探寻攻击行为的神经标志物:来自P300的证据
Exploring the Neural Markers of Aggressive Behavior: Evidence from P300
DOI: 10.12677/ap.2024.148563, PDF, HTML, XML,   
作者: 李乐毅, 江靖恺, 陈 楠, 佘雨娜, 刘宏艳:浙江理工大学心理学系,浙江 杭州;胡治国:杭州师范大学附属医院认知与脑疾病研究中心,浙江 杭州
关键词: P300攻击行为临床群体犯罪群体P300 Aggressive Behavior Clinical Groups Criminal Groups
摘要: 攻击行为正逐渐上升为一个突出的公共卫生问题,是否能够寻找到攻击性行为的神经标志物,成为了心理学家和神经科学家的共同关注目标。P300被认为可作为独立指标有效预测攻击性行为。本文分别介绍了P300在临床群体、犯罪群体和非临床暴力风险群体的攻击性行为测量中的应用,评估了研究结果的一致性,并从P300指标的多角度分析及与其他ERP成分的结合、对犯罪群体进行进一步的类型细分、P300的应用场景拓展(如监内暴力预测、暴力行为干预效果评估和正常人攻击风险测量)等三个方面对未来的研究方向进行了展望。
Abstract: Aggressive behavior is gradually emerging as a prominent public health problem. Finding neural markers for aggressive behavior has become a common focus for psychologists and neuroscientists. The P300 is considered to be an independent indicator that can effectively predict aggressive behavior. This article introduces the application of P300 in the measurement of aggressive behavior in clinical, criminal and non-clinical violence risk groups, evaluates the consistency of research results, and looks forward to future research directions from three perspectives: multi-dimensional analysis of P300 predictors and combination with other ERP components, further subdivision of criminal groups, and expansion of the application scenarios of P300 (such as the prediction of violence in prison, the evaluation of the effectiveness of violence intervention and the measurement of the risk of aggression in normal people).
文章引用:李乐毅, 江靖恺, 陈楠, 佘雨娜, 刘宏艳, 胡治国 (2024). 探寻攻击行为的神经标志物:来自P300的证据. 心理学进展, 14(8), 410-422. https://doi.org/10.12677/ap.2024.148563

1. 引言

根据世界卫生组织2014年的报告,每年有超过130万人因暴力而丧生,占全球死亡率的2.5%;到了2021年,这一数字快速攀升至440万,占全球死亡率的近8%。在这一背景下,是否能够寻找到攻击性行为的神经标志物(Neural markers),成为了心理学家和神经科学家的共同关注目标。神经标志物基于神经生理活动的测量,可以在不依赖主观报告的情况下进行客观地测量,具有高准确性的特点(Tsuchiya et al., 2015; Arzi et al., 2020)。

事件相关电位(Event-Related Potential, ERP)的波幅或潜伏期已被证实可以稳定地标识出攻击性和非攻击性个体(Patrick, 2008)。P300作为ERP的一种成分,是指从接受刺激开始在大约300ms左右出现的正波电位(魏景汉,罗跃嘉,2010)。其优势在于,低成本、测试时间短、容易获得稳定结果,且操作简单(Herzog et al., 2021; Olichney et al., 2022; Sheffler et al., 2022; Li et al., 2013; Tao et al., 2022)。P300被认为可作为独立指标(Blignaut & Vandenheever, 2022; Key et al., 2023; Arıkan et al., 2024; Salas et al., 2024),有效预测攻击性行为(Gao & Raine, 2009; Venables et al., 2011; Yancey et al., 2013; Fanning et al., 2014; Zhang et al., 2017; Pasion et al., 2018; Delfin et al., 2022; Yu et al., 2022; Pasion et al., 2023; Wu et al., 2023)。本文将分别介绍P300在临床群体、犯罪群体和非临床暴力风险群体的攻击性行为测量中的应用,评估研究结果的一致性,并对未来的研究方向进行展望。

2. 攻击行为

攻击是行动者有意图伤害他人的行为或者倾向,且受害者有意避免这种伤害(Allen & Anderson, 2017)。攻击行为通常包括三大特征:1) 可观察的外显行为或倾向;2) 行动者具有主动伤害意图;3) 受害者有动机避免这种行为。其中暴力是以极端伤害为目标的攻击行为(Allen & Anderson, 2017; Bushman & Anderson, 2001; Klein Tuente et al., 2019)。

