多不饱和脂肪酸跨血脑屏障转运机制及其对抑郁症潜在影响的研究进展
Research Progress on the Transport Mechanism of Polyunsaturated Fatty Acids across the Blood-Brain Barrier and Their Potential Impact on Depression
DOI: 10.12677/acm.2024.1482292, PDF, HTML, XML,   
作者: 张 玲:莱阳市中医医院药剂科,山东 烟台;张 恒:菏泽市定陶区疾控中心传防科,山东 菏泽;陈 琦*:菏泽市定陶区人民医院药剂科,山东 菏泽;徐嘉林*:曹县人民医院药学部,山东 菏泽
关键词: 多不饱和脂肪酸血脑屏障n-3多不饱和脂肪酸抑郁症研究进展Polyunsaturated Fatty Acids Blood-Brain Barrier n-3 Polyunsaturated Fatty Acids Depression Research Progress
摘要: 多不饱和脂肪酸(Polyunsaturated Fatty Acid, PUFA)在大脑发育和功能中发挥着不可或缺的作用。近年来,PUFA与神经系统疾病之间的关系备受关注,尤其是其对血脑屏障(Blood-Brain Barrier, BBB)功能的影响。研究发现,PUFA状态的异常与多种神经精神疾病如重度抑郁症、双相情感障碍、精神分裂症、阿尔茨海默病和注意缺陷多动障碍等密切相关。本文综述了当前关于PUFA通过BBB进入中枢神经系统(Central Nervous System, CNS)的转运机制的研究进展,并探讨了n-3 PUFA与抑郁症之间的潜在关系。
Abstract: Polyunsaturated Fatty Acids (PUFAs) play an indispensable role in brain development and function. In recent years, the relationship between PUFAs and neurological disorders has garnered significant attention, particularly their influence on Blood-Brain Barrier (BBB) function. Research has revealed that aberrant PUFA status is closely associated with various neuropsychiatric disorders, including major depressive disorder, bipolar disorder, schizophrenia, Alzheimer’s disease, and attention-deficit/hyperactivity disorder. This review summarizes the current advancements in the study of PUFA transport mechanisms through the BBB into the Central Nervous System (CNS) and explores the potential relationship between n-3 PUFAs and depression.
文章引用:张玲, 张恒, 陈琦, 徐嘉林. 多不饱和脂肪酸跨血脑屏障转运机制及其对抑郁症潜在影响的研究进展[J]. 临床医学进展, 2024, 14(8): 844-852. https://doi.org/10.12677/acm.2024.1482292

1. 引言

随着对神经系统疾病机制的深入研究,外周血与脑组织之间的BBB以及血液与脑脊液之间的血–脑脊液屏障(Blood-Cerebrospinal Fluid Barrier, BCSFB)在维护大脑稳态、抵御有害物质侵袭方面的作用愈发显著。这些屏障不仅是神经系统的天然防御机制,更在调控营养物质进入大脑方面扮演着关键角色[1]。近年来,PUFA,特别是n-3 PUFA,在神经系统健康中的潜在价值受到了学术界的广泛关注。为了更全面地理解PUFAs如何在神经系统中发挥作用,探究其通过BBB的转运过程及其随后的生理效应显得尤为重要。因此,本综述旨在系统回顾PUFA跨血脑屏障的转运机制,并探讨这些机制与抑郁症潜在关联的研究进展,以期为相关领域的深入研究提供参考和启示。

2. PUFA的分类

人的大脑富含脂质,尤其是磷脂和胆固醇,分别占据了大脑脂质的24%和22% [2]。这些脂质是构成细胞膜的重要组分,在中枢神经系统(Central Nervous System, CNS)中的浓度异常高,几乎占据了大脑干重的一半。值得注意的是,脑脂质中有高达35%的比例是由PUFA所构成[3]。这类脂肪酸(Fatty Acid, FA)虽然人体无法直接通过2-碳片段来合成,但却是人体营养所不可或缺的[4]。从化学结构上来看,PUFA的特点是其分子中含有两个或更多的顺式双键。它们可以根据从碳链甲基(ω)端开始计数的第一个双键所在的碳原子位置,被进一步细分为n-3、n-6和n-9三个主要类别[5]。其中,n-3家族的PUFA主要包括α-亚麻酸(ALA, 18:3n-3)、二十碳五烯酸(EPA, 20:5n-3)和二十二碳六烯酸(DHA, 22:6n-3),而n-6家族的PUFA则主要包含了亚油酸(LA, 18:2n-6)和花生四烯酸(AA, 20:4n-6)。重要的是,这两大系列的FA在人体内并不能相互转化,且它们各自具有独特的生物学作用[6]。ALA和LA,分别作为n-3和n-6 PUFA的必需营养前体。在人体内,ALA通过一系列代谢步骤,在微粒体酶系统的作用下形成EPA和DHA。LA也可以经过一系列生化反应转化为AA [7]。值得一提的是,ALA和LA都是人体不可或缺的FA,但由于人体无法自行合成,因此必须通过食物来获取。同样地,当人体自身无法合成足够的EPA、DHA和AA时,这些重要的FA也必须通过饮食来补充[8]。在脑部的PUFA中,AA和DHA占据了主导地位,分别约占50%和40% [9]。其中,DHA作为最丰富的n-3 PUFA,在大脑和视网膜中的含量特别高,远超EPA数百倍[10]。而EPA在大脑中的浓度则相对较低,因为它会迅速通过β氧化作用进行分解[11]

