|
[1]
|
Abbott, N.J., Patabendige, A.A.K., Dolman, D.E.M., Yusof, S.R. and Begley, D.J. (2010) Structure and Function of the Blood-Brain Barrier. Neurobiology of Disease, 37, 13-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Svennerholm, L., Boström, K. and Jungbjer, B. (1997) Changes in Weight and Compositions of Major Membrane Components of Human Brain during the Span of Adult Human Life of Swedes. Acta Neuropathologica, 94, 345-352. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Liu, J.J., Green, P., John Mann, J., Rapoport, S.I. and Sublette, M.E. (2015) Pathways of Polyunsaturated Fatty Acid Utilization: Implications for Brain Function in Neuropsychiatric Health and Disease. Brain Research, 1597, 220-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Clandinin, M.T., Jumpsen, J. and Suh, M. (1994) Relationship between Fatty Acid Accretion, Membrane Composition, and Biologic Functions. The Journal of Pediatrics, 125, S25-S32. [Google Scholar] [CrossRef]
|
|
[5]
|
Benatti, P., Peluso, G., Nicolai, R. and Calvani, M. (2004) Polyunsaturated Fatty Acids: Biochemical, Nutritional and Epigenetic Properties. Journal of the American College of Nutrition, 23, 281-302. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
苏健光, 刘景芳. n-3多不饱和脂肪酸与血脑屏障的关系[J]. 医学综述, 2016, 22(3): 424-427.
|
|
[7]
|
Singh, M. (2005) Essential Fatty Acids, DHA and Human Brain. The Indian Journal of Pediatrics, 72, 239-242. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Han, X. and Gross, R.W. (2022) The Foundations and Development of Lipidomics. Journal of Lipid Research, 63, Article 100164. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Chen, C.T. and Bazinet, R.P. (2015) Β-Oxidation and Rapid Metabolism, but Not Uptake Regulate Brain Eicosapentaenoic Acid Levels. Prostaglandins, Leukotrienes and Essential Fatty Acids, 92, 33-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Mori, K., Kuroha, S., Hou, J., et al. (2022) Lipidomic Analysis Revealed n-3 Polyunsaturated Fatty Acids Suppressed Choroidal Thinning and Myopia Progression in Mice. The FASEB Journal, 36, e22312. [Google Scholar] [CrossRef]
|
|
[11]
|
Pan, M., Zhao, F., Xie, B., Wu, H., Zhang, S., Ye, C., et al. (2021) Dietary Ω-3 Polyunsaturated Fatty Acids Are Protective for Myopia. Proceedings of the National Academy of Sciences, 118, e2104689118. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Maes, M., Smith, R., Christophe, A., Cosyns, P., Desnyder, R. and Meltzer, H. (1996) Fatty Acid Composition in Major Depression: Decreased Ω3 Fractions in Cholesteryl Esters and Increased C20:4ω6C20:5ω3 Ratio in Cholesteryl Esters and Phospholipids. Journal of Affective Disorders, 38, 35-46. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
de Lau, L.M.L., Bornebroek, M., Witteman, J.C.M., Hofman, A., Koudstaal, P.J. and Breteler, M.M.B. (2005) Dietary Fatty Acids and the Risk of Parkinson Disease. Neurology, 64, 2040-2045. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Song, C., Manku, M.S. and Horrobin, D.F. (2008) Long-Chain Polyunsaturated Fatty Acids Modulate Interleukin-1β—Induced Changes in Behavior, Monoaminergic Neurotransmitters, and Brain Inflammation in Rats. The Journal of Nutrition, 138, 954-963. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Song, C., Phillips, A.G., Leonard, B.E. and Horrobin, D.F. (2003) Ethyl-Eicosapentaenoic Acid Ingestion Prevents Corticosterone-Mediated Memory Impairment Induced by Central Administration of Interleukin-1β in Rats. Molecular Psychiatry, 9, 630-638. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Denis, I., Potier, B., Vancassel, S., Heberden, C. and Lavialle, M. (2013) Omega-3 Fatty Acids and Brain Resistance to Ageing and Stress: Body of Evidence and Possible Mechanisms. Ageing Research Reviews, 12, 579-594. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wysoczański, T., Sokoła-Wysoczańska, E., Pękala, J., Lochyński, S., Czyż, K., Bodkowski, R., et al. (2016) Omega-3 Fatty Acids and Their Role in Central Nervous System—A Review. Current Medicinal Chemistry, 23, 816-831. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Cater, R.J., Chua, G.L., Erramilli, S.K., Keener, J.E., Choy, B.C., Tokarz, P., et al. (2021) Structural Basis of Omega-3 Fatty Acid Transport across the Blood-Brain Barrier. Nature, 595, 315-319. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Engelhardt, B. and Sorokin, L. (2009) The Blood-Brain and the Blood-Cerebrospinal Fluid Barriers: Function and Dysfunction. Seminars in Immunopathology, 31, 497-511. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Galea, I. and Perry, V.H. (2018) The Blood-Brain Interface: A Culture Change. Brain, Behavior, and Immunity, 68, 11-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Alahmari, A. (2021) Blood-Brain Barrier Overview: Structural and Functional Correlation. Neural Plasticity, 2021, Article 6564585. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Vieira, D. and Gamarra, L. (2016) Getting into the Brain: Liposome-Based Strategies for Effective Drug Delivery across the Blood-Brain Barrier. International Journal of Nanomedicine, 11, 5381-5414. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Tietz, S. and Engelhardt, B. (2015) Brain Barriers: Crosstalk between Complex Tight Junctions and Adherens Junctions. Journal of Cell Biology, 209, 493-506. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Pifferi, F., Laurent, B. and Plourde, M. (2021) Lipid Transport and Metabolism at the Blood-Brain Interface: Implications in Health and Disease. Frontiers in Physiology, 12, Article 645646. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hamilton, J.A. and Brunaldi, K. (2007) A Model for Fatty Acid Transport into the Brain. Journal of Molecular Neuroscience, 33, 12-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Smith, C.J. (1998) Clathrin Coats at 21Å Resolution: A Cellular Assembly Designed to Recycle Multiple Membrane Receptors. The EMBO Journal, 17, 4943-4953. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Lacombe, R.J.S., Chouinard-Watkins, R. and Bazinet, R.P. (2018) Brain Docosahexaenoic Acid Uptake and Metabolism. Molecular Aspects of Medicine, 64, 109-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ouellet, M., Emond, V., Chen, C.T., Julien, C., Bourasset, F., Oddo, S., et al. (2009) Diffusion of Docosahexaenoic and Eicosapentaenoic Acids through the Blood-Brain Barrier: An in Situ Cerebral Perfusion Study. Neurochemistry International, 55, 476-482. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Strosznajder, J., Chalimoniuk, M., Strosznajder, R.P., Albanese, V. and Alberghina, M. (1996) Arachidonate Transport through the Blood-Retina and Blood-Brain Barrier of the Rat during Aging. Neuroscience Letters, 209, 145-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Liu, J.J., Green, P., John Mann, J., Rapoport, S.I. and Sublette, M.E. (2015) Pathways of Polyunsaturated Fatty Acid Utilization: Implications for Brain Function in Neuropsychiatric Health and Disease. Brain Research, 1597, 220-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Edmond, J. (2001) Essential Polyunsaturated Fatty Acids and the Barrier to the Brain: The Components of a Model for Transport. Journal of Molecular Neuroscience, 16, 181-194. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhang, W., Chen, R., Yang, T., Xu, N., Chen, J., Gao, Y., et al. (2018) Fatty Acid Transporting Proteins: Roles in Brain Development, Aging, and Stroke. Prostaglandins, Leukotrienes and Essential Fatty Acids, 136, 35-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Hui, T.Y., Frohnert, B.I., Smith, A.J., Schaffer, J.E. and Bernlohr, D.A. (1998) Characterization of the Murine Fatty Acid Transport Protein Gene and Its Insulin Response Sequence. Journal of Biological Chemistry, 273, 27420-27429. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Melton, E.M., Cerny, R.L., Watkins, P.A., DiRusso, C.C. and Black, P.N. (2011) Human Fatty Acid Transport Protein 2a/Very Long Chain Acyl-CoA Synthetase 1 (FATP2a/Acsvl1) Has a Preference in Mediating the Channeling of Exogenous N-3 Fatty Acids into Phosphatidylinositol. Journal of Biological Chemistry, 286, 30670-30679. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Herrmann, T., Buchkremer, F., Gosch, I., Hall, A.M., Bernlohr, D.A. and Stremmel, W. (2001) Mouse Fatty Acid Transport Protein 4 (FATP4): Characterization of the Gene and Functional Assessment as a Very Long Chain Acyl-CoA Synthetase. Gene, 270, 31-40.