攻击行为可以划分为:特质性的攻击倾向(Tremblay & Belchevski, 2004)和状态性的攻击行为(Bushman & Anderson 2001)。前者是指个体稳定且持久的、倾向于伤害他人的认知、情绪和行为模式,这种倾向可以通过个体间的差异来量化(Paulhus et al., 2018)。后者则是指在特定情境下,个体故意进行的伤害行为,这种行为通常是他人所希望避免的。

攻击行为的脑电研究显示,攻击行为与多个ERP成分异常有关,这包括早期(P50)、中期(ERN, N2)和晚期(P300)成分。其中P300波幅的减小与攻击行为的关系尤为密切,这可能是因为P300能更精确地反映了攻击行为的决策和执行过程(Gao & Raine, 2009)。

3. P300与临床群体的攻击行为测量

这里的临床群体定义为:符合精神障碍诊断与统计手册第五版(The Diagnostic and Statistical Manual of Mental Disorders, DSM-5)中精神分裂症、物质使用障碍、反社会人格障碍、品行障碍等诊断标准;或者符合国际疾病分类第10版(International Classification of Diseases, 10th Revision, ICD-10)中精神与行为障碍分类中有关精神分裂症或急性精神分裂症样精神病性障碍的诊断标准。

3.1. 精神分裂症

精神分裂症患者产生攻击行为的原因主要包括精神病症状(Wu et al., 2018)、心理因素(Khosravani et al., 2024)和冲动性(Hoptman, 2015)。精神分裂症被认为在发生暴力行为时存在认知缺陷和消极情绪调节障碍(Richetto & Meyer, 2021)。Krakowski等人(2016)发现,精神分裂症患者面对负面情绪刺激时,P300成分的减小与其反应抑制能力的减弱有关。也有研究者认为,P300潜伏期延长是精神分裂症患者发生暴力行为最突出的表现(Silverstein et al., 2015),也是精神分裂症患者最显著的暴力指标(Bochkarev et al., 2020)。采用Oddball范式,李丹玉(2021)唐敏和黄银秋(2022)赵红岩等人(2022)Wu等人(2023)赵丁等人(2024)均发现,P300的潜伏期和波幅可以作为评估精神分裂症患者暴力风险的特异性神经电生理指标。高风险组的P300潜伏期较低风险组延长,且P300的波幅显著减小。有研究者认为,Oddball范式中P300的异常可能反映了精神分裂症患者在处理信息时存在延迟,这种延迟进而影响了他们对周围环境的感知和对社会互动的理解,增加了误解和冲突的风险,最终导致暴力行为发生。

3.2. 反社会人格障碍

反社会人格,也称为反社会型人格障碍(Antisocial Personality Disorder, APD),是一种心理障碍,其特征是漠视或侵犯他人的权利,表现为不遵守社会规范的行为模式(Black, 2015)。反社会人格的个体通常会表现出冲动性暴力行为(Bauer et al., 1994)。

大量研究揭示了反社会行为与P300波幅减小之间的关系。这些研究主要集中在反社会人格以及品行障碍(Conduct Disorder, CD)中。Bauer,O’Connor和Hesselbrock (1994)使用视觉Oddball范式发现,反社会人格组(相比于控制组)对目标刺激表现出更小的P300,主要表现在额区。很多研究者也验证了上述发现,即APD成人在视觉Oddball任务中会出现P300波幅的减小(Bauer et al., 1994; O’Connor et al., 1994)。P300的波幅与APD症状数量呈负相关关系,且可以回顾性评估CD症状(Costa et al., 2000)。CD障碍的青少年在听觉(Bauer & Hesselbrock, 2003)和视觉(Bauer & Hesselbrock, 1999a; Iacono et al., 2002) Oddball任务和Stroop任务(Bauer & Hesselbrock, 1999b)中均会表现出P300的减小。Patrick等(2006)采用视觉Oddball范式发现,能够表征APD、CD和药物滥用失常的潜在外化因素均与P300波幅的减小相关联。