n-3与n-6多PUFA家族在精神病学研究中占据重要地位。研究显示,在神经退行性或炎症性疾病患者中,n-6 PUFA与n-3 PUFA的比值呈现上升态势,而n-3 PUFA的浓度则显著降低[12]。这种体内FA比例的变化可能与这些疾病的病理机制密切相关。更深入的研究表明,n-3 PUFA摄入量减少或血液浓度降低与抑郁症及帕金森病发病风险的增加有直接联系[13]。值得注意的是,EPA不仅能有效减轻炎症反应,还能上调神经营养因子的表达,从而在抑郁症和精神分裂症的治疗中表现出显著疗效。然而,DHA并未展现出类似的治疗效果[14]。另外,Song C等[15]研究发现,富含AA的饮食可刺激小鼠的糖皮质激素分泌,并在高架十字迷宫测试中引发小鼠的焦虑样行为。综上所述,这些PUFA在大脑的发育、结构维护以及功能发挥中扮演着至关重要的角色。

3. BBB的结构和功能

众多前瞻性研究已证实,富含n-3 PUFA的饮食对于改善正常衰老进程中的认知功能以及预防神经认知疾病的发展具有显著效果[16] [17]。然而,目前科研界尚未明确阐述PUFA如何从血液传递至大脑[18]。在探讨这一问题时,我们必须考虑大脑的三个主要血脑界面,即BBB、BCSFB以及血蛛网膜屏障(Blood-Arachnoid Barrier, BAB)。其中,物质进出CNS主要依赖于BBB和BCSFB的调控[19]。值得注意的是,BAB在脂质运输与代谢中的具体作用目前仍不明确,相关研究也较为缺乏[20]。BBB作为脑组织与血液之间的关键细胞屏障,在维持CNS内环境稳定方面发挥着至关重要的作用。完全分化的BBB是由一个复杂的系统组成,包括高分化的内皮细胞及其下方的基底膜(其中嵌入了大量的周细胞)、血管周围的抗原呈递细胞,以及星形胶质细胞的终足及其相关的脑实质基底膜的包绕层[21]。该系统配备如葡萄糖转运体、有机阳离子转运体、P-糖蛋白及多药耐药相关蛋白等多种转运体,是BBB通透性低的关键因素,限制大分子如蛋白质和药物进入CNS,但允许水、电解质、葡萄糖等小分子自由通过[22]。这些细胞通过复杂的相互作用,动态地调控着BBB的功能,严格控制着物质在脑组织与血液之间的运输,确保其能够有效地保护大脑免受有害物质的侵害,同时允许必要的营养物质进入大脑[23]

4. PUFA通过血脑屏障的运输

关于PUFA穿越血脑屏障的机制,目前已知的主要有三种方式,分别是被动扩散、通过跨膜蛋白的运输以及胞吞作用[24]。具体而言,PUFA既可以被动地通过内皮膜扩散,也可以通过跨膜蛋白运输进入内皮细胞内。一旦进入BBB的内皮细胞,PUFA通过与脂肪酸结合蛋白(Fatty Acid Binding Protein, FABP)相结合,在细胞质中被运输,并最终被送达大脑[25]。另外,PUFA也可以通过脂肪酸转运蛋白(Fatty Acid Transport Proteins, FATPs)介导的胞吞作用直接运输到大脑,这一过程中涉及到初级内吞小泡或网格蛋白包被的囊泡[26]

血浆中的PUFA以酯化和非酯化(游离)两种形式存在,以各自独特的方式穿越血脑屏障。其中,血液中的非酯化PUFA通常与白蛋白结合形成复合物,以此方式穿越血脑屏障。为了能通过内皮细胞膜进行被动扩散,非酯化PUFA需要从白蛋白中解离出来。该过程包括吸附、跨膜运动和解吸三个步骤,且均不涉及与蛋白质或受体的结合[27]。Melissa Ouellet等[28]研究显示,放射性标记的DHA直接注入脑颈动脉后,仅有不到10%停留在脑血管内皮细胞,表明大部分DHA可穿越BBB。但DHA与白蛋白的结合可能阻碍其通过BBB,降低穿越效率。Strosznajder J等[29]研究发现,BBB对PUFA的通透性主要受三个关键因素影响:(1) PUFA对血液中循环的白蛋白的相对亲和力;(2) PUFA和白蛋白之间的分离率;(3) 内皮细胞和神经细胞对PUFA的代谢与利用。另外,关于非酯化PUFA的被动扩散机制,目前存在几种理论,包括翻转扩散(flip-flop)、FATPs的促进作用,或是这两种机制的结合。这些机制共同揭示了非酯化PUFA如何在生物体内实现有效的跨膜转运[30]