|
|
[36]
|
Ochiai, Y., Uchida, Y., Ohtsuki, S., Tachikawa, M., Aizawa, S. and Terasaki, T. (2017) The Blood‐Brain Barrier Fatty Acid Transport Protein 1 (FATP1/SLC27A1) Supplies Docosahexaenoic Acid to the Brain, and Insulin Facilitates Transport. Journal of Neurochemistry, 141, 400-412. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Coburn, C.T., Knapp, F.F., Febbraio, M., Beets, A.L., Silverstein, R.L. and Abumrad, N.A. (2000) Defective Uptake and Utilization of Long Chain Fatty Acids in Muscle and Adipose Tissues of CD36 Knockout Mice. Journal of Biological Chemistry, 275, 32523-32529. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Liu, R., Mita, R., Beaulieu, M., Gao, Z. and Godbout, R. (2010) Fatty Acid Binding Proteins in Brain Development and Disease. The International Journal of Developmental Biology, 54, 1229-1239. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Nguyen, L.N., Ma, D., Shui, G., Wong, P., Cazenave-Gassiot, A., Zhang, X., et al. (2014) Mfsd2a Is a Transporter for the Essential Omega-3 Fatty Acid Docosahexaenoic Acid. Nature, 509, 503-506. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Wong, B.H. and Silver, D.L. (2020) Mfsd2a: A Physiologically Important Lysolipid Transporter in the Brain and Eye. In: Jiang, X.C. Ed., Lipid Transfer in Lipoprotein Metabolism and Cardiovascular Disease, Springer, 223-234. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Huang, B. and Li, X. (2021) The Role of Mfsd2a in Nervous System Diseases. Frontiers in Neuroscience, 15, Article 730534. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
He, Z., Zhao, Y. and Sun, J. (2022) The Role of Major Facilitator Superfamily Domain-Containing 2a in the Central Nervous System. Cellular and Molecular Neurobiology, 43, 639-647. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kirchhausen, T., Boll, W., van Oijen, A. and Ehrlich, M. (2005) Single-Molecule Live-Cell Imaging of Clathrin-Based Endocytosis. Biochemical Society Symposia, 72, 71-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Yang, W., Geng, C., Yang, Z., Xu, B., Shi, W., Yang, Y., et al. (2020) Deciphering the Roles of Caveolin in Neurodegenerative Diseases: The Good, the Bad and the Importance of Context. Ageing Research Reviews, 62, Article 101116. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Darios, F. and Davletov, B. (2006) Omega-3 and Omega-6 Fatty Acids Stimulate Cell Membrane Expansion by Acting on Syntaxin 3. Nature, 440, 813-817. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Deacon, G., Kettle, C., Hayes, D., Dennis, C. and Tucci, J. (2015) Omega 3 Polyunsaturated Fatty Acids and the Treatment of Depression. Critical Reviews in Food Science and Nutrition, 57, 212-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Yu, J., Wang, J., Sheridan, S.D., Perlis, R.H. and Rasenick, M.M. (2020) N-3 Polyunsaturated Fatty Acids Promote Astrocyte Differentiation and Neurotrophin Production Independent of Camp in Patient-Derived Neural Stem Cells. Molecular Psychiatry, 26, 4605-4615. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Lin, P., Mischoulon, D., Freeman, M.P., Matsuoka, Y., Hibbeln, J., Belmaker, R.H., et al. (2012) Are Omega-3 Fatty Acids Antidepressants or Just Mood-Improving Agents? The Effect Depends Upon Diagnosis, Supplement Preparation, and Severity of Depression. Molecular Psychiatry, 17, 1161-1163. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Martins, J.G. (2009) EPA but Not DHA Appears to Be Responsible for the Efficacy of Omega-3 Long Chain Polyunsaturated Fatty Acid Supplementation in Depression: Evidence from a Meta-Analysis of Randomized Controlled Trials. Journal of the American College of Nutrition, 28, 525-542. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Rizzo, A.M., Corsetto, P.A., Montorfano, G., Opizzi, A., Faliva, M., Giacosa, A., et al. (2012) Comparison between the AA/EPA Ratio in Depressed and Non Depressed Elderly Females: Omega-3 Fatty Acid Supplementation Correlates with Improved Symptoms but Does Not Change Immunological Parameters. Nutrition Journal, 11, Article No. 82. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Kiecolt-Glaser, J.K., Belury, M.A., Porter, K., Beversdorf, D.Q., Lemeshow, S. and Glaser, R. (2007) Depressive Symptoms, Omega-6: Omega-3 Fatty Acids, and Inflammation in Older Adults. Psychosomatic Medicine, 69, 217-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Appleton, K.M., Rogers, P.J. and Ness, A.R. (2010) Updated Systematic Review and Meta-Analysis of the Effects of n-3 Long-Chain Polyunsaturated Fatty Acids on Depressed Mood. The American Journal of Clinical Nutrition, 91, 757-770. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Guu, T., Mischoulon, D., Sarris, J., Hibbeln, J., McNamara, R.K., Hamazaki, K., et al. (2019) International Society for Nutritional Psychiatry Research Practice Guidelines for Omega-3 Fatty Acids in the Treatment of Major Depressive Disorder. Psychotherapy and Psychosomatics, 88, 263-273. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Bloch, M.H. and Hannestad, J. (2011) Omega-3 Fatty Acids for the Treatment of Depression: Systematic Review and Meta-Analysis. Molecular Psychiatry, 17, 1272-1282. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Liao, Y., Xie, B., Zhang, H., He, Q., Guo, L., Subramaniapillai, M., et al. (2021) Correction: Efficacy of Omega-3 PUFAs in Depression: A Meta-Analysis. Translational Psychiatry, 11, Article No. 465. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Wager-Smith, K. and Markou, A. (2011) Depression: A Repair Response to Stress-Induced Neuronal Microdamage That Can Grade into a Chronic Neuroinflammatory Condition? Neuroscience & Biobehavioral Reviews, 35, 742-764. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Su, K., Yang, H., Chang, J.P., Shih, Y., Guu, T., Kumaran, S.S., et al. (2018) Eicosapentaenoic and Docosahexaenoic Acids Have Different Effects on Peripheral Phospholipase A2 Gene Expressions in Acute Depressed Patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 80, 227-233. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Grintal, B., Champeil-Potokar, G., Lavialle, M., Vancassel, S., Breton, S. and Denis, I. (2009) Inhibition of Astroglial Glutamate Transport by Polyunsaturated Fatty Acids: Evidence for a Signalling Role of Docosahexaenoic Acid. Neurochemistry International, 54, 535-543. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Díaz, M., Pereda de Pablo, D., Valdés‐Baizabal, C., Santos, G. and Marin, R. (2023) Molecular and Biophysical Features of Hippocampal “Lipid Rafts Aging” Are Modified by Dietary n‐3 Long‐Chain Polyunsaturated Fatty Acids. Aging Cell, 22, e13867. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Zhang, Y., Yin, J., Yan, H., Yan, L., Li, Y., Zhang, C., et al. (2023) Correlations between Omega-3 Fatty Acids and Inflammatory/Glial Abnormalities: The Involvement of the Membrane and Neurotransmitter Dysfunction in Schizophrenia. Frontiers in Cellular Neuroscience, 17, Article 1163764. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Vaidyanathan, V.V., Rao, K.V.R. and Sastry, P.S. (1994) Regulation of Diacylglycerol Kinase in Rat Brain Membranes by Docosahexaenoic Acid. Neuroscience Letters, 179, 171-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Sublette, M.E., Daray, F.M., Ganança, L. and Shaikh, S.R. (2023) The Role of Polyunsaturated Fatty Acids in the Neurobiology of Major Depressive Disorder and Suicide Risk. Molecular Psychiatry, 29, 269-286. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Muskiet, F.A.J. and Kemperman, R.F.J. (2006) Folate and Long-Chain Polyunsaturated Fatty Acids in Psychiatric Disease. The Journal of Nutritional Biochemistry, 17, 717-727. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Chang, J.P., Chang, S., Chen, H., Chien, Y., Yang, H., Huang, S., et al. (2023) Omega-3 Polyunsaturated Fatty Acids (n-3 PUFAs), Somatic and Fatigue Symptoms in Cardiovascular Diseases Comorbid Major Depressive Disorder (MDD): A Randomized Controlled Trial. Brain, Behavior, and Immunity, 112, 125-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Amminger, G.P., Rice, S., Davey, C.G., Quinn, A.L., Hermens, D.F., Zmicerevska, N., et al. (2024) The Addition of Fish Oil to Cognitive Behavioral Case Management for Youth Depression: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Clinical Trial. Biological Psychiatry, 95, 426-433. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Sarris, J., Logan, A.C., Akbaraly, T.N., Amminger, G.P., Balanzá-Martínez, V., Freeman, M.P., et al. (2015) Nutritional Medicine as Mainstream in Psychiatry. The Lancet Psychiatry, 2, 271-274. [Google Scholar] [CrossRef] [PubMed]
|