EB病毒相关性胃癌研究进展
Research Progress of EB Virus-Associated Gastric Cancer
DOI: 10.12677/acm.2024.1482294, PDF, HTML, XML,   
作者: 宋婷婷:同济大学附属东方医院胶州医院肿瘤血液科,山东 胶州
关键词: EB病毒胃癌DNA甲基化肿瘤微环境治疗Epstein-Barr Virus Gastric Carcinoma DNA Methylation Tumor Microenvironment Therapy
摘要: EB病毒是胃癌发生的生物学病因之一,关于EB病毒感染胃上皮细胞形成胃癌的发病机制尚未完全阐明,可能与细胞间多种信号通路及肿瘤微环境相关。EB病毒相关性胃癌(EBV-aGC)具有独特的临床病理特征,预后较好。近年来随着免疫治疗等新的治疗手段的发展,为胃癌患者的治愈提供了可能。本文就EBV-aGC的临床病理特征、发病机制及治疗三方面进行综述。
Abstract: Epstein-Barr virus (EBV) is one of the biological causes of gastric carcinoma. The pathogenesis of gastric carcinoma caused by EBV infection in gastric epithelial cells has not been fully elucidated, which may be related to a variety of signal pathways between cells and tumor microenvironment. EBV-associated gastric carcinoma (EBV-aGC) has unique clinicopathological features and a good prognosis. In recent years, with the development of immunotherapy and other new treatment methods, it is possible to cure patients with gastric carcinoma. This article reviews the clinical and pathological features, pathogenesis and treatment of EBV-aGC.
文章引用:宋婷婷. EB病毒相关性胃癌研究进展[J]. 临床医学进展, 2024, 14(8): 862-868. https://doi.org/10.12677/acm.2024.1482294

1. 引言

EB病毒是第一个被发现的致癌疱疹病毒,最初是在Burkitt淋巴瘤淋巴母细胞中发现的[1],EB病毒可导致不同来源的细胞异常增值形成肿瘤,如B细胞来源的霍奇金淋巴瘤、上皮细胞来源的鼻咽癌、胃癌、间充质细胞来源的平滑肌肉瘤等[2]。Tokunaga等人在1993年通过原位杂交技术将EBER阳性者定义为EBV相关性胃癌[3]。既往基于胃癌形态学特点、生长方式及组织病理特征,使用Lauren分型和WHO分型。Lauren分型将胃癌分为肠型和弥漫型;WHO分型则分为:乳头型、管状型、黏液癌和差黏附性癌。但Lauren分型和WHO分型尚不能指导精准治疗[4]。随着基因组技术的进步,出现了不同的基因分型如Tan分型[5]、Shah基因分型[6]、TCGA基因分型[7]及ACRG基因分型[8]等。EBV-aGC作为胃癌的特殊分型,其患者可对PD-1抑制剂产生显著应答[9],同时EBV被认为是免疫治疗的预后检测指标[10]。本文将通过EBV-aGC临床病理特征、发病机制及目前治疗手段等内容介绍EB病毒相关性胃癌。

2. EBV-aGC临床病理特征

2.1. 临床特征

EBV相关性胃癌(EBV-aGC)发病率约为4%~18% [11],不同地区之间发病率不同,美洲、欧洲、亚洲的发病率分别为9.9%、9.2%和8.3% [12]。EBV-aGC在胃癌中的比例约为8.7% [12],其临床特征为:男性发病率高于女性;病变部位主要位于近端胃,包括贲门、胃底和胃体[13];残胃癌发生率高;淋巴结转移发生率较低[14];EBV阳性患者预后优于阴性患者。EBV阳性的肿瘤常有PIK3CA、ARID1A、BCOR突变和CpG甲基化。15%的EBV-aGC患者还出现PD-L1,PD-L2的扩增[15],这些突变特征暗示了PI3K抑制剂,JAK2抑制剂和免疫检查点抑制剂的潜在作用