酯化的PUFA主要以三酰基甘油、胆固醇酯和磷脂的形式存在,与载脂蛋白共同构成血浆脂蛋白。Lacombe RJS等[27]的研究发现,当DHA被酯化为溶血磷脂胆碱-DHA (Lysophosphatidylcholine-DHA, LPC-DHA)时,其穿越BBB的效率显著提高。这一发现为PUFA通过酯化改性以增强其透过BBB的能力提供了有力证据。除了上述机制,Edmond还提出了PUFA的特异性转运模型。在该模型中,位于内皮细胞管腔膜上的脂蛋白受体,虽不与脑实质直接接触,却能让脂蛋白进入内皮细胞。内皮细胞随后处理这些脂蛋白,释放出PUFA,并将其转移至特定转运体。管腔膜外侧则存在多种转运体,如单羧酸转运体和FATPs [31]。因PUFA结构多样,故存在不同的FATPs进行选择性跨膜转运[32]。例如,FATP1是对胰岛素敏感的长链脂肪酸(Long-Chain Fatty Acids, LCFAs)转运体,FATP2主要存在于肝脏和肾脏皮质,而FATP4则定位于小肠上皮细胞顶端,负责吸收膳食脂质。研究显示,FATP4对摄取LCFAs和极长链脂肪酸至关重要,同时,FATP1也是大脑中的主要FATPs [33]-[36]。另外,LCFAs可通过FATP复合物直接穿越质膜,或与CD36结合后再由FATPs转运。低FA与白蛋白比值时,CD36的转运效率更高[37]。被内皮细胞摄入后,LCFAs迅速被长链脂酰辅酶A合成酶激活以防外排。同时,LCFAs和酰基辅酶A (Acyl Coenzyme A,Acyl-CoA)与FABP及Acyl-CoA结合蛋白的结合,有助于转运体和合成酶的卸载过程,并作为细胞内脂肪酸的缓冲[38]。要深入了解FATP介导的转运机制和蛋白在能量稳态中的作用,还需更多研究。

值得注意的是,Nguyen LN等[39]发现了主要促进剂超家族域包含蛋白2A (Major facilitator superfamily domain containing 2A, Mfsd2a),它是DHA进入大脑的主要转运体。这一发现改变了我们对PUFA如何通过血脑屏障运输的理解。Mfsd2a在大脑内皮细胞中表达,并能以溶血磷脂酰胆碱(Lysophosphatidylcholine, LPC)或磷脂酰胆碱的形式运输DHA。Mfsd2a的缺失对血脑屏障的发育和正常功能产生了重大影响[40]。在mfsd2a基因敲除的小鼠中,脑膜中的DHA水平显著降低,同时伴随着海马体和小脑神经元的丢失,以及小头畸形、认知缺陷和严重的焦虑[41]。此外,Mfsd2a还参与了脑内皮细胞脂质组成的调节,特别是维持DHA水平[42]

PUFA穿越BBB的另一途径是胞吞,具体包括网格蛋白依赖性和小泡介导的两种内吞方式。网格蛋白依赖性内吞依赖于网格蛋白外壳形成的囊泡,通过适配器蛋白识别并内化跨膜蛋白,将低密度脂蛋白(Low-Density Lipoprotein, LDL)送至溶酶体降解,释放胆固醇和PUFA,同时受体被回收至质膜。另一方面,小泡的形成依赖于胆固醇,并且这些小泡内含有特定的小泡蛋白,该类蛋白具有结合胆固醇的能力[43]。在BBB内皮细胞层面,已观测到这些结构中存在着LDL受体。这些受体能够通过质膜转移LDL,从而有效防止其发生降解[44]

5. PUFA对抑郁症的作用

抑郁症作为一种常见且易反复发作的衰弱性疾患,归属于情感或情绪失调类的精神和行为障碍。近十年来,PUFA在抑郁症中的作用逐渐成为研究焦点,特别是n-3 PUFA,被认为对抑郁症具有潜在的预防和治疗功效[45]。多项研究表明,膳食中n-3 PUFA的缺乏可能与情绪障碍的发病有关,抑郁症患者有较低的DHA和EPA水平。因此,合理补充n-3 PUFA可能为情绪障碍的治疗开辟新的途径[46] [47]。Lin PY等[48]研究发现,含有更高比例EPA的补充剂比富含DHA的补充剂对抑郁症的治疗更有效,尽管其具体机制仍有待阐明。Martins JG等[49]的研究揭示,在非大脑环境中,EPA和DHA的功能存在差异。EPA与其20-碳n-6同源物AA在与cPLA2α和COX-1的结合上存在竞争关系,且EPA是比DHA更强的PPARα激活剂。相反,DHA对脂质筏结构的影响更为显著。另外,n-6与n-3 PUFAs的比值,已成为评估个体PUFA状态的关键指标。在抑郁症患者中,n-6与n-3 PUFA的比值常呈现显著上升的趋势。Rizzo AM等[50]研究发现,高DHA水平、高总n-3 PUFA含量以及低n-6与n-3 PUFA的比值与抑郁症的风险显著降低相关。n-6与n-3 PUFA比值能够影响单胺能神经传递,进而对主要情绪障碍产生影响,包括影响精神障碍的改善以及认知功能的变化。此外,相对于n-6 PUFA的水平,较低的n-3 PUFA水平也与自杀企图和自杀风险的增加相关联。值得注意的是,相对于n-6 PUFA的水平,n-3 PUFA的较低含量与自杀企图及自杀风险的增加存在关联[51]。另外,Appleton KM等[52]研究发现,n-3 PUFA对于仅表现出轻度抑郁症状或尚未被确诊为抑郁症的个体而言,其效用并不显著。不过,也有研究表明,在患有严重抑郁症状或被明确诊断为抑郁症的个体中,n-3 PUFA展现出了一定的治疗益处[53]。然而,Bloch MH等[54]的研究揭示,相较于安慰剂,n-3 PUFA展现出轻微至中度的正面效应,但此种效应的强度对于患有重度抑郁症(Major Depressive Disorder, MDD)的患者而言,可能并不具备显著的临床意义。此外,先前的研究也表明,n-3 PUFA对于MDD的改善作用较为微弱且不显著[55]

