[1]
|
Abbott, N.J., Patabendige, A.A.K., Dolman, D.E.M., Yusof, S.R. and Begley, D.J. (2010) Structure and Function of the Blood-Brain Barrier. Neurobiology of Disease, 37, 13-25. https://doi.org/10.1016/j.nbd.2009.07.030
|
[2]
|
Svennerholm, L., Boström, K. and Jungbjer, B. (1997) Changes in Weight and Compositions of Major Membrane Components of Human Brain during the Span of Adult Human Life of Swedes. Acta Neuropathologica, 94, 345-352. https://doi.org/10.1007/s004010050717
|
[3]
|
Liu, J.J., Green, P., John Mann, J., Rapoport, S.I. and Sublette, M.E. (2015) Pathways of Polyunsaturated Fatty Acid Utilization: Implications for Brain Function in Neuropsychiatric Health and Disease. Brain Research, 1597, 220-246. https://doi.org/10.1016/j.brainres.2014.11.059
|
[4]
|
Clandinin, M.T., Jumpsen, J. and Suh, M. (1994) Relationship between Fatty Acid Accretion, Membrane Composition, and Biologic Functions. The Journal of Pediatrics, 125, S25-S32. https://doi.org/10.1016/s0022-3476(6)80733-x
|
[5]
|
Benatti, P., Peluso, G., Nicolai, R. and Calvani, M. (2004) Polyunsaturated Fatty Acids: Biochemical, Nutritional and Epigenetic Properties. Journal of the American College of Nutrition, 23, 281-302. https://doi.org/10.1080/07315724.2004.10719371
|
[6]
|
苏健光, 刘景芳. n-3多不饱和脂肪酸与血脑屏障的关系[J]. 医学综述, 2016, 22(3): 424-427.
|
[7]
|
Singh, M. (2005) Essential Fatty Acids, DHA and Human Brain. The Indian Journal of Pediatrics, 72, 239-242. https://doi.org/10.1007/bf02859265
|
[8]
|
Han, X. and Gross, R.W. (2022) The Foundations and Development of Lipidomics. Journal of Lipid Research, 63, Article 100164. https://doi.org/10.1016/j.jlr.2021.100164
|
[9]
|
Chen, C.T. and Bazinet, R.P. (2015) Β-Oxidation and Rapid Metabolism, but Not Uptake Regulate Brain Eicosapentaenoic Acid Levels. Prostaglandins, Leukotrienes and Essential Fatty Acids, 92, 33-40. https://doi.org/10.1016/j.plefa.2014.05.007
|
[10]
|
Mori, K., Kuroha, S., Hou, J., et al. (2022) Lipidomic Analysis Revealed n-3 Polyunsaturated Fatty Acids Suppressed Choroidal Thinning and Myopia Progression in Mice. The FASEB Journal, 36, e22312. https://doi.org/10.1096/fj.202101947R
|
[11]
|
Pan, M., Zhao, F., Xie, B., Wu, H., Zhang, S., Ye, C., et al. (2021) Dietary Ω-3 Polyunsaturated Fatty Acids Are Protective for Myopia. Proceedings of the National Academy of Sciences, 118, e2104689118. https://doi.org/10.1073/pnas.2104689118
|
[12]
|
Maes, M., Smith, R., Christophe, A., Cosyns, P., Desnyder, R. and Meltzer, H. (1996) Fatty Acid Composition in Major Depression: Decreased Ω3 Fractions in Cholesteryl Esters and Increased C20:4ω6C20:5ω3 Ratio in Cholesteryl Esters and Phospholipids. Journal of Affective Disorders, 38, 35-46. https://doi.org/10.1016/0165-0327(95)00092-5
|
[13]
|
de Lau, L.M.L., Bornebroek, M., Witteman, J.C.M., Hofman, A., Koudstaal, P.J. and Breteler, M.M.B. (2005) Dietary Fatty Acids and the Risk of Parkinson Disease. Neurology, 64, 2040-2045. https://doi.org/10.1212/01.wnl.0000166038.67153.9f
|
[14]
|
Song, C., Manku, M.S. and Horrobin, D.F. (2008) Long-Chain Polyunsaturated Fatty Acids Modulate Interleukin-1β—Induced Changes in Behavior, Monoaminergic Neurotransmitters, and Brain Inflammation in Rats. The Journal of Nutrition, 138, 954-963. https://doi.org/10.1093/jn/138.5.954
|
[15]
|
Song, C., Phillips, A.G., Leonard, B.E. and Horrobin, D.F. (2003) Ethyl-Eicosapentaenoic Acid Ingestion Prevents Corticosterone-Mediated Memory Impairment Induced by Central Administration of Interleukin-1β in Rats. Molecular Psychiatry, 9, 630-638. https://doi.org/10.1038/sj.mp.4001462