2.2. 病理特征

EBV-aGC根据镜下细胞免疫反应,可以分为淋巴上皮瘤样癌(LELC)、克罗恩样淋巴细胞反应样癌(CLR)和传统胃腺癌三种组织学亚型[13]。淋巴上皮瘤样癌定义为:1) 肿瘤边缘界定明确;2) 肿瘤浸润淋巴细胞大量浸润;3) 肿瘤细胞边界模糊,合胞增长方式形成不良的腺体结果;4) 无结缔组织生存;5) 早期胃黏膜内腺体连接融合形成“花边图案”。然而EBV-aGC中的淋巴上皮瘤样癌亚型在目前的分子分类中不能被识别[11]。克罗恩样淋巴细胞反应样癌的定义为:1) 肿瘤边缘有≥3个具有生发中心的淋巴滤泡浸润;2) 较之肿瘤细胞,淋巴细胞浸润少;3) 可见小管或腺体形成;4) 结缔组织形成少或无结缔组织生成。克罗恩样淋巴细胞反应样癌与传统腺癌相比,促纤维增生反应显著减少。传统胃腺癌还表现为少量淋巴细胞浸润,显著的结缔组织增生等特点。这三种组织学分型中淋巴上皮癌预后最好,其次克罗恩样淋巴细胞反应样癌,传统胃腺癌预后最差[16]

3. EBV-aGC发病机制

3.1. 基因水平的改变

EB病毒是线性双链DNA病毒[17]。病毒处于潜伏期时,其线性DNA通过末端重复序列融合形成环状DNA存在于细胞核中[2]。EB病毒基因产物与细胞之间的相互作用致使细胞异常克隆扩增,形成肿瘤[18]。EBV-aGC形成第一步是EB病毒侵入细胞使其感染宿主细胞,根据潜伏期EB病毒基因产物的不同分为I~III型[19]。EBV-aGC为I型,即CpG甲基化致使其潜伏基因仅表达EBNA1 (EBV核心抗原)、LMP2 (潜伏膜蛋白)、EBER1 (EBV编码的mRNA)、EBER2 (EBV编码的mRNA) [19]。第二步处于潜伏感染状态的淋巴细胞于胃黏膜区感染上皮细胞,第三步感染后的上皮细胞开始异常增殖。然而目前关于EB病毒如何感染上皮细胞并在胃内完成潜伏感染的机制尚未阐明,可能与细胞受体刺激、缺氧、转化生长因子(TGFβ)以及DNA损伤相关[20]。EBV-aGC细胞中因CpG序列胞嘧啶甲基化可抑制多种抑癌基因表达。同时发现EBV-aGC中调节氨基酸、脂肪酸等物质代谢的基因表达下调,CKMT1B、ME1和Ptgs2基因在EBV-aGC中表达下调,可影响胃癌患者预后[21]。一项关于DNA甲基化时间顺序的研究发现EB病毒携带的基因组优先进行甲基化。病毒DNA甲基化一般于感染后2周开始,至第17天EB病毒甲基化结束,开始感染细胞全基因,全基因甲基化在第28天结束。所以EB病毒感染细胞完成甲基化需要在胃腺中停留1月左右[22]。在EBV-aGC中ARID1A或PIK3CA基因的突变频率较高[7],然而在非肿瘤性胃黏膜中同样存在ARID1A突变和ARID1A表达缺失的细胞,ARID1A突变和ARID1A表达缺失的细胞可能是EBV感染的靶细胞,并且可能是EBV-aGC的前体细胞。然而EB病毒感染上皮细胞的机制尚未阐明,这将是未来研究重点。