n-3 PUFA与抑郁症之间的潜在联系,可能归因于这些必需FA的低摄入与遗传因素导致的磷脂代谢异常之间的复杂交互作用。具体而言,这种交互可能导致细胞对n-3 PUFA的摄取能力下降[56]。进一步的研究表明,细胞对n-3 PUFA摄取的减少与脂肪酸辅酶A脂肪酶4以及/或者IV型磷脂酶A2的活性减弱有显著关联。值得注意的是,这些酶编码基因的功能性低变异均与MDD的发病风险增加密切相关[57]。另外,有研究认为,抑郁症状的严重程度与炎性因子相关。抑郁症患者的血浆中抗炎细胞因子白细胞介素-4、白细胞介素-10和TGF1水平降低,而大脑小胶质细胞产生的促炎细胞因子则改变5-羟色胺代谢,并降低海马神经突触可塑性[58]。n-3 PUFA通过多方面机制对炎性因子产生显著影响。它能够置换细胞膜上的AA,抑制炎性介质的产生,并通过改变细胞膜流动性来调控信号传导[59]。此外,n-3 PUFA还能影响基因表达,抑制前炎症因子的产生,并发挥神经保护与抗炎作用。更重要的是,n-3 PUFA能降低特定炎性因子如TNF-α和白细胞介素-6的水平,从而可能改善抑郁症患者的症状[60]。另外,n-3 PUFA还通过增强g蛋白介导的信号转导、膜结合酶(Na+/K+-ATPase)和蛋白激酶C来调节信号转导[61]

总之,PUFA在精神疾病预防方面的潜在效用还有待深入探究。从现有的研究来看,PUFA的作用可能是多方面的:它不仅可能通过维护和增强大脑结构、与磷脂代谢相互作用以保持大脑功能,进而调节信号传导;同时,它还可能预防或减少抑郁状态下的炎症反应[62]。现有大量证据显示,长链n-3 FA (Long-Chain n-3 Polyunsaturated Fatty Acids, LCn-3)的缺乏与不同精神疾病的病理生理进展机制有关,这种缺乏可能增加包括自杀和心血管疾病在内的过早死亡风险[63] [64]。新研究显示,LCn-3脂肪酸能增强抗抑郁药和情绪稳定剂的治疗效果。n-3 PUFA可能通过改善血脑屏障功能等途径,在抑郁症治疗中发挥积极作用,展现出良好的应用潜力。因此,由于n-3 PUFA脂肪酸具有长期安全使用的记录,且总体成本效益比高,这为将其纳入精神疾病治疗方案提供了有力支持[65] [66]。然而,目前临床研究结果并不统一,仍需要大规模的临床研究来进一步验证。同时,关于PUFA的最佳剂量、不同类型PUFA的理想比例以及给药时间等问题,也有待深入探究。

6. 小结

PUFA对神经系统健康的影响已成为当代研究的焦点。随着对PUFA与神经系统疾病关系的深入探索,我们逐渐认识到PUFA在维持BBB功能及CNS稳态中的关键作用。PUFA可通过改善BBB功能等机制,对抑郁症的治疗产生积极作用,具有良好的应用前景。本文系统综述了PUFA跨BBB转运的最新研究进展,揭示了其通过被动扩散、跨膜蛋白运输及胞吞作用等多种方式进入CNS的复杂机制。这些发现不仅增进了我们对PUFA在神经系统中作用的理解,而且为开发针对神经精神疾病的创新疗法提供了理论基础。鉴于神经系统疾病的普遍性和当前治疗方法的局限性,未来对PUFA在神经保护和疾病治疗中的潜力的深入研究显得尤为紧迫和重要。