Gao和Raine (2009)的元分析表明,反社会行为通常与P300的波幅减小和潜伏期的延长相关,这一结果既可以出现在标准的Oddball范式中,也可以出现在非Oddball范式中(如Stroop范式),但精神病患者出现的P300波幅效应只出现在Oddball范式中。冲动型反社会个体仅表现出P300波幅的减小,没有表现出潜伏期的延长。

3.3. 物质使用障碍

物质使用障碍(Substance use disorders, SUDs)也称为药物使用障碍,指的是患者持续使用某种物质,即使这种使用已经导致明显的问题和病态的行为方式(Degenhardt et al., 2018; Peterson et al., 2021)。Iacono,Carlson,Malone,& McGue (2002)指出,P300波幅的减小与多种障碍(包括注意力缺陷多动障碍、对立违抗性障碍、品行障碍、反社会人格、酒精成瘾、尼古丁依赖、药物滥用等)有关,也与父母的风险指数有关;个体17岁时的P300减小可以预测其20岁时的物质使用障碍情况。Branchey等人(1988)发现,有攻击性行为记录的酗酒和禁欲药物滥用的男性被试均表现出P300波幅的减小,其中存在暴力犯罪监禁史的个体,其P300的波幅最低。Elsheikh (2020)发现,SUDs个体的P300波幅较小、潜伏期较短,表明他们的注意力异常(比如思考过程过快、但反应的准确性却较差)。这可能反映了SUDs个体在面对挑衅或压力时更容易做出冲动和攻击性的反应。Bel-Bahar et al. (2022)在其元分析中指出,Oddball任务中的P300可以作为评估SUDs治疗效果的神经标志物。

酒精依赖是物质使用障碍的一种形式。有研究发现,酒精依赖个体更容易参与暴力攻击行为,酒精依赖的男性发生暴力攻击行为的概率大约在20%~50%之间(Stoddard et al., 2015)。徐佳兵,杨岭和周旭辉(2018)采用听觉Oddball任务发现,与正常对照组相比,伴有和不伴有攻击行为的酒精依赖组的P300的潜伏期延长、波幅减小;其中伴有攻击行为的酒精依赖组表现出了更为明显的P200和P300波幅减小。研究者认为,酒精依赖者可能由于去抑制功能、酒精近视(即,酒后注意力缩窄且易冲动)、敌意归因偏差、执行功能等障碍而引发冲动性攻击行为。Brislin等人(2023)基于酒精使用障碍遗传学研究(COGA)的数据发现,在欧洲血统的青年群体中,P300波幅与自我报告的酒精和大麻使用等外化行为指标呈负相关。

综上所述,P300在多个临床群体中表现出异常,这包括精神分裂症、酒精依赖、药物依赖、反社会人格、儿童行为障碍以及注意缺陷多动障碍等(Iacono et al., 2002)。这意味着P300可能反映了这些群体的共同特征,有研究者认为这是冲动控制问题(Krueger et al., 2002),而冲动控制恰好是攻击行为的基础,尤其是冲动性攻击。这些群体的外化性问题多表现出P300波幅的减小。有研究表明,P300波幅的减小不仅与特定障碍相关,而且反映了更广泛的外化倾向风险(Patrick et al., 2006; Krueger et al., 2021; Pasion et al., 2023)。

4. P300与犯罪群体的攻击行为测量

暴力犯罪行为是指“以实施暴力行为为基本特征的犯罪行为,如伤害、杀人、抢劫等犯罪行为”(张维,2015)。早期的EEG研究较为一致的发现,暴力犯罪者会表现出慢波脑活动的增强,尤其是delta频段(Convit et al., 1991),EEG的慢波活动可以有效预测其未来的反社会行为(Scarpa & Raine, 1997)。研究者认为,这一结果可能反映了暴力犯罪者的皮层不成熟所导致的冲动抑制能力受损,这种皮层唤醒不足会导致个体倾向于寻找补偿性刺激(Convit et al., 1991; Scarpa & Raine, 1997)从而发生暴力行为。ERP的研究显示,在遭遇挑衅后,暴力犯罪者在表现出更强攻击性的同时,也显示出前额叶激活的不对称性(即左侧前额叶的活动强度大于右前额叶),这是行为趋近系统得到激活的重要标志(Harmon-Jones & Sigelman, 2001)。