|
[16]
|
Denis, I., Potier, B., Vancassel, S., Heberden, C. and Lavialle, M. (2013) Omega-3 Fatty Acids and Brain Resistance to Ageing and Stress: Body of Evidence and Possible Mechanisms. Ageing Research Reviews, 12, 579-594. https://doi.org/10.1016/j.arr.2013.01.007
|
[17]
|
Wysoczański, T., Sokoła-Wysoczańska, E., Pękala, J., Lochyński, S., Czyż, K., Bodkowski, R., et al. (2016) Omega-3 Fatty Acids and Their Role in Central Nervous System—A Review. Current Medicinal Chemistry, 23, 816-831. https://doi.org/10.2174/0929867323666160122114439
|
[18]
|
Cater, R.J., Chua, G.L., Erramilli, S.K., Keener, J.E., Choy, B.C., Tokarz, P., et al. (2021) Structural Basis of Omega-3 Fatty Acid Transport across the Blood-Brain Barrier. Nature, 595, 315-319. https://doi.org/10.1038/s41586-021-03650-9
|
[19]
|
Engelhardt, B. and Sorokin, L. (2009) The Blood-Brain and the Blood-Cerebrospinal Fluid Barriers: Function and Dysfunction. Seminars in Immunopathology, 31, 497-511. https://doi.org/10.1007/s00281-009-0177-0
|
[20]
|
Galea, I. and Perry, V.H. (2018) The Blood-Brain Interface: A Culture Change. Brain, Behavior, and Immunity, 68, 11-16. https://doi.org/10.1016/j.bbi.2017.10.014
|
[21]
|
Alahmari, A. (2021) Blood-Brain Barrier Overview: Structural and Functional Correlation. Neural Plasticity, 2021, Article 6564585. https://doi.org/10.1155/2021/6564585
|
[22]
|
Vieira, D. and Gamarra, L. (2016) Getting into the Brain: Liposome-Based Strategies for Effective Drug Delivery across the Blood-Brain Barrier. International Journal of Nanomedicine, 11, 5381-5414. https://doi.org/10.2147/ijn.s117210
|
[23]
|
Tietz, S. and Engelhardt, B. (2015) Brain Barriers: Crosstalk between Complex Tight Junctions and Adherens Junctions. Journal of Cell Biology, 209, 493-506. https://doi.org/10.1083/jcb.201412147
|
[24]
|
Pifferi, F., Laurent, B. and Plourde, M. (2021) Lipid Transport and Metabolism at the Blood-Brain Interface: Implications in Health and Disease. Frontiers in Physiology, 12, Article 645646. https://doi.org/10.3389/fphys.2021.645646
|
[25]
|
Hamilton, J.A. and Brunaldi, K. (2007) A Model for Fatty Acid Transport into the Brain. Journal of Molecular Neuroscience, 33, 12-17. https://doi.org/10.1007/s12031-007-0050-3
|
[26]
|
Smith, C.J. (1998) Clathrin Coats at 21Å Resolution: A Cellular Assembly Designed to Recycle Multiple Membrane Receptors. The EMBO Journal, 17, 4943-4953. https://doi.org/10.1093/emboj/17.17.4943
|
[27]
|
Lacombe, R.J.S., Chouinard-Watkins, R. and Bazinet, R.P. (2018) Brain Docosahexaenoic Acid Uptake and Metabolism. Molecular Aspects of Medicine, 64, 109-134. https://doi.org/10.1016/j.mam.2017.12.004
|
[28]
|
Ouellet, M., Emond, V., Chen, C.T., Julien, C., Bourasset, F., Oddo, S., et al. (2009) Diffusion of Docosahexaenoic and Eicosapentaenoic Acids through the Blood-Brain Barrier: An in Situ Cerebral Perfusion Study. Neurochemistry International, 55, 476-482. https://doi.org/10.1016/j.neuint.2009.04.018
|
[29]
|
Strosznajder, J., Chalimoniuk, M., Strosznajder, R.P., Albanese, V. and Alberghina, M. (1996) Arachidonate Transport through the Blood-Retina and Blood-Brain Barrier of the Rat during Aging. Neuroscience Letters, 209, 145-148. https://doi.org/10.1016/0304-3940(96)12624-0
|
[30]
|