NOTES

*通讯作者。

参考文献

[1] Abbott, N.J., Patabendige, A.A.K., Dolman, D.E.M., Yusof, S.R. and Begley, D.J. (2010) Structure and Function of the Blood-Brain Barrier. Neurobiology of Disease, 37, 13-25.
https://doi.org/10.1016/j.nbd.2009.07.030
[2] Svennerholm, L., Boström, K. and Jungbjer, B. (1997) Changes in Weight and Compositions of Major Membrane Components of Human Brain during the Span of Adult Human Life of Swedes. Acta Neuropathologica, 94, 345-352.
https://doi.org/10.1007/s004010050717
[3] Liu, J.J., Green, P., John Mann, J., Rapoport, S.I. and Sublette, M.E. (2015) Pathways of Polyunsaturated Fatty Acid Utilization: Implications for Brain Function in Neuropsychiatric Health and Disease. Brain Research, 1597, 220-246.
https://doi.org/10.1016/j.brainres.2014.11.059
[4] Clandinin, M.T., Jumpsen, J. and Suh, M. (1994) Relationship between Fatty Acid Accretion, Membrane Composition, and Biologic Functions. The Journal of Pediatrics, 125, S25-S32.
https://doi.org/10.1016/s0022-3476(6)80733-x
[5] Benatti, P., Peluso, G., Nicolai, R. and Calvani, M. (2004) Polyunsaturated Fatty Acids: Biochemical, Nutritional and Epigenetic Properties. Journal of the American College of Nutrition, 23, 281-302.
https://doi.org/10.1080/07315724.2004.10719371
[6] 苏健光, 刘景芳. n-3多不饱和脂肪酸与血脑屏障的关系[J]. 医学综述, 2016, 22(3): 424-427.
[7] Singh, M. (2005) Essential Fatty Acids, DHA and Human Brain. The Indian Journal of Pediatrics, 72, 239-242.
https://doi.org/10.1007/bf02859265
[8] Han, X. and Gross, R.W. (2022) The Foundations and Development of Lipidomics. Journal of Lipid Research, 63, Article 100164.
https://doi.org/10.1016/j.jlr.2021.100164
[9] Chen, C.T. and Bazinet, R.P. (2015) Β-Oxidation and Rapid Metabolism, but Not Uptake Regulate Brain Eicosapentaenoic Acid Levels. Prostaglandins, Leukotrienes and Essential Fatty Acids, 92, 33-40.
https://doi.org/10.1016/j.plefa.2014.05.007
[10] Mori, K., Kuroha, S., Hou, J., et al. (2022) Lipidomic Analysis Revealed n-3 Polyunsaturated Fatty Acids Suppressed Choroidal Thinning and Myopia Progression in Mice. The FASEB Journal, 36, e22312.
https://doi.org/10.1096/fj.202101947R
[11] Pan, M., Zhao, F., Xie, B., Wu, H., Zhang, S., Ye, C., et al. (2021) Dietary Ω-3 Polyunsaturated Fatty Acids Are Protective for Myopia. Proceedings of the National Academy of Sciences, 118, e2104689118.
https://doi.org/10.1073/pnas.2104689118
[12] Maes, M., Smith, R., Christophe, A., Cosyns, P., Desnyder, R. and Meltzer, H. (1996) Fatty Acid Composition in Major Depression: Decreased Ω3 Fractions in Cholesteryl Esters and Increased C20:4ω6C20:5ω3 Ratio in Cholesteryl Esters and Phospholipids. Journal of Affective Disorders, 38, 35-46.
https://doi.org/10.1016/0165-0327(95)00092-5
[13] de Lau, L.M.L., Bornebroek, M., Witteman, J.C.M., Hofman, A., Koudstaal, P.J. and Breteler, M.M.B. (2005) Dietary Fatty Acids and the Risk of Parkinson Disease. Neurology, 64, 2040-2045.
https://doi.org/10.1212/01.wnl.0000166038.67153.9f
[14] Song, C., Manku, M.S. and Horrobin, D.F. (2008) Long-Chain Polyunsaturated Fatty Acids Modulate Interleukin-1β—Induced Changes in Behavior, Monoaminergic Neurotransmitters, and Brain Inflammation in Rats. The Journal of Nutrition, 138, 954-963.
https://doi.org/10.1093/jn/138.5.954
[15] Song, C., Phillips, A.G., Leonard, B.E. and Horrobin, D.F. (2003) Ethyl-Eicosapentaenoic Acid Ingestion Prevents Corticosterone-Mediated Memory Impairment Induced by Central Administration of Interleukin-1β in Rats. Molecular Psychiatry, 9, 630-638.
https://doi.org/10.1038/sj.mp.4001462
[16] Denis, I., Potier, B., Vancassel, S., Heberden, C. and Lavialle, M. (2013) Omega-3 Fatty Acids and Brain Resistance to Ageing and Stress: Body of Evidence and Possible Mechanisms. Ageing Research Reviews, 12, 579-594.
https://doi.org/10.1016/j.arr.2013.01.007
[17] Wysoczański, T., Sokoła-Wysoczańska, E., Pękala, J., Lochyński, S., Czyż, K., Bodkowski, R., et al. (2016) Omega-3 Fatty Acids and Their Role in Central Nervous System—A Review. Current Medicinal Chemistry, 23, 816-831.
https://doi.org/10.2174/0929867323666160122114439
[18] Cater, R.J., Chua, G.L., Erramilli, S.K., Keener, J.E., Choy, B.C., Tokarz, P., et al. (2021) Structural Basis of Omega-3 Fatty Acid Transport across the Blood-Brain Barrier. Nature, 595, 315-319.