近年来P300成为测量暴力犯罪者的攻击行为的主要指标。研究发现暴力犯罪者在Oddball任务中表现出P300的减小,且暴力犯罪的数量与P300波幅呈现显著的负相关性(Bernat et al., 2007)。Barratt等人(1997)对比了非攻击性对照组和通过访谈被归类为冲动性或工具性攻击的男性囚犯之间的P300波幅的差异。结果发现,冲动性攻击犯表现出最低波幅的P300。P300波幅与愤怒和冲动的自我报告呈负相关关系。毋嫘等人(2022)使用视频诱发愤怒情绪,利用双选择Oddball范式对冲动性暴力犯的行为抑制能力进行了考察。结果发现,冲动性暴力犯在愤怒状态下的P300波幅显著大于中性状态,表明其在愤怒状态下行为抑制的困难。在Delfin等人(2020)的研究中,精神障碍型暴力罪犯在自我报告的行为抑制特质量表上得分较高,并显示出NoGo-P300波幅的减小和潜伏期的延长,这可能反映了在行为监控和评估过程中的神经效率降低。Delfin等人(2022)通过Go/NoGo任务,对比了P300和N200成分与暴力精神障碍罪犯的攻击性和反社会行为的关系。结果表明,NoGo条件下的P300的潜伏期延长与攻击性和反社会行为的增加有关。Yu等人(2022)等使用情感停止信号任务发现,暴力犯罪者在处理负面情绪刺激时,P300波幅显著减小,这表明负面情绪刺激可能增加了他们的认知负荷并影响随后的认知处理过程。Xian等人(2024)发现,抑郁症患者中犯有暴力罪行的个体在完成Go/NoGo任务时P300的潜伏期延长、前额叶和中央脑区的P300波幅减小,但顶叶区域P300波幅增加。

但也有研究发现,预谋犯罪者(相比于控制组)并未表现出听觉P300的波幅差异(Žukov et al., 2009),Barratt等人(1997)就曾指出预谋攻击与P300无关。这意味着,P300在犯罪群体中可能成为预测攻击行为的潜在神经生理学指标,但是否适用于所有类型的暴力犯罪者,还有待深入地考察与验证。

5. P300与非临床暴力风险群体的攻击行为测量

非临床暴力风险人群是指,虽然未经临床诊断确定,但是拥有较高的攻击特质或者倾向的群体,这包括高攻击性、高冲动性、高心理变态和高愤怒特质个体等。

5.1. 高攻击性人群

根据Kunaharan,Halpin,Sitharthan,& Walla (2019)的研究,P300波形的变化可能与个体的攻击性行为有关。该研究发现,在加工带有暴力内容的图像时,自我报告攻击性较高的个体(相比较低的个体)在前额、中央和顶叶区域的P300波形表现出显著差异。特别是在前额区域,高攻击组在处理暴力图像时P300的波幅减小。Crago等人(2019)将图片刺激的内容扩展为社会面孔,结果发现,身体攻击性较高的个体在处理愤怒面孔时,P300波幅表现出不分化的特点。即,相比于攻击性较低的个体,攻击性较高的个体在加工愤怒和中性面孔时,P300波幅的差异消失。这些研究均表明,高攻击个体在处理愤怒线索和愤怒面孔时注意力存在困难。Sun等人(2020)使用愤怒和快乐面孔的Go/NoGo任务,结果发现,在愤怒和快乐条件下,反应性冲动攻击组的青少年(相比于控制组)表现出更小的NoGo P300效应,特别在愤怒条件下,控制组的NoGo条件P300波幅显著大于Go条件。相关分析的结果表明,个体的反应性攻击分数与P300的Go/NoGo波幅差异呈负相关关系。该结果表明,反应性冲动攻击组的青少年对愤怒情绪的反应抑制缺陷主要发生在晚期抑制阶段。之后,Sun等(2023)进一步使用愤怒和恐惧面孔的Go/NoGo任务,结果发现,对于恐惧面孔,高反应性攻击组(相比于控制组)表现出更短的反应时、更小的NoGo P300和ERN波幅。该研究进一步表明,高反应性攻击青少年在情绪刺激的认知评价和反应抑制过程中可能存在特殊困难,特别是在面对潜在的威胁性刺激时。Teti Mayer等人(2021)则发现在不同(正向和负向)反馈情境下,P300波幅的变化可能反映了个体对潜在后果的认知评估。这可能是因为高水平反应性攻击的青少年经常暴露于威胁情境中(Wilkowski & Robinson, 2012),对于环境因素的敏感性较高。