3.2. EBV-aGC肿瘤微环境

EBV-aGC的微环境中有多种免疫细胞浸润,包括CD8+T细胞[23]、CD4+T细胞和树突状细胞(DC) [24]等免疫细胞。不同的免疫细胞在免疫应答中发挥不同作用:CD8+T细胞可发挥细胞毒性作用抑制肿瘤生长。EBV-aGC的微环境中有大量CD8+T细胞浸润,CD8+T细胞高表达与EBV-aGC良好预后相关。CD4+T细胞通过细胞免疫杀伤肿瘤细胞。树突状细胞可通过抗原提呈作用诱导静止T细胞增殖和应答,在特异性抗肿瘤免疫中发挥关键作用。然调节性T细胞(regulatory T cell, Treg)在免疫过程中发挥负性调节作用,抑制效应T细胞的免疫功能。M2型肿瘤相关巨噬细胞(Tumor-associated macrophages, TAMs)有助于肿瘤增殖及血管形成[25]。髓源性抑制细胞(Myeloid-derived suppressor cells, MDSCs)通过多种作用机制抑制抗肿瘤反应[26]。辅助性T细胞17 (T helper cell 17, Th17)分泌的白介素17 (Interleukin 17, IL-17)与肿瘤进展、转移有关[26]。EBV-aGC微环境中吲哚胺2,3-双加氧酶分泌增加[27],致使局部色氨酸耗尽,从而抑制T细胞合成,促进肿瘤生长。肿瘤细胞也可分泌CCL22从而引起Foxp3 + T细胞(调节性T细胞;Tregs)浸润[28],以此对抗CD8+T细胞的抗肿瘤作用。

EBV-aGC常为9号染色体位点的基因组扩增,其中包括编码PD-L1和PD-L2的基因[7]。EBV-aGC微环境中PD-L1高表达[29]。PD-L1属B7-CD28家族成员,是位于染色体9p24基因表达的I型跨膜蛋白[30]。PD-1是一种抑制共受体,与PD-L1结合后能够抑制T细胞的活性[31]。PD-L1与PD-1受体结合后,使PD-1胞质区的ITSM结构域酪氨酸磷酸化,招募下游酪氨酸磷酸化酶2,从而激活CD28介导的下游通路,使磷脂酰肌醇3-激酶(phosphatidyl inosi-to1 3-hydroxy kinase, PI3K)去磷酸化,抑制丝氨酸–苏氨酸蛋白激酶(serine/threonine kinase, AKT),致使T淋巴细胞的增殖及IL-2和IFN-γ等分泌受限[30]。PD-L1与PD-1结合后产生负性免疫调控,促进肿瘤生长。免疫检查点的发现为EBV-aGC提供了新的治疗思路。

3.3. 环境因素

EBV-aGC可能与胃部炎症相关,炎症区域的胃上皮细胞可招募受EBV感染的B淋巴细胞。此外EBV-aGC也可能与HP感染有关,Shukla等发现幽门螺杆菌阳性的患者EB病毒DNA含量较高,提示幽门螺杆菌可能在调控EB病毒向裂解感染状态的转化过程中起重要作用[32]。然而近期的一项大型队列研究表明,EBV和HP合并感染未被确定为胃癌发展的独立预后因素[33]

4. EBV-aGC治疗

大多数胃癌患者可行手术切除,针对早期及晚期胃癌患者又有其他治疗方式。

4.1. 早期胃癌

早期胃癌的定义是指局限于黏膜或黏膜下层的癌,在日本早期胃癌的5年生存率超过90% [34]。内镜黏膜切除术(EMR)可用于无淋巴结转移的早期胃癌的局部治疗[35]。随着科技进步,内镜下黏膜剥离(ESD)被应用于临床,ESD的绝对适应症为:T1a期,直径 ≤ 2 cm且无溃疡的分化型胃癌。Gotoda等人对5265例早期胃癌患者的临床资料进行分析,提出了内镜下扩大切除的标准:1) 直径 > 2 cm且无溃疡的黏膜癌;2) 直径 ≤ 3 cm且有溃疡的黏膜癌;3) 黏膜下层浸润深度 ≤ 500 μm,且直径 ≤ 3 cm的黏膜下微浸润癌[36]。一项手术治疗早期胃癌的大样本数据分析显示:符合以上适应症的患者术后病理显示淋巴结转移率仅为0.3%和0.4% [37],早期EBV-aGC患者可行EMR或ESD治疗。

4.2. 晚期胃癌

4.2.1. 免疫治疗

晚期或转移性EBV-aGC患者可行放化疗或免疫治疗。EBV阳性胃癌患者易对化疗药物耐药,免疫治疗作为一种新兴的治疗方式,在恶性黑色素瘤、非小细胞肺癌、肾细胞癌、霍奇金淋巴瘤的治疗中具有明显优势。PD-L1在EBV-aGC中高表达,在一项突破性研究中,EBV-aGC患者应用免疫治疗,总缓解率达100% [9]。2019年ASCO会议上,相关报导称:4名EBV-aGC阳性患者中有1名患者免疫治疗后出现PR,ORR为25%;Tong Xie等人的一项前瞻性观察试验观察到EBV-aGC患者接受免疫治疗后最长的反应持续时间为18个月(截止到最后一次随访) [38]。嵌合抗原受体T细胞免疫疗法(Chimeric Antigen Receptor T-Cell Immunotherapy, CAR-T)的相关临床试验业已开展,如NCT05583201,NCT05393986,NCT05396300,NCT04650451等研究。研究表明,包HER2、CEA、EpCAM、Claudin 18.2和NKG2D在内的许多抗原可能是CAR-T细胞治疗的潜在靶点。CAR-T疗法对比非药物治疗(手术、放疗、干细胞移植)可使患者获得高质量生存获益[39]。CAR-NK细胞疗法在胃癌小鼠模型中也取得获益[26]。癌症疫苗是治疗EBV-aGC的另一种潜在途径。一种针对胃肠道胃泌素的疫苗与免疫检查点抑制剂联合或单独应用时,不仅可以调节肿瘤微环境,还可抑制肿瘤生长、转移[40]

4.2.2. DNA去甲基化治疗

去甲基化药物也可用于EBV-aGC的治疗中。去甲基化药物可诱导感染EB病毒的细胞裂解,继而导致细胞凋亡,因此去甲基化药物可能导致癌细胞裂解。地西他滨对EBV-aGC细胞株具有抗癌作用,地西他滨可诱导细胞凋亡并使肿瘤抑癌基因去甲基化,并上调其表达[41],这些事实证明去甲基化药物在EBV相关胃癌治疗中的可能。然而地西他滨在体内不稳定[42],探索其给药途径将成为今后研究重点。

4.2.3. CRISPR-Cas9技术介导的过继治疗

基于基因编辑CRISPR-Cas9技术介导的过继治疗也有望成为新的治疗策略,CRISPR-Cas9系统可产生无PD-1受体的CTL细胞,该细胞可增强针对EBV-LMP2A抗原的免疫应答,对EBV阳性的胃癌细胞具有更好的细胞毒性。目前评估CRISPR-Cas9技术在IV期胃癌中的安全性的I期试验正在进行。同时该治疗与低剂量放疗结合时,在小鼠模型中具有抗肿瘤效果。

4.2.4. 潜在治疗方法

吉西他滨联合更昔洛韦治疗模式:更昔洛韦只有在EBV编码的胸苷激酶/蛋白激酶表达的情况下,才能发挥抗病毒作用。而吉西他滨被发现是一种裂解诱导剂,两者联合可治疗EBV-aGC这一可能在小鼠模型中得到证实[43];京尼平对SNU719细胞具有明显的细胞毒作用,可诱导EB病毒C启动子和抑癌基因bcl7A甲基化,阻止细胞分裂,剂量依赖性上调EB病毒潜伏/裂解基因表达,激活EB病毒裂解活性,其有望成为抗EBV-aGC的有效药物[44];双氢青蒿素可下调潜伏膜蛋白2A表达从而抑制EBV-aGC细胞增殖[45];经小鼠实验表明灵芝体提取物联合槲皮素可协同抑制EBV相关性胃癌[46]

5. 结语

EBV-aGC的发病机制主要是EB病毒感染胃上皮细胞,使感染细胞基因甲基化,并在微环境的协同作用下致使感染细胞异常克隆,导致肿瘤发生。然而关于EB病毒感染胃上皮细胞的作用机制现今尚未阐明,关于其作用机制的研究应是未来研究重点,可能为胃癌治疗提供新思路。针对EB病毒相关性胃癌的治疗大部分可行手术治疗,早期胃癌患者可行EMR或ESD治疗,晚期患者可行放化疗等治疗。同时基于PD-L1在EBV-aGC中过表达这一特点,该亚型患者或可从免疫治疗中获益,此外还有很多潜在疗法例如吉西他滨联合更昔洛韦治疗模式,双氢青蒿素的研发等均在体外实验上取得成功,但在实际应用中还存在许多问题,例如给药问题、不良反应等等,攻克实际应用中存在的问题应为未来研究方向。

参考文献

[1] Epstein, M.A., Achong, B.G. and Barr, Y.M. (1964) Virus Particles in Cultured Lymphoblasts from Burkitt’s Lymphoma. The Lancet, 283, 702-703.
https://doi.org/10.1016/s0140-6736(64)91524-7
[2] Young, L.S., Yap, L.F. and Murray, P.G. (2016) Epstein-Barr Virus: More than 50 Years Old and Still Providing Surprises. Nature Reviews Cancer, 16, 789-802.
https://doi.org/10.1038/nrc.2016.92
[3] Tokunaga, M., Uemura, Y., Tokudome, T., Ishidate, T., Masuda, H., Okazaki, E., et al. (1993) Epstein‐Barr Virus Related Gastric Cancer in Japan: A Molecular Patho‐Epidemiological Study. Acta Pathologica Japonica, 43, 574-581.
https://doi.org/10.1111/j.1440-1827.1993.tb03233.x
[4] Dicken, B.J., Bigam, D.L., Cass, C., Mackey, J.R., Joy, A.A. and Hamilton, S.M. (2005) Gastric Adenocarcinoma: Review and Considerations for Future Directions. Annals of Surgery, 241, 27-39.
https://doi.org/10.1097/01.sla.0000149300.28588.23
[5] Tan, I.B., Ivanova, T., Lim, K.H., et al. (2011) Intrinsic Subtypes of Gastric Cancer, Based on Gene Expression Pattern, Predict Survival and Respond Differently to Chemotherapy. Gastroenterology, 141, 476-485.E11.
https://doi.org/10.1053/j.gastro.2011.04.042
[6] Shah, M.A., Khanin, R., Tang, L., Janjigian, Y.Y., Klimstra, D.S., Gerdes, H., et al. (2011) Molecular Classification of Gastric Cancer: A New Paradigm. Clinical Cancer Research, 17, 2693-2701.
https://doi.org/10.1158/1078-0432.ccr-10-2203
[7] The Cancer Genome Atlas Research Network (2014) Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nature, 513, 202-209.
https://doi.org/10.1038/nature13480
[8] Cristescu, R., Lee, J., Nebozhyn, M., Kim, K., Ting, J.C., Wong, S.S., et al. (2015) Molecular Analysis of Gastric Cancer Identifies Subtypes Associated with Distinct Clinical Outcomes. Nature Medicine, 21, 449-456.
https://doi.org/10.1038/nm.3850
[9] Kim, S.T., Cristescu, R., Bass, A.J., Kim, K., Odegaard, J.I., Kim, K., et al. (2018) Comprehensive Molecular Characterization of Clinical Responses to PD-1 Inhibition in Metastatic Gastric Cancer. Nature Medicine, 24, 1449-1458.
https://doi.org/10.1038/s41591-018-0101-z
[10] Naseem, M., Barzi, A., Brezden-Masley, C., Puccini, A., Berger, M.D., Tokunaga, R., et al. (2018) Outlooks on Epstein-Barr Virus Associated Gastric Cancer. Cancer Treatment Reviews, 66, 15-22.
https://doi.org/10.1016/j.ctrv.2018.03.006
[11] Pikuła, A., Kwietniewska, M., Rawicz-Pruszyński, K., et al. (2020) The Importance of Epstein-Barr Virus Infection in the Systemic Treatment of Patients with Gastric Cancer. Seminars in Oncology, 47, 127-137.
https://doi.org/10.1053/j.seminoncol.2020.04.001