https://doi.org/10.1038/s41586-021-03650-9
[19] Engelhardt, B. and Sorokin, L. (2009) The Blood-Brain and the Blood-Cerebrospinal Fluid Barriers: Function and Dysfunction. Seminars in Immunopathology, 31, 497-511.
https://doi.org/10.1007/s00281-009-0177-0
[20] Galea, I. and Perry, V.H. (2018) The Blood-Brain Interface: A Culture Change. Brain, Behavior, and Immunity, 68, 11-16.
https://doi.org/10.1016/j.bbi.2017.10.014
[21] Alahmari, A. (2021) Blood-Brain Barrier Overview: Structural and Functional Correlation. Neural Plasticity, 2021, Article 6564585.
https://doi.org/10.1155/2021/6564585
[22] Vieira, D. and Gamarra, L. (2016) Getting into the Brain: Liposome-Based Strategies for Effective Drug Delivery across the Blood-Brain Barrier. International Journal of Nanomedicine, 11, 5381-5414.
https://doi.org/10.2147/ijn.s117210
[23] Tietz, S. and Engelhardt, B. (2015) Brain Barriers: Crosstalk between Complex Tight Junctions and Adherens Junctions. Journal of Cell Biology, 209, 493-506.
https://doi.org/10.1083/jcb.201412147
[24] Pifferi, F., Laurent, B. and Plourde, M. (2021) Lipid Transport and Metabolism at the Blood-Brain Interface: Implications in Health and Disease. Frontiers in Physiology, 12, Article 645646.
https://doi.org/10.3389/fphys.2021.645646
[25] Hamilton, J.A. and Brunaldi, K. (2007) A Model for Fatty Acid Transport into the Brain. Journal of Molecular Neuroscience, 33, 12-17.
https://doi.org/10.1007/s12031-007-0050-3
[26] Smith, C.J. (1998) Clathrin Coats at 21Å Resolution: A Cellular Assembly Designed to Recycle Multiple Membrane Receptors. The EMBO Journal, 17, 4943-4953.
https://doi.org/10.1093/emboj/17.17.4943
[27] Lacombe, R.J.S., Chouinard-Watkins, R. and Bazinet, R.P. (2018) Brain Docosahexaenoic Acid Uptake and Metabolism. Molecular Aspects of Medicine, 64, 109-134.
https://doi.org/10.1016/j.mam.2017.12.004
[28] Ouellet, M., Emond, V., Chen, C.T., Julien, C., Bourasset, F., Oddo, S., et al. (2009) Diffusion of Docosahexaenoic and Eicosapentaenoic Acids through the Blood-Brain Barrier: An in Situ Cerebral Perfusion Study. Neurochemistry International, 55, 476-482.
https://doi.org/10.1016/j.neuint.2009.04.018
[29] Strosznajder, J., Chalimoniuk, M., Strosznajder, R.P., Albanese, V. and Alberghina, M. (1996) Arachidonate Transport through the Blood-Retina and Blood-Brain Barrier of the Rat during Aging. Neuroscience Letters, 209, 145-148.
https://doi.org/10.1016/0304-3940(96)12624-0
[30] Liu, J.J., Green, P., John Mann, J., Rapoport, S.I. and Sublette, M.E. (2015) Pathways of Polyunsaturated Fatty Acid Utilization: Implications for Brain Function in Neuropsychiatric Health and Disease. Brain Research, 1597, 220-246.
https://doi.org/10.1016/j.brainres.2014.11.059
[31] Edmond, J. (2001) Essential Polyunsaturated Fatty Acids and the Barrier to the Brain: The Components of a Model for Transport. Journal of Molecular Neuroscience, 16, 181-194.
https://doi.org/10.1385/jmn:16:2-3:181
[32] Zhang, W., Chen, R., Yang, T., Xu, N., Chen, J., Gao, Y., et al. (2018) Fatty Acid Transporting Proteins: Roles in Brain Development, Aging, and Stroke. Prostaglandins, Leukotrienes and Essential Fatty Acids, 136, 35-45.
https://doi.org/10.1016/j.plefa.2017.04.004
[33] Hui, T.Y., Frohnert, B.I., Smith, A.J., Schaffer, J.E. and Bernlohr, D.A. (1998) Characterization of the Murine Fatty Acid Transport Protein Gene and Its Insulin Response Sequence. Journal of Biological Chemistry, 273, 27420-27429.
https://doi.org/10.1074/jbc.273.42.27420
[34] Melton, E.M., Cerny, R.L., Watkins, P.A., DiRusso, C.C. and Black, P.N. (2011) Human Fatty Acid Transport Protein 2a/Very Long Chain Acyl-CoA Synthetase 1 (FATP2a/Acsvl1) Has a Preference in Mediating the Channeling of Exogenous N-3 Fatty Acids into Phosphatidylinositol. Journal of Biological Chemistry, 286, 30670-30679.
https://doi.org/10.1074/jbc.m111.226316
[35] Herrmann, T., Buchkremer, F., Gosch, I., Hall, A.M., Bernlohr, D.A. and Stremmel, W. (2001) Mouse Fatty Acid Transport Protein 4 (FATP4): Characterization of the Gene and Functional Assessment as a Very Long Chain Acyl-CoA Synthetase. Gene, 270, 31-40.