5.2. 高冲动性人群

冲动性通常被定义为缺乏充分思考的行为(Verdejo-García et al., 2008),可以通过多种方法进行测量,包括自我报告量表、行为以及神经生理测量(Luijten et al., 2011)。冲动行为被认为是反应抑制缺陷和错误加工的共同作用,会引发一系列的不顾及自己和他人消极后果的有害行为(Verdejo-García et al., 2008)。

研究表明,高冲动人群在早期冲突监测和晚期反应抑制方面均表现出异常(Hecht & Latzman, 2018; Lievaart et al., 2016; Zhang et al., 2017)。攻击性个体在Oddball任务中常表现出P300波幅减小,这种现象在冲动性攻击群体中更为明显(Barratt et al., 1997; Branchey et al., 1988; Gerstle et al., 1998)。Ruchsow等人(2008)使用Flanker-Go/NoGo范式发现,高冲动个体相较于低冲动个体,NoGo条件下的P300波幅显著减小;Surguy和Bond (2006)发现,高攻击个体在额区对攻击词的反应减小,表现出P300波幅减小。然而,在停止信号任务中,自我报告高冲动的个体却表现出更大的Stop P300波幅(Lansbergen et al., 2007)。

青春期是冲动性易发的高峰期(Pérez Fuentes et al., 2016),同时也在面对社交挫败时表现出反应性攻击行为的易感时期(Coppens et al., 2014)。Harmon-Jones等人(1997)发现,青少年的攻击行为和态度均与P300的波幅呈负相关。Gerstle,Mathias和Stanford (1998)选取了面试评估为带有攻击性的大学生,发现这些被试的攻击性与听觉Oddball任务中P300波幅的减小相关。这一结果在之后的改进范式(标准的和三个刺激的视觉Oddball范式)中均得到了验证(Mathias & Stanford, 1999)。

目前比较一致的结论是,那些表现出冲动性攻击行为的个体在Oddball任务中往往伴随着P300波幅的减小(Gerstle et al., 1998; Barratt et al., 1997; Branchey et al., 1988)。

5.3. 高心理变态人群

心理变态(Psychopathy)是一个多面向的人格障碍,包含了一系列独特的情感、人际和行为偏差特征(Cleckley, 1951)。其特点通常包括冲动性、冷漠、欺诈行为、反社会行为等,并有三种不同的表现类型:去抑制、大胆和刻薄(Patrick et al., 2009)。

有研究者发现,心理变态中与刻薄特质相关的冷酷无情特质(Callous-unemotional, CU)在青少年中能够预测P300波幅的减小,这可能意味着这些个体在抑制控制和情绪调节方面存在困难(Prata et al., 2019)。与此同时,Ribes-Guardiola等人(2020)通过使用Go/NoGo和Flanker任务评估了心理变态特质个体与大脑执行监控功能的关系。结果显示,心理变态中的抑制不足特质与大脑电生理活动(ERPs)在执行监控任务时的表现存在显著关联。即抑制不足与P300呈负相关,意味着抑制能力较差的个体在处理动机显著事件的后期阶段时,大脑活动减少。Tillem等人(2021)发现,心理变态特质较高的个体在进行双任务时,会出现注意力瓶颈和P300波幅减小现象,这与他们在现实世界中的冲动和反社会行为有关联,这可能也解释了抑制不足可能是由注意力造成的。Wang等人(2020)发现在受到挑衅后,高心理变态特征水平的个体更倾向于对无辜的他人施加高强度的惩罚,其决策阶段的P300波幅显著减小。这一结果再次表明,P300波幅的这种变化可能与个体在社交互动中的攻击性倾向有关。

