Magro, D.O., Cazzo, E., Assalin, H.B., Guadagnini, D., et al. (2020) Gut Microbiota Modifications and Weight Regain in Morbidly Obese Women after Roux-En-Y Gastric Bypass. Obesity Surgery, 30, 4958-4966.
https://doi.org/10.1007/s11695-020-04956-9
[47] Ilhan, Z.E., DiBaise, J.K., Dautel, S.E., Isern, N.G., Kim, Y., Hoyt, D.W., et al. (2020) Temporospatial Shifts in the Human Gut Microbiome and Metabolome after Gastric Bypass Surgery. npj Biofilms and Microbiomes, 6, Article No. 12.
https://doi.org/10.1038/s41522-020-0122-5
[48] Lu, C., Li, Y., Li, L., Kong, Y., Shi, T., Xiao, H., et al. (2020) Alterations of Serum Uric Acid Level and Gut Microbiota after Roux-En-Y Gastric Bypass and Sleeve Gastrectomy in a Hyperuricemic Rat Model. Obesity Surgery, 30, 1799-1807.
https://doi.org/10.1007/s11695-019-04328-y
[49] Sanchez-Carrillo, S., Ciordia, S., Rojo, D., Zubeldia-Varela, E., Méndez-García, C., Martínez-Martínez, M., et al. (2021) A Body Weight Loss-and Health-Promoting Gut Microbiota Is Established after Bariatric Surgery in Individuals with Severe Obesity. Journal of Pharmaceutical and Biomedical Analysis, 193, Article 113747.
https://doi.org/10.1016/j.jpba.2020.113747
[50] Furet, J., Kong, L., Tap, J., Poitou, C., Basdevant, A., Bouillot, J., et al. (2010) Differential Adaptation of Human Gut Microbiota to Bariatric Surgery-Induced Weight Loss. Diabetes, 59, 3049-3057.
https://doi.org/10.2337/db10-0253
[51] Zhang, H., DiBaise, J.K., Zuccolo, A., Kudrna, D., Braidotti, M., Yu, Y., et al. (2009) Human Gut Microbiota in Obesity and after Gastric Bypass. Proceedings of the National Academy of Sciences, 106, 2365-2370.
https://doi.org/10.1073/pnas.0812600106
[52] Sánchez-Alcoholado, L., Gutiérrez-Repiso, C., Gómez-Pérez, A.M., García-Fuentes, E., Tinahones, F.J. and Moreno-Indias, I. (2019) Gut Microbiota Adaptation after Weight Loss by Roux-En-Y Gastric Bypass or Sleeve Gastrectomy Bariatric Surgeries. Surgery for Obesity and Related Diseases, 15, 1888-1895.
https://doi.org/10.1016/j.soard.2019.08.551
[53] Seyfried, F., Phetcharaburanin, J., Glymenaki, M., Nordbeck, A., Hankir, M., Nicholson, J.K., et al. (2021) Roux-en-Y Gastric Bypass Surgery in Zucker Rats Induces Bacterial and Systemic Metabolic Changes Independent of Caloric Restriction-Induced Weight Loss. Gut Microbes, 13, Article 1875108.
https://doi.org/10.1080/19490976.2021.1875108
[54] Koh, A., De Vadder, F., Kovatcheva-Datchary, P. and Bäckhed, F. (2016) From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165, 1332-1345.
https://doi.org/10.1016/j.cell.2016.05.041
[55] Puri, P., Daita, K., Joyce, A., Mirshahi, F., Santhekadur, P.K., Cazanave, S., et al. (2017) The Presence and Severity of Nonalcoholic Steatohepatitis Is Associated with Specific Changes in Circulating Bile Acids. Hepatology, 67, 534-548.
https://doi.org/10.1002/hep.29359
[56] Talavera-Urquijo, E., Beisani, M., Balibrea, J.M. and Alverdy, J.C. (2020) Is Bariatric Surgery Resolving NAFLD via Microbiota-Mediated Bile Acid Ratio Reversal? A Comprehensive Review. Surgery for Obesity and Related Diseases, 16, 1361-1369.
https://doi.org/10.1016/j.soard.2020.03.013
[57] Cerreto, M., Santopaolo, F., Gasbarrini, A., Pompili, M. and Ponziani, F. (2021) Bariatric Surgery and Liver Disease: General Considerations and Role of the Gut-Liver Axis. Nutrients, 13, Article 2649.
https://doi.org/10.3390/nu13082649
[58] Jia, W., Xie, G. and Jia, W. (2017) Bile Acid-Microbiota Crosstalk in Gastrointestinal Inflammation and Carcinogenesis. Nature Reviews Gastroenterology & Hepatology, 15, 111-128.
https://doi.org/10.1038/nrgastro.2017.119