[36] Ochiai, Y., Uchida, Y., Ohtsuki, S., Tachikawa, M., Aizawa, S. and Terasaki, T. (2017) The Blood‐Brain Barrier Fatty Acid Transport Protein 1 (FATP1/SLC27A1) Supplies Docosahexaenoic Acid to the Brain, and Insulin Facilitates Transport. Journal of Neurochemistry, 141, 400-412.
https://doi.org/10.1111/jnc.13943
[37] Coburn, C.T., Knapp, F.F., Febbraio, M., Beets, A.L., Silverstein, R.L. and Abumrad, N.A. (2000) Defective Uptake and Utilization of Long Chain Fatty Acids in Muscle and Adipose Tissues of CD36 Knockout Mice. Journal of Biological Chemistry, 275, 32523-32529.
https://doi.org/10.1074/jbc.m003826200
[38] Liu, R., Mita, R., Beaulieu, M., Gao, Z. and Godbout, R. (2010) Fatty Acid Binding Proteins in Brain Development and Disease. The International Journal of Developmental Biology, 54, 1229-1239.
https://doi.org/10.1387/ijdb.092976rl
[39] Nguyen, L.N., Ma, D., Shui, G., Wong, P., Cazenave-Gassiot, A., Zhang, X., et al. (2014) Mfsd2a Is a Transporter for the Essential Omega-3 Fatty Acid Docosahexaenoic Acid. Nature, 509, 503-506.
https://doi.org/10.1038/nature13241
[40] Wong, B.H. and Silver, D.L. (2020) Mfsd2a: A Physiologically Important Lysolipid Transporter in the Brain and Eye. In: Jiang, X.C. Ed., Lipid Transfer in Lipoprotein Metabolism and Cardiovascular Disease, Springer, 223-234.
https://doi.org/10.1007/978-981-15-6082-8_14
[41] Huang, B. and Li, X. (2021) The Role of Mfsd2a in Nervous System Diseases. Frontiers in Neuroscience, 15, Article 730534.
https://doi.org/10.3389/fnins.2021.730534
[42] He, Z., Zhao, Y. and Sun, J. (2022) The Role of Major Facilitator Superfamily Domain-Containing 2a in the Central Nervous System. Cellular and Molecular Neurobiology, 43, 639-647.
https://doi.org/10.1007/s10571-022-01222-7
[43] Kirchhausen, T., Boll, W., van Oijen, A. and Ehrlich, M. (2005) Single-Molecule Live-Cell Imaging of Clathrin-Based Endocytosis. Biochemical Society Symposia, 72, 71-76.
https://doi.org/10.1042/bss0720071
[44] Yang, W., Geng, C., Yang, Z., Xu, B., Shi, W., Yang, Y., et al. (2020) Deciphering the Roles of Caveolin in Neurodegenerative Diseases: The Good, the Bad and the Importance of Context. Ageing Research Reviews, 62, Article 101116.
https://doi.org/10.1016/j.arr.2020.101116
[45] Darios, F. and Davletov, B. (2006) Omega-3 and Omega-6 Fatty Acids Stimulate Cell Membrane Expansion by Acting on Syntaxin 3. Nature, 440, 813-817.
https://doi.org/10.1038/nature04598
[46] Deacon, G., Kettle, C., Hayes, D., Dennis, C. and Tucci, J. (2015) Omega 3 Polyunsaturated Fatty Acids and the Treatment of Depression. Critical Reviews in Food Science and Nutrition, 57, 212-223.
https://doi.org/10.1080/10408398.2013.876959
[47] Yu, J., Wang, J., Sheridan, S.D., Perlis, R.H. and Rasenick, M.M. (2020) N-3 Polyunsaturated Fatty Acids Promote Astrocyte Differentiation and Neurotrophin Production Independent of Camp in Patient-Derived Neural Stem Cells. Molecular Psychiatry, 26, 4605-4615.
https://doi.org/10.1038/s41380-020-0786-5
[48] Lin, P., Mischoulon, D., Freeman, M.P., Matsuoka, Y., Hibbeln, J., Belmaker, R.H., et al. (2012) Are Omega-3 Fatty Acids Antidepressants or Just Mood-Improving Agents? The Effect Depends Upon Diagnosis, Supplement Preparation, and Severity of Depression. Molecular Psychiatry, 17, 1161-1163.
https://doi.org/10.1038/mp.2012.111
[49] Martins, J.G. (2009) EPA but Not DHA Appears to Be Responsible for the Efficacy of Omega-3 Long Chain Polyunsaturated Fatty Acid Supplementation in Depression: Evidence from a Meta-Analysis of Randomized Controlled Trials. Journal of the American College of Nutrition, 28, 525-542.
https://doi.org/10.1080/07315724.2009.10719785
[50] Rizzo, A.M., Corsetto, P.A., Montorfano, G., Opizzi, A., Faliva, M., Giacosa, A., et al. (2012) Comparison between the AA/EPA Ratio in Depressed and Non Depressed Elderly Females: Omega-3 Fatty Acid Supplementation Correlates with Improved Symptoms but Does Not Change Immunological Parameters. Nutrition Journal, 11, Article No. 82.
https://doi.org/10.1186/1475-2891-11-82
[51] Kiecolt-Glaser, J.K., Belury, M.A., Porter, K., Beversdorf, D.Q., Lemeshow, S. and Glaser, R. (2007) Depressive Symptoms, Omega-6: Omega-3 Fatty Acids, and Inflammation in Older Adults. Psychosomatic Medicine, 69, 217-224.
https://doi.org/10.1097/psy.0b013e3180313a45
