[1]
|
Epstein, M.A., Achong, B.G. and Barr, Y.M. (1964) Virus Particles in Cultured Lymphoblasts from Burkitt’s Lymphoma. The Lancet, 283, 702-703. https://doi.org/10.1016/s0140-6736(64)91524-7
|
[2]
|
Young, L.S., Yap, L.F. and Murray, P.G. (2016) Epstein-Barr Virus: More than 50 Years Old and Still Providing Surprises. Nature Reviews Cancer, 16, 789-802. https://doi.org/10.1038/nrc.2016.92
|
[3]
|
Tokunaga, M., Uemura, Y., Tokudome, T., Ishidate, T., Masuda, H., Okazaki, E., et al. (1993) Epstein‐Barr Virus Related Gastric Cancer in Japan: A Molecular Patho‐Epidemiological Study. Acta Pathologica Japonica, 43, 574-581. https://doi.org/10.1111/j.1440-1827.1993.tb03233.x
|
[4]
|
Dicken, B.J., Bigam, D.L., Cass, C., Mackey, J.R., Joy, A.A. and Hamilton, S.M. (2005) Gastric Adenocarcinoma: Review and Considerations for Future Directions. Annals of Surgery, 241, 27-39. https://doi.org/10.1097/01.sla.0000149300.28588.23
|
[5]
|
Tan, I.B., Ivanova, T., Lim, K.H., et al. (2011) Intrinsic Subtypes of Gastric Cancer, Based on Gene Expression Pattern, Predict Survival and Respond Differently to Chemotherapy. Gastroenterology, 141, 476-485.E11. https://doi.org/10.1053/j.gastro.2011.04.042
|
[6]
|
Shah, M.A., Khanin, R., Tang, L., Janjigian, Y.Y., Klimstra, D.S., Gerdes, H., et al. (2011) Molecular Classification of Gastric Cancer: A New Paradigm. Clinical Cancer Research, 17, 2693-2701. https://doi.org/10.1158/1078-0432.ccr-10-2203
|
[7]
|
The Cancer Genome Atlas Research Network (2014) Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nature, 513, 202-209. https://doi.org/10.1038/nature13480
|
[8]
|
Cristescu, R., Lee, J., Nebozhyn, M., Kim, K., Ting, J.C., Wong, S.S., et al. (2015) Molecular Analysis of Gastric Cancer Identifies Subtypes Associated with Distinct Clinical Outcomes. Nature Medicine, 21, 449-456. https://doi.org/10.1038/nm.3850
|
[9]
|
Kim, S.T., Cristescu, R., Bass, A.J., Kim, K., Odegaard, J.I., Kim, K., et al. (2018) Comprehensive Molecular Characterization of Clinical Responses to PD-1 Inhibition in Metastatic Gastric Cancer. Nature Medicine, 24, 1449-1458. https://doi.org/10.1038/s41591-018-0101-z
|
[10]
|
Naseem, M., Barzi, A., Brezden-Masley, C., Puccini, A., Berger, M.D., Tokunaga, R., et al. (2018) Outlooks on Epstein-Barr Virus Associated Gastric Cancer. Cancer Treatment Reviews, 66, 15-22. https://doi.org/10.1016/j.ctrv.2018.03.006
|
[11]
|
Pikuła, A., Kwietniewska, M., Rawicz-Pruszyński, K., et al. (2020) The Importance of Epstein-Barr Virus Infection in the Systemic Treatment of Patients with Gastric Cancer. Seminars in Oncology, 47, 127-137. https://doi.org/10.1053/j.seminoncol.2020.04.001
|
[12]
|
Murphy, G., Pfeiffer, R., Camargo, M.C. and Rabkin, C.S. (2009) Meta-Analysis Shows That Prevalence of Epstein-Barr Virus-Positive Gastric Cancer Differs Based on Sex and Anatomic Location. Gastroenterology, 137, 824-833. https://doi.org/10.1053/j.gastro.2009.05.001
|
[13]
|
Song, H. and Kim, K. (2011) Pathology of Epstein-Barr Virus-Associated Gastric Carcinoma and Its Relationship to Prognosis. Gut and Liver, 5, 143-148. https://doi.org/10.5009/gnl.2011.5.2.143
|
[14]
|
Osumi, H., Kawachi, H., Yoshio, T., Ida, S., Yamamoto, N., Horiuchi, Y., et al. (2019) Epstein-Barr Virus Status Is a Promising Biomarker for Endoscopic Resection in Early Gastric Cancer: Proposal of a Novel Therapeutic Strategy. Journal of Gastroenterology, 54, 774-783. https://doi.org/10.1007/s00535-019-01562-0
|
[15]
|
Rodriquenz, M.G., Roviello, G., D’Angelo, A., Lavacchi, D., Roviello, F. and Polom, K. (2020) MSI and EBV Positive Gastric Cancer’s Subgroups and Their Link with Novel Immunotherapy. Journal of Clinical Medicine, 9, Article 1427. https://doi.org/10.3390/jcm9051427
|
[16]
|
Song, H., Srivastava, A., Lee, J., Kim, Y.S., Kim, K., Ki Kang, W., et al. (2010) Host Inflammatory Response Predicts Survival of Patients with Epstein-Barr Virus-Associated Gastric Carcinoma. Gastroenterology, 139, 84-92.E2. https://doi.org/10.1053/j.gastro.2010.04.002
|
[17]
|
Baer, R., Bankier, A.T., Biggin, M.D., Deininger, P.L., Farrell, P.J., Gibson, T.J., et al. (1984) DNA Sequence and Expression of the B95-8 Epstein-Barr Virus Genome. Nature, 310, 207-211. https://doi.org/10.1038/310207a0
|
[18]
|
Shinozaki-Ushiku, A., Kunita, A. and Fukayama, M. (2015) Update on Epstein-Barr Virus and Gastric Cancer (Review). International Journal of Oncology, 46, 1421-1434. https://doi.org/10.3892/ijo.2015.2856
|
[19]
|
Fukayama, M. and Ushiku, T. (2011) Epstein-Barr Virus-Associated Gastric Carcinoma. Pathology-Research and Practice, 207, 529-537. https://doi.org/10.1016/j.prp.2011.07.004
|
[20]
|
Kenney, S.C. and Mertz, J.E. (2014) Regulation of the Latent-Lytic Switch in Epstein-Barr Virus. Seminars in Cancer Biology, 26, 60-68. https://doi.org/10.1016/j.semcancer.2014.01.002
|
[21]
|
Sohn, B.H., Hwang, J.-E., Jang, H.-J., et al. (2017) Clinical Significance of Four Molecular Subtypes of Gastric Cancer Identified by the Cancer Genome Atlas Project. Clinical Cancer Research, 23, 4441-4449. https://doi.org/10.1158/1078-0432.CCR-16-2211
|
[22]
|
Matsusaka, K., Funata, S., Fukuyo, M., Seto, Y., Aburatani, H., Fukayama, M., et al. (2017) Epstein-Barr Virus Infection Induces Genome-Wide de novo DNA Methylation in Non-Neoplastic Gastric Epithelial Cells. The Journal of Pathology, 242, 391-399. https://doi.org/10.1002/path.4909
|
[23]
|
Tang, F., Chen, J., Zhang, N., Gong, L., Jiang, Y., Feng, Z., et al. (2018) Expression of CCL21 by EBV-Associated Gastric Carcinoma Cells Protects CD8+CCR7+ T Lymphocytes from Apoptosis via the Mitochondria-Mediated Pathway. Pathology, 50, 613-621. https://doi.org/10.1016/j.pathol.2018.05.004
|
[24]
|
Hinata, M., Kunita, A., Abe, H., Morishita, Y., Sakuma, K., Yamashita, H., et al. (2020) Exosomes of Epstein-Barr Virus-Associated Gastric Carcinoma Suppress Dendritic Cell Maturation. Microorganisms, 8, Article 1776. https://doi.org/10.3390/microorganisms8111776
|
[25]
|
Pan, Y., Yu, Y., Wang, X. and Zhang, T. (2020) Tumor-Associated Macrophages in Tumor Immunity. Frontiers in Immunology, 11, Article 583084. https://doi.org/10.3389/fimmu.2020.583084
|
[26]
|
Veglia, F., Sanseviero, E. and Gabrilovich, D.I. (2021) Myeloid-Derived Suppressor Cells in the Era of Increasing Myeloid Cell Diversity. Nature Reviews Immunology, 21, 485-498. https://doi.org/10.1038/s41577-020-00490-y
|
[27]
|
Lu, S., Wang, L.J., Lombardo, K., et al. (2019) Expression of Indoleamine 2, 3-Dioxygenase 1 (IDO1) and Tryptophanyl-tRNA Synthetase (WARS) in Gastric Cancer Molecular Subtypes. Applied Immunohistochemistry & Molecular Morphology, 28, 360-368. https://doi.org/10.1097/PAI.0000000000000761
|
[28]
|
Zhang, N., Chen, J., Xiao, L., Tang, F., Zhang, Z., Zhang, Y., et al. (2015) Accumulation Mechanisms of CD4+CD25+FOXP3+ Regulatory T Cells in EBV-Associated Gastric Carcinoma. Scientific Reports, 5, Article No. 18057. https://doi.org/10.1038/srep18057
|
[29]
|
Lima, Á., Sousa, H., Medeiros, R., Nobre, A. and Machado, M. (2022) PD-L1 Expression in EBV Associated Gastric Cancer: A Systematic Review and Meta-Analysis. Discover Oncology, 13, Article No. 19. https://doi.org/10.1007/s12672-022-00479-0
|
[30]
|
Keir, M.E., Butte, M.J., Freeman, G.J. and Sharpe, A.H. (2008) PD-1 and Its Ligands in Tolerance and Immunity. Annual Review of Immunology, 26, 677-704. https://doi.org/10.1146/annurev.immunol.26.021607.090331
|
[31]
|
Carter, L.L., Fouser, L.A., Jussif, J., Fitz, L., Deng, B., Wood, C.R., et al. (2002) PD-1: PD-L Inhibitory Pathway Affects Both CD4+ and CD8+ T Cells and Is Overcome by IL-2. European Journal of Immunology, 32, 634-642. https://doi.org/10.1002/1521-4141(200203)32:3<634::aid-immu634>3.0.co;2-9
|
[32]
|
Shukla, S.K., Prasad, K.N., Tripathi, A., Singh, A., Saxena, A., Chand Ghoshal, U., et al. (2011) Epstein-Barr Virus DNA Load and Its Association with Helicobacter Pylori Infection in Gastroduodenal Diseases. The Brazilian Journal of Infectious Diseases, 15, 583-590. https://doi.org/10.1016/s1413-8670(11)70255-0
|
[33]
|
Noh, J.H., Shin, J.Y., Lee, J.H., Park, Y.S., Lee, I., Kim, G.H., et al. (2022) Clinical Significance of Epstein-Barr Virus and Helicobacter pylori Infection in Gastric Carcinoma. Gut and Liver, 17, 69-77. https://doi.org/10.5009/gnl210593
|
[34]
|
Japanese Gastric Cancer Association (2016) Japanese Gastric Cancer Treatment Guidelines 2014 (ver. 4). Gastric Cancer, 20, 1-19. https://doi.org/10.1007/s10120-016-0622-4
|
[35]
|
Tada, M., Murakami, A., Karita, M., Yanai, H. and Okita, K. (1993) Endoscopic Resection of Early Gastric Cancer. Endoscopy, 25, 445-450. https://doi.org/10.1055/s-2007-1010365
|
[36]
|