Liu, J.J., Green, P., John Mann, J., Rapoport, S.I. and Sublette, M.E. (2015) Pathways of Polyunsaturated Fatty Acid Utilization: Implications for Brain Function in Neuropsychiatric Health and Disease. Brain Research, 1597, 220-246. https://doi.org/10.1016/j.brainres.2014.11.059
|
[31]
|
Edmond, J. (2001) Essential Polyunsaturated Fatty Acids and the Barrier to the Brain: The Components of a Model for Transport. Journal of Molecular Neuroscience, 16, 181-194. https://doi.org/10.1385/jmn:16:2-3:181
|
[32]
|
Zhang, W., Chen, R., Yang, T., Xu, N., Chen, J., Gao, Y., et al. (2018) Fatty Acid Transporting Proteins: Roles in Brain Development, Aging, and Stroke. Prostaglandins, Leukotrienes and Essential Fatty Acids, 136, 35-45. https://doi.org/10.1016/j.plefa.2017.04.004
|
[33]
|
Hui, T.Y., Frohnert, B.I., Smith, A.J., Schaffer, J.E. and Bernlohr, D.A. (1998) Characterization of the Murine Fatty Acid Transport Protein Gene and Its Insulin Response Sequence. Journal of Biological Chemistry, 273, 27420-27429. https://doi.org/10.1074/jbc.273.42.27420
|
[34]
|
Melton, E.M., Cerny, R.L., Watkins, P.A., DiRusso, C.C. and Black, P.N. (2011) Human Fatty Acid Transport Protein 2a/Very Long Chain Acyl-CoA Synthetase 1 (FATP2a/Acsvl1) Has a Preference in Mediating the Channeling of Exogenous N-3 Fatty Acids into Phosphatidylinositol. Journal of Biological Chemistry, 286, 30670-30679. https://doi.org/10.1074/jbc.m111.226316
|
[35]
|
Herrmann, T., Buchkremer, F., Gosch, I., Hall, A.M., Bernlohr, D.A. and Stremmel, W. (2001) Mouse Fatty Acid Transport Protein 4 (FATP4): Characterization of the Gene and Functional Assessment as a Very Long Chain Acyl-CoA Synthetase. Gene, 270, 31-40.
|
[36]
|
Ochiai, Y., Uchida, Y., Ohtsuki, S., Tachikawa, M., Aizawa, S. and Terasaki, T. (2017) The Blood‐Brain Barrier Fatty Acid Transport Protein 1 (FATP1/SLC27A1) Supplies Docosahexaenoic Acid to the Brain, and Insulin Facilitates Transport. Journal of Neurochemistry, 141, 400-412. https://doi.org/10.1111/jnc.13943
|
[37]
|
Coburn, C.T., Knapp, F.F., Febbraio, M., Beets, A.L., Silverstein, R.L. and Abumrad, N.A. (2000) Defective Uptake and Utilization of Long Chain Fatty Acids in Muscle and Adipose Tissues of CD36 Knockout Mice. Journal of Biological Chemistry, 275, 32523-32529. https://doi.org/10.1074/jbc.m003826200
|
[38]
|
Liu, R., Mita, R., Beaulieu, M., Gao, Z. and Godbout, R. (2010) Fatty Acid Binding Proteins in Brain Development and Disease. The International Journal of Developmental Biology, 54, 1229-1239. https://doi.org/10.1387/ijdb.092976rl
|
[39]
|
Nguyen, L.N., Ma, D., Shui, G., Wong, P., Cazenave-Gassiot, A., Zhang, X., et al. (2014) Mfsd2a Is a Transporter for the Essential Omega-3 Fatty Acid Docosahexaenoic Acid. Nature, 509, 503-506. https://doi.org/10.1038/nature13241
|
[40]
|
Wong, B.H. and Silver, D.L. (2020) Mfsd2a: A Physiologically Important Lysolipid Transporter in the Brain and Eye. In: Jiang, X.C. Ed., Lipid Transfer in Lipoprotein Metabolism and Cardiovascular Disease, Springer, 223-234. https://doi.org/10.1007/978-981-15-6082-8_14
|
[41]
|
Huang, B. and Li, X. (2021) The Role of Mfsd2a in Nervous System Diseases. Frontiers in Neuroscience, 15, Article 730534. https://doi.org/10.3389/fnins.2021.730534
|
[42]
|
He, Z., Zhao, Y. and Sun, J. (2022) The Role of Major Facilitator Superfamily Domain-Containing 2a in the Central Nervous System. Cellular and Molecular Neurobiology, 43, 639-647. https://doi.org/10.1007/s10571-022-01222-7
|
[43]
|
Kirchhausen, T., Boll, W., van Oijen, A. and Ehrlich, M. (2005) Single-Molecule Live-Cell Imaging of Clathrin-Based Endocytosis. Biochemical Society Symposia, 72, 71-76. https://doi.org/10.1042/bss0720071
|
[44]
|
Yang, W., Geng, C., Yang, Z., Xu, B., Shi, W., Yang, Y., et al. (2020) Deciphering the Roles of Caveolin in Neurodegenerative Diseases: The Good, the Bad and the Importance of Context. Ageing Research Reviews, 62, Article 101116. https://doi.org/10.1016/j.arr.2020.101116
|
[45]
|
Darios, F. and Davletov, B. (2006) Omega-3 and Omega-6 Fatty Acids Stimulate Cell Membrane Expansion by Acting on Syntaxin 3. Nature, 440, 813-817. https://doi.org/10.1038/nature04598
|
[46]
|
Deacon, G., Kettle, C., Hayes, D., Dennis, C. and Tucci, J. (2015) Omega 3 Polyunsaturated Fatty Acids and the Treatment of Depression. Critical Reviews in Food Science and Nutrition, 57, 212-223. https://doi.org/10.1080/10408398.2013.876959
|
[47]
|
Yu, J., Wang, J., Sheridan, S.D., Perlis, R.H. and Rasenick, M.M. (2020) N-3 Polyunsaturated Fatty Acids Promote Astrocyte Differentiation and Neurotrophin Production Independent of Camp in Patient-Derived Neural Stem Cells. Molecular Psychiatry, 26, 4605-4615. https://doi.org/10.1038/s41380-020-0786-5
|
[48]
|
Lin, P., Mischoulon, D., Freeman, M.P., Matsuoka, Y., Hibbeln, J., Belmaker, R.H., et al. (2012) Are Omega-3 Fatty Acids Antidepressants or Just Mood-Improving Agents? The Effect Depends Upon Diagnosis, Supplement Preparation, and Severity of Depression. Molecular Psychiatry, 17, 1161-1163. https://doi.org/10.1038/mp.2012.111
|
[49]
|
Martins, J.G. (2009) EPA but Not DHA Appears to Be Responsible for the Efficacy of Omega-3 Long Chain Polyunsaturated Fatty Acid Supplementation in Depression: Evidence from a Meta-Analysis of Randomized Controlled Trials. Journal of the American College of Nutrition, 28, 525-542. https://doi.org/10.1080/07315724.2009.10719785
|
[50]
|
Rizzo, A.M., Corsetto, P.A., Montorfano, G., Opizzi, A., Faliva, M., Giacosa, A., et al. (2012) Comparison between the AA/EPA Ratio in Depressed and Non Depressed Elderly Females: Omega-3 Fatty Acid Supplementation Correlates with Improved Symptoms but Does Not Change Immunological Parameters. Nutrition Journal, 11, Article No. 82. https://doi.org/10.1186/1475-2891-11-82
|
[51]
|
Kiecolt-Glaser, J.K., Belury, M.A., Porter, K., Beversdorf, D.Q., Lemeshow, S. and Glaser, R. (2007) Depressive Symptoms, Omega-6: Omega-3 Fatty Acids, and Inflammation in Older Adults. Psychosomatic Medicine, 69, 217-224. https://doi.org/10.1097/psy.0b013e3180313a45
|
[52]
|
Appleton, K.M., Rogers, P.J. and Ness, A.R. (2010) Updated Systematic Review and Meta-Analysis of the Effects of n-3 Long-Chain Polyunsaturated Fatty Acids on Depressed Mood. The American Journal of Clinical Nutrition, 91, 757-770. https://doi.org/10.3945/ajcn.2009.28313
|
[53]
|
Guu, T., Mischoulon, D., Sarris, J., Hibbeln, J., McNamara, R.K., Hamazaki, K., et al. (2019) International Society for Nutritional Psychiatry Research Practice Guidelines for Omega-3 Fatty Acids in the Treatment of Major Depressive Disorder. Psychotherapy and Psychosomatics, 88, 263-273. https://doi.org/10.1159/000502652
|
[54]
|
Bloch, M.H. and Hannestad, J. (2011) Omega-3 Fatty Acids for the Treatment of Depression: Systematic Review and Meta-Analysis. Molecular Psychiatry, 17, 1272-1282. https://doi.org/10.1038/mp.2011.100
|
[55]
|
Liao, Y., Xie, B., Zhang, H., He, Q., Guo, L., Subramaniapillai, M., et al. (2021) Correction: Efficacy of Omega-3 PUFAs in Depression: A Meta-Analysis. Translational Psychiatry, 11, Article No. 465. https://doi.org/10.1038/s41398-021-01582-6
|
[56]
|
Wager-Smith, K. and Markou, A. (2011) Depression: A Repair Response to Stress-Induced Neuronal Microdamage That Can Grade into a Chronic Neuroinflammatory Condition? Neuroscience & Biobehavioral Reviews, 35, 742-764. https://doi.org/10.1016/j.neubiorev.2010.09.010
|
[57]
|
Su, K., Yang, H., Chang, J.P., Shih, Y., Guu, T., Kumaran, S.S., et al. (2018) Eicosapentaenoic and Docosahexaenoic Acids Have Different Effects on Peripheral Phospholipase A2 Gene Expressions in Acute Depressed Patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 80, 227-233. https://doi.org/10.1016/j.pnpbp.2017.06.020
|
[58]
|
Grintal, B., Champeil-Potokar, G., Lavialle, M., Vancassel, S., Breton, S. and Denis, I. (2009) Inhibition of Astroglial Glutamate Transport by Polyunsaturated Fatty Acids: Evidence for a Signalling Role of Docosahexaenoic Acid. Neurochemistry International, 54, 535-543. https://doi.org/10.1016/j.neuint.2009.02.018
|
[59]
|
Díaz, M., Pereda de Pablo, D., Valdés‐Baizabal, C., Santos, G. and Marin, R. (2023) Molecular and Biophysical Features of Hippocampal “Lipid Rafts Aging” Are Modified by Dietary n‐3 Long‐Chain Polyunsaturated Fatty Acids. Aging Cell, 22, e13867. https://doi.org/10.1111/acel.13867
|
[60]
|
Zhang, Y., Yin, J., Yan, H., Yan, L., Li, Y., Zhang, C., et al. (2023) Correlations between Omega-3 Fatty Acids and Inflammatory/Glial Abnormalities: The Involvement of the Membrane and Neurotransmitter Dysfunction in Schizophrenia. Frontiers in Cellular Neuroscience, 17, Article 1163764. https://doi.org/10.3389/fncel.2023.1163764
|
[61]
|
Vaidyanathan, V.V., Rao, K.V.R. and Sastry, P.S. (1994) Regulation of Diacylglycerol Kinase in Rat Brain Membranes by Docosahexaenoic Acid. Neuroscience Letters, 179, 171-174. https://doi.org/10.1016/0304-3940(94)90961-x
|
[62]
|
Sublette, M.E., Daray, F.M., Ganança, L. and Shaikh, S.R. (2023) The Role of Polyunsaturated Fatty Acids in the Neurobiology of Major Depressive Disorder and Suicide Risk. Molecular Psychiatry, 29, 269-286. https://doi.org/10.1038/s41380-023-02322-6
|
[63]
|
Muskiet, F.A.J. and Kemperman, R.F.J. (2006) Folate and Long-Chain Polyunsaturated Fatty Acids in Psychiatric Disease. The Journal of Nutritional Biochemistry, 17, 717-727. https://doi.org/10.1016/j.jnutbio.2006.02.001
|
[64]
|
Chang, J.P., Chang, S., Chen, H., Chien, Y., Yang, H., Huang, S., et al. (2023) Omega-3 Polyunsaturated Fatty Acids (n-3 PUFAs), Somatic and Fatigue Symptoms in Cardiovascular Diseases Comorbid Major Depressive Disorder (MDD): A Randomized Controlled Trial. Brain, Behavior, and Immunity, 112, 125-131. https://doi.org/10.1016/j.bbi.2023.06.008
|
[65]
|
Amminger, G.P., Rice, S., Davey, C.G., Quinn, A.L., Hermens, D.F., Zmicerevska, N., et al. (2024) The Addition of Fish Oil to Cognitive Behavioral Case Management for Youth Depression: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Clinical Trial. Biological Psychiatry, 95, 426-433. https://doi.org/10.1016/j.biopsych.2023.06.015
|
[66]
|
Sarris, J., Logan, A.C., Akbaraly, T.N., Amminger, G.P., Balanzá-Martínez, V., Freeman, M.P., et al. (2015) Nutritional Medicine as Mainstream in Psychiatry. The Lancet Psychiatry, 2, 271-274. https://doi.org/10.1016/s2215-0366(14)00051-0
|