[52] Appleton, K.M., Rogers, P.J. and Ness, A.R. (2010) Updated Systematic Review and Meta-Analysis of the Effects of n-3 Long-Chain Polyunsaturated Fatty Acids on Depressed Mood. The American Journal of Clinical Nutrition, 91, 757-770.
https://doi.org/10.3945/ajcn.2009.28313
[53] Guu, T., Mischoulon, D., Sarris, J., Hibbeln, J., McNamara, R.K., Hamazaki, K., et al. (2019) International Society for Nutritional Psychiatry Research Practice Guidelines for Omega-3 Fatty Acids in the Treatment of Major Depressive Disorder. Psychotherapy and Psychosomatics, 88, 263-273.
https://doi.org/10.1159/000502652
[54] Bloch, M.H. and Hannestad, J. (2011) Omega-3 Fatty Acids for the Treatment of Depression: Systematic Review and Meta-Analysis. Molecular Psychiatry, 17, 1272-1282.
https://doi.org/10.1038/mp.2011.100
[55] Liao, Y., Xie, B., Zhang, H., He, Q., Guo, L., Subramaniapillai, M., et al. (2021) Correction: Efficacy of Omega-3 PUFAs in Depression: A Meta-Analysis. Translational Psychiatry, 11, Article No. 465.
https://doi.org/10.1038/s41398-021-01582-6
[56] Wager-Smith, K. and Markou, A. (2011) Depression: A Repair Response to Stress-Induced Neuronal Microdamage That Can Grade into a Chronic Neuroinflammatory Condition? Neuroscience & Biobehavioral Reviews, 35, 742-764.
https://doi.org/10.1016/j.neubiorev.2010.09.010
[57] Su, K., Yang, H., Chang, J.P., Shih, Y., Guu, T., Kumaran, S.S., et al. (2018) Eicosapentaenoic and Docosahexaenoic Acids Have Different Effects on Peripheral Phospholipase A2 Gene Expressions in Acute Depressed Patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 80, 227-233.
https://doi.org/10.1016/j.pnpbp.2017.06.020
[58] Grintal, B., Champeil-Potokar, G., Lavialle, M., Vancassel, S., Breton, S. and Denis, I. (2009) Inhibition of Astroglial Glutamate Transport by Polyunsaturated Fatty Acids: Evidence for a Signalling Role of Docosahexaenoic Acid. Neurochemistry International, 54, 535-543.
https://doi.org/10.1016/j.neuint.2009.02.018
[59] Díaz, M., Pereda de Pablo, D., Valdés‐Baizabal, C., Santos, G. and Marin, R. (2023) Molecular and Biophysical Features of Hippocampal “Lipid Rafts Aging” Are Modified by Dietary n‐3 Long‐Chain Polyunsaturated Fatty Acids. Aging Cell, 22, e13867.
https://doi.org/10.1111/acel.13867
[60] Zhang, Y., Yin, J., Yan, H., Yan, L., Li, Y., Zhang, C., et al. (2023) Correlations between Omega-3 Fatty Acids and Inflammatory/Glial Abnormalities: The Involvement of the Membrane and Neurotransmitter Dysfunction in Schizophrenia. Frontiers in Cellular Neuroscience, 17, Article 1163764.
https://doi.org/10.3389/fncel.2023.1163764
[61] Vaidyanathan, V.V., Rao, K.V.R. and Sastry, P.S. (1994) Regulation of Diacylglycerol Kinase in Rat Brain Membranes by Docosahexaenoic Acid. Neuroscience Letters, 179, 171-174.
https://doi.org/10.1016/0304-3940(94)90961-x
[62] Sublette, M.E., Daray, F.M., Ganança, L. and Shaikh, S.R. (2023) The Role of Polyunsaturated Fatty Acids in the Neurobiology of Major Depressive Disorder and Suicide Risk. Molecular Psychiatry, 29, 269-286.
https://doi.org/10.1038/s41380-023-02322-6
[63] Muskiet, F.A.J. and Kemperman, R.F.J. (2006) Folate and Long-Chain Polyunsaturated Fatty Acids in Psychiatric Disease. The Journal of Nutritional Biochemistry, 17, 717-727.
https://doi.org/10.1016/j.jnutbio.2006.02.001
[64] Chang, J.P., Chang, S., Chen, H., Chien, Y., Yang, H., Huang, S., et al. (2023) Omega-3 Polyunsaturated Fatty Acids (n-3 PUFAs), Somatic and Fatigue Symptoms in Cardiovascular Diseases Comorbid Major Depressive Disorder (MDD): A Randomized Controlled Trial. Brain, Behavior, and Immunity, 112, 125-131.
https://doi.org/10.1016/j.bbi.2023.06.008
[65] Amminger, G.P., Rice, S., Davey, C.G., Quinn, A.L., Hermens, D.F., Zmicerevska, N., et al. (2024) The Addition of Fish Oil to Cognitive Behavioral Case Management for Youth Depression: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Clinical Trial. Biological Psychiatry, 95, 426-433.
https://doi.org/10.1016/j.biopsych.2023.06.015
[66] Sarris, J., Logan, A.C., Akbaraly, T.N., Amminger, G.P., Balanzá-Martínez, V., Freeman, M.P., et al. (2015) Nutritional Medicine as Mainstream in Psychiatry. The Lancet Psychiatry, 2, 271-274.
https://doi.org/10.1016/s2215-0366(14)00051-0