Gotoda, T., Yanagisawa, A., Sasako, M., Ono, H., Nakanishi, Y., Shimoda, T., et al. (2000) Incidence of Lymph Node Metastasis from Early Gastric Cancer: Estimation with a Large Number of Cases at Two Large Centers. Gastric Cancer, 3, 219-225. https://doi.org/10.1007/pl00011720
|
[37]
|
Choi, K.K., Bae, J.M., Kim, S.M., Sohn, T.S., Noh, J.H., Lee, J.H., et al. (2016) The Risk of Lymph Node Metastases in 3951 Surgically Resected Mucosal Gastric Cancers: Implications for Endoscopic Resection. Gastrointestinal Endoscopy, 83, 896-901. https://doi.org/10.1016/j.gie.2015.08.051
|
[38]
|
Xie, T., Liu, Y., Zhang, Z., et al. (2020) Positive Status of Epstein-Barr Virus as a Biomarker for Gastric Cancer Immunotherapy: A Prospective Observational Study. Journal of Immunotherapy, 43, 139-144. https://doi.org/10.1097/CJI.0000000000000316
|
[39]
|
Caruso, H.G., Heimberger, A.B. and Cooper, L.J.N. (2018) Steering CAR T Cells to Distinguish Friend from Foe. OncoImmunology, 8, e1271857. https://doi.org/10.1080/2162402x.2016.1271857
|
[40]
|
Smith, J.P., Cao, H., Chen, W., Mahmood, K., Phillips, T., Sutton, L., et al. (2021) Gastrin Vaccine Alone and in Combination with an Immune Checkpoint Antibody Inhibits Growth and Metastases of Gastric Cancer. Frontiers in Oncology, 11, Article 788875. https://doi.org/10.3389/fonc.2021.788875
|
[41]
|
Nakamura, M., Nishikawa, J., Saito, M., Sakai, K., Sasaki, S., Hashimoto, S., et al. (2016) Decitabine Inhibits Tumor Cell Proliferation and up‐Regulates E‐Cadherin Expression in Epstein-Barr Virus‐Associated Gastric Cancer. Journal of Medical Virology, 89, 508-517. https://doi.org/10.1002/jmv.24634
|
[42]
|
Vijayaraghavalu, S. and Labhasetwar, V. (2013) Efficacy of Decitabine-Loaded Nanogels in Overcoming Cancer Drug Resistance Is Mediated via Sustained DNA Methyltransferase 1 (DNMT1) Depletion. Cancer Letters, 331, 122-129. https://doi.org/10.1016/j.canlet.2012.12.009
|
[43]
|
Lee, H.G., Kim, H., Kim, E.J., Park, P., Dong, S.M., et al. (2015) Targeted Therapy for Epstein-Barr Virus-Associated Gastric Carcinoma Using Low-Dose Gemcitabine-Induced Lytic Activation. Oncotarget, 6, 31018-31029. https://doi.org/10.18632/oncotarget.5041
|
[44]
|
Son, M., Lee, M., Ryu, E., Moon, A., Jeong, C., Jung, Y.W., et al. (2015) Genipin as a Novel Chemical Activator of EBV Lytic Cycle. Journal of Microbiology, 53, 155-165. https://doi.org/10.1007/s12275-015-4672-9
|
[45]
|
Gong, W., Zhang, L., Yu, H., Yu, Q., Pan, W., Wang, Y., et al. (2018) Dihydroartemisinin Suppresses the Proliferation of Epstein-Barr Virus-Associated Gastric Carcinoma Cells via Downregulation of Latent Membrane Protein 2A. Oncology Letters, 16, 2613-2619. https://doi.org/10.3892/ol.2018.8950
|
[46]
|
Huh, S., Lee, S., Choi, S.J., Wu, Z., Cho, J., Kim, L., et al. (2019) Quercetin Synergistically Inhibit EBV-Associated Gastric Carcinoma with Ganoderma lucidum Extracts. Molecules, 24, Article 3834. https://doi.org/10.3390/molecules24213834
|