[12] Murphy, G., Pfeiffer, R., Camargo, M.C. and Rabkin, C.S. (2009) Meta-Analysis Shows That Prevalence of Epstein-Barr Virus-Positive Gastric Cancer Differs Based on Sex and Anatomic Location. Gastroenterology, 137, 824-833.
https://doi.org/10.1053/j.gastro.2009.05.001
[13] Song, H. and Kim, K. (2011) Pathology of Epstein-Barr Virus-Associated Gastric Carcinoma and Its Relationship to Prognosis. Gut and Liver, 5, 143-148.
https://doi.org/10.5009/gnl.2011.5.2.143
[14] Osumi, H., Kawachi, H., Yoshio, T., Ida, S., Yamamoto, N., Horiuchi, Y., et al. (2019) Epstein-Barr Virus Status Is a Promising Biomarker for Endoscopic Resection in Early Gastric Cancer: Proposal of a Novel Therapeutic Strategy. Journal of Gastroenterology, 54, 774-783.
https://doi.org/10.1007/s00535-019-01562-0
[15] Rodriquenz, M.G., Roviello, G., D’Angelo, A., Lavacchi, D., Roviello, F. and Polom, K. (2020) MSI and EBV Positive Gastric Cancer’s Subgroups and Their Link with Novel Immunotherapy. Journal of Clinical Medicine, 9, Article 1427.
https://doi.org/10.3390/jcm9051427
[16] Song, H., Srivastava, A., Lee, J., Kim, Y.S., Kim, K., Ki Kang, W., et al. (2010) Host Inflammatory Response Predicts Survival of Patients with Epstein-Barr Virus-Associated Gastric Carcinoma. Gastroenterology, 139, 84-92.E2.
https://doi.org/10.1053/j.gastro.2010.04.002
[17] Baer, R., Bankier, A.T., Biggin, M.D., Deininger, P.L., Farrell, P.J., Gibson, T.J., et al. (1984) DNA Sequence and Expression of the B95-8 Epstein-Barr Virus Genome. Nature, 310, 207-211.
https://doi.org/10.1038/310207a0
[18] Shinozaki-Ushiku, A., Kunita, A. and Fukayama, M. (2015) Update on Epstein-Barr Virus and Gastric Cancer (Review). International Journal of Oncology, 46, 1421-1434.
https://doi.org/10.3892/ijo.2015.2856
[19] Fukayama, M. and Ushiku, T. (2011) Epstein-Barr Virus-Associated Gastric Carcinoma. Pathology-Research and Practice, 207, 529-537.
https://doi.org/10.1016/j.prp.2011.07.004
[20] Kenney, S.C. and Mertz, J.E. (2014) Regulation of the Latent-Lytic Switch in Epstein-Barr Virus. Seminars in Cancer Biology, 26, 60-68.
https://doi.org/10.1016/j.semcancer.2014.01.002
[21] Sohn, B.H., Hwang, J.-E., Jang, H.-J., et al. (2017) Clinical Significance of Four Molecular Subtypes of Gastric Cancer Identified by the Cancer Genome Atlas Project. Clinical Cancer Research, 23, 4441-4449.
https://doi.org/10.1158/1078-0432.CCR-16-2211
[22] Matsusaka, K., Funata, S., Fukuyo, M., Seto, Y., Aburatani, H., Fukayama, M., et al. (2017) Epstein-Barr Virus Infection Induces Genome-Wide de novo DNA Methylation in Non-Neoplastic Gastric Epithelial Cells. The Journal of Pathology, 242, 391-399.
https://doi.org/10.1002/path.4909
[23] Tang, F., Chen, J., Zhang, N., Gong, L., Jiang, Y., Feng, Z., et al. (2018) Expression of CCL21 by EBV-Associated Gastric Carcinoma Cells Protects CD8+CCR7+ T Lymphocytes from Apoptosis via the Mitochondria-Mediated Pathway. Pathology, 50, 613-621.
https://doi.org/10.1016/j.pathol.2018.05.004
[24] Hinata, M., Kunita, A., Abe, H., Morishita, Y., Sakuma, K., Yamashita, H., et al. (2020) Exosomes of Epstein-Barr Virus-Associated Gastric Carcinoma Suppress Dendritic Cell Maturation. Microorganisms, 8, Article 1776.
https://doi.org/10.3390/microorganisms8111776
[25] Pan, Y., Yu, Y., Wang, X. and Zhang, T. (2020) Tumor-Associated Macrophages in Tumor Immunity. Frontiers in Immunology, 11, Article 583084.
https://doi.org/10.3389/fimmu.2020.583084
[26] Veglia, F., Sanseviero, E. and Gabrilovich, D.I. (2021) Myeloid-Derived Suppressor Cells in the Era of Increasing Myeloid Cell Diversity. Nature Reviews Immunology, 21, 485-498.
https://doi.org/10.1038/s41577-020-00490-y
[27] Lu, S., Wang, L.J., Lombardo, K., et al. (2019) Expression of Indoleamine 2, 3-Dioxygenase 1 (IDO1) and Tryptophanyl-tRNA Synthetase (WARS) in Gastric Cancer Molecular Subtypes. Applied Immunohistochemistry & Molecular Morphology, 28, 360-368.
https://doi.org/10.1097/PAI.0000000000000761
[28] Zhang, N., Chen, J., Xiao, L., Tang, F., Zhang, Z., Zhang, Y., et al. (2015) Accumulation Mechanisms of CD4+CD25+FOXP3+ Regulatory T Cells in EBV-Associated Gastric Carcinoma. Scientific Reports, 5, Article No. 18057.
https://doi.org/10.1038/srep18057
[29] Lima, Á., Sousa, H., Medeiros, R., Nobre, A. and Machado, M. (2022) PD-L1 Expression in EBV Associated Gastric Cancer: A Systematic Review and Meta-Analysis. Discover Oncology, 13, Article No. 19.
https://doi.org/10.1007/s12672-022-00479-0
[30] Keir, M.E., Butte, M.J., Freeman, G.J. and Sharpe, A.H. (2008) PD-1 and Its Ligands in Tolerance and Immunity. Annual Review of Immunology, 26, 677-704.
https://doi.org/10.1146/annurev.immunol.26.021607.090331
[31] Carter, L.L., Fouser, L.A., Jussif, J., Fitz, L., Deng, B., Wood, C.R., et al. (2002) PD-1: PD-L Inhibitory Pathway Affects Both CD4+ and CD8+ T Cells and Is Overcome by IL-2. European Journal of Immunology, 32, 634-642.
https://doi.org/10.1002/1521-4141(200203)32:3<634::aid-immu634>3.0.co;2-9
[32] Shukla, S.K., Prasad, K.N., Tripathi, A., Singh, A., Saxena, A., Chand Ghoshal, U., et al. (2011) Epstein-Barr Virus DNA Load and Its Association with Helicobacter Pylori Infection in Gastroduodenal Diseases. The Brazilian Journal of Infectious Diseases, 15, 583-590.
https://doi.org/10.1016/s1413-8670(11)70255-0
[33] Noh, J.H., Shin, J.Y., Lee, J.H., Park, Y.S., Lee, I., Kim, G.H., et al. (2022) Clinical Significance of Epstein-Barr Virus and Helicobacter pylori Infection in Gastric Carcinoma. Gut and Liver, 17, 69-77.
https://doi.org/10.5009/gnl210593
[34] Japanese Gastric Cancer Association (2016) Japanese Gastric Cancer Treatment Guidelines 2014 (ver. 4). Gastric Cancer, 20, 1-19.
https://doi.org/10.1007/s10120-016-0622-4
[35] Tada, M., Murakami, A., Karita, M., Yanai, H. and Okita, K. (1993) Endoscopic Resection of Early Gastric Cancer. Endoscopy, 25, 445-450.
https://doi.org/10.1055/s-2007-1010365
[36] Gotoda, T., Yanagisawa, A., Sasako, M., Ono, H., Nakanishi, Y., Shimoda, T., et al. (2000) Incidence of Lymph Node Metastasis from Early Gastric Cancer: Estimation with a Large Number of Cases at Two Large Centers. Gastric Cancer, 3, 219-225.
https://doi.org/10.1007/pl00011720
[37] Choi, K.K., Bae, J.M., Kim, S.M., Sohn, T.S., Noh, J.H., Lee, J.H., et al. (2016) The Risk of Lymph Node Metastases in 3951 Surgically Resected Mucosal Gastric Cancers: Implications for Endoscopic Resection. Gastrointestinal Endoscopy, 83, 896-901.
https://doi.org/10.1016/j.gie.2015.08.051
[38] Xie, T., Liu, Y., Zhang, Z., et al. (2020) Positive Status of Epstein-Barr Virus as a Biomarker for Gastric Cancer Immunotherapy: A Prospective Observational Study. Journal of Immunotherapy, 43, 139-144.
https://doi.org/10.1097/CJI.0000000000000316
[39] Caruso, H.G., Heimberger, A.B. and Cooper, L.J.N. (2018) Steering CAR T Cells to Distinguish Friend from Foe. OncoImmunology, 8, e1271857.
https://doi.org/10.1080/2162402x.2016.1271857
[40] Smith, J.P., Cao, H., Chen, W., Mahmood, K., Phillips, T., Sutton, L., et al. (2021) Gastrin Vaccine Alone and in Combination with an Immune Checkpoint Antibody Inhibits Growth and Metastases of Gastric Cancer. Frontiers in Oncology, 11, Article 788875.
https://doi.org/10.3389/fonc.2021.788875
[41] Nakamura, M., Nishikawa, J., Saito, M., Sakai, K., Sasaki, S., Hashimoto, S., et al. (2016) Decitabine Inhibits Tumor Cell Proliferation and up‐Regulates E‐Cadherin Expression in Epstein-Barr Virus‐Associated Gastric Cancer. Journal of Medical Virology, 89, 508-517.
https://doi.org/10.1002/jmv.24634
[42] Vijayaraghavalu, S. and Labhasetwar, V. (2013) Efficacy of Decitabine-Loaded Nanogels in Overcoming Cancer Drug Resistance Is Mediated via Sustained DNA Methyltransferase 1 (DNMT1) Depletion. Cancer Letters, 331, 122-129.
https://doi.org/10.1016/j.canlet.2012.12.009
[43] Lee, H.G., Kim, H., Kim, E.J., Park, P., Dong, S.M., et al. (2015) Targeted Therapy for Epstein-Barr Virus-Associated Gastric Carcinoma Using Low-Dose Gemcitabine-Induced Lytic Activation. Oncotarget, 6, 31018-31029.
https://doi.org/10.18632/oncotarget.5041
[44] Son, M., Lee, M., Ryu, E., Moon, A., Jeong, C., Jung, Y.W., et al. (2015) Genipin as a Novel Chemical Activator of EBV Lytic Cycle. Journal of Microbiology, 53, 155-165.
https://doi.org/10.1007/s12275-015-4672-9
[45] Gong, W., Zhang, L., Yu, H., Yu, Q., Pan, W., Wang, Y., et al. (2018) Dihydroartemisinin Suppresses the Proliferation of Epstein-Barr Virus-Associated Gastric Carcinoma Cells via Downregulation of Latent Membrane Protein 2A. Oncology Letters, 16, 2613-2619.
https://doi.org/10.3892/ol.2018.8950
[46] Huh, S., Lee, S., Choi, S.J., Wu, Z., Cho, J., Kim, L., et al. (2019) Quercetin Synergistically Inhibit EBV-Associated Gastric Carcinoma with Ganoderma lucidum Extracts. Molecules, 24, Article 3834.
https://doi.org/10.3390/molecules24213834