5.4. 其他人群

除了上述人群,研究者还关注了高风险环境下的青少年。Pincham等人(2019)使用修改后的泰勒攻击范式(Taylor Aggression Paradigm, TAP),评估了心理社会干预对处于高风险环境中的青少年的影响。这些青少年可能面临贫困、社区暴力和创伤等问题,并表现出一系列认知和行为挑战,尤其是行为问题和反社会、外化行为。研究结果显示,长期参与干预的青少年在接收到赢的反馈时,其P300波幅更大,表明他们在处理积极反馈时的大脑活动更为积极。相反,短期或未充分参与干预的青少年显示出较小的P300波幅,这可能指示了他们在生理上对奖励信息的低敏感性。这种低敏感性可能与青少年的反社会行为有关,因为先前的研究(Finger et al., 2011)已经发现反社会行为的青少年在处理奖励信息时存在缺陷。

此外,Irak等人(2021)的研究发现,经常玩暴力视频游戏的个体在处理暴力相关词汇时,P300波幅增大,这可能反映了对这类刺激的注意力和情感反应的增强。这些发现进一步支持了P300作为评估个体对攻击性刺激敏感性的神经生理指标的潜力。Peng等人(2021)使用“Chicken Game”(一种社会困境游戏),探究了对手的合作行为如何影响玩家的行为和大脑的神经动态,发现参与者在面对攻击性行为时,其P300波幅显著增大,这表明攻击行为作为一种出乎意料的负面刺激,能够引起更强烈的神经反应。P300波幅的增大可能反映了个体对这种期望违背的敏感性。Sun等人(2023)的研究进一步探讨了竞技电子游戏对玩家认知敏感性的影响。他们发现,参与竞技游戏的个体在接触到攻击性词汇时,P300波幅显著增大,表明竞技游戏环境可能增强了玩家对攻击性刺激的认知反应。此外,该研究发现P300波幅的增大在竞技模式下与更高的攻击性行为呈正相关。

6. 未来展望

综上所述,P300作为ERP的一种内源性成分,P300的波幅减小和潜伏期延长是潜在的攻击性行为的神经预测指标,该结果比较稳定,且受年龄、性别、刺激类别、负面情绪和物质滥用等其他变量的影响不显著(Bernat et al., 2020),具有一定的跨群体一致性(如图1所示)。

Figure 1. Literature summary chart: p300 and aggressive behavior measurements in different groups (2019~2024)

1. 文献归纳图:P300与不同群体的攻击行为测量(2019~2024)

但现有的研究也还存在一些可以拓展的方面,具体如下:

1) P300指标的多角度分析及与其他ERP成分的结合:P300除了波幅和潜伏期,还可以关注试次间变异性(Inter-trial variability, ITV)等指标(Bauer, 2021)或者探索P300的更多不同子成分,特别是与冲动性相关的P3a成分(Koelsch, 2009)和与情绪调节相关的P3b成分(Shackman & Pollak, 2014),以揭示它们与攻击性行为背后机制的联系,并评估这些成分在预测攻击性行为方面的潜力。此外,P300还可以结合其他ERP成分进行联合预测。早期成分如P50的波幅减小被认为与攻击行为相关(Lijffijt et al., 2012);中期成分如错误相关负波(ERN)反映了错误信息监控的失败,可能与攻击的产生有关(Olvet & Hajcak, 2008);在使用TAP任务的研究中,高挑衅条件下的额叶负性增强与N2成分相关(Krämer et al., 2008)。此外,LPP与情绪反应相关,而FRN与反馈处理相关,这些成分的变化均有助于揭示攻击行为背后的神经机制 (Krämer et al., 2008; Yi et al., 2012)。

2) 进一步验证P300在不同样本群体中的有效性。目前的犯罪群体中研究对象主要为男性,女性被试较少,未能充分反映男女群体间的性别差异(张卓,2022);且暴力犯罪主要是从犯罪学领域来划分,主要区分了冲动性暴力犯和预谋性暴力犯(李昕雨,2023),而较少关注心理学和神经生物学的角度划分,因此未来对不同类型罪犯评估时,应该结合生物学和行为指标对其不同攻击性行为做出区分(刘宇平等,2019),以确定P300在不同类型犯罪群体中的有效性。

3) P300的应用场景可进一步拓展:研究数据表明,暴力行为在监狱中的发生率是社区的三倍甚至更多,囚犯发生暴力行为的比例也大约是社区匹配子样本的两倍(Teplin et al., 2005)。如果可以将P300更精确地用于识别潜在的暴力风险,并据此制定有效的干预措施,以减少监狱内的暴力事件,这不仅有助于维护监狱秩序,也对囚犯的改造和社会的长期安全具有重要意义。另外,Oddball任务中的P300可以作为有效的证据,推进EEG标记在精神病学领域的应用,例如作为治愈预后、预测、诊断和监测的生物标记,使得治疗更加个性化和有效(García-Gutiérrez et al., 2020; Lahnakoski et al., 2022; Niculescu & Le-Niculescu, 2022; Wan et al., 2010)。最后,P300在正常人群中识别那些具有较高暴力风险特质或倾向的个体,这对未来暴力犯罪的预防与早期干预有着重要的意义,开发基于P300的正常人群中区分个体差异的监测工具也是未来的重要方向之一(Fido et al., 2017)。

参考文献

[1] 李丹玉(2021). P300预警精神分裂症患者暴力行为的应用评价研究. 硕士学位论文, 石河子: 石河子大学.
[2] 李昕雨(2023). 冲动性暴力犯与非暴力犯在道德愤怒与个人愤怒下的行为抑制能力的研究. 硕士学位论文, 天津: 天津师范大学.
[3] 刘宇平, 赵辉, 李姗珊, 张卓, 杨波(2019). 反社会人格障碍的神经生物学基础及其司法启示. 心理科学进展, 27(10), 1726-1742.
[4] 唐敏, 黄银秋(2022). 精神分裂症患者暴力风险与P300的潜伏期、波幅及静息脑区自发神经活动的关系. 慢性病学杂志, 23(10), 1548-1553.
[5] 魏景汉, 罗跃嘉(2010). 事件相关电位原理与技术. 北京: 科学出版社.
[6] 毋嫘, 赵晨光, 陈瀚强, 刘天骄, 康威, 李昕雨(2022). 愤怒诱发冲动性暴力犯行为抑制晚期阶段: 来自ERP的证据. 心理与行为研究, 20(6), 842-849.
[7] 徐佳兵, 杨岭, 周旭辉(2018). 伴攻击行为酒精依赖者认知功能与P300的相关性研究. 中国药物依赖性杂志, 27(6), 416-420.
[8] 张维(2015). 刑法中的暴力行为研究. 硕士学位论文, 重庆: 西南政法大学.
[9] 张卓(2022). 中国暴力犯罪人的心理与行为研究. 中国政法大学出版社.
[10] 赵丁, 张杨骏, 纪家武(2024). 精神分裂症暴力攻击行为与P300成分的相关性研究. 中国卫生标准管理, 15(1), 128-132.
[11] 赵红岩, 施春阳, 王奇, 黄鸿飞, 侯雨(2022). V-RISK-10联合P300检测预测精神分裂症患者暴力行为的价值研究. 精神医学杂志, 35(5), 409-414.
[12] Allen, J. J., & Anderson, C. A. (2017). Aggression and Violence: Definitions and Distinctions. In P. Sturmey (Ed.), The Wiley Handbook of Violence and Aggression. John Wiley & Sons.
https://doi.org/10.1002/9781119057574.whbva001
[13] Arıkan, M. K., İlhan, R., Orhan, Ö., Esmeray, M. T., Turan, Ş., Gica, Ş. et al. (2024). P300 Parameters in Major Depressive Disorder: A Systematic Review and Meta-Analysis. The World Journal of Biological Psychiatry, 25, 255-266.
https://doi.org/10.1080/15622975.2024.2321554
[14] Arzi, A., Rozenkrantz, L., Gorodisky, L., Rozenkrantz, D., Holtzman, Y., Ravia, A. et al. (2020). Olfactory Sniffing Signals Consciousness in Unresponsive Patients with Brain Injuries. Nature, 581, 428-433.
https://doi.org/10.1038/s41586-020-2245-5
[15] Barratt, E. S., Stanford, M. S., Kent, T. A., & Alan, F. (1997). Neuropsychological and Cognitive Psychophysiological Substrates of Impulsive Aggression. Biological Psychiatry, 41, 1045-1061.
https://doi.org/10.1016/s0006-3223(96)00175-8
[16] Bauer, L. O. (2021). Temporal Instability in Brain Activation: A Novel Paradigm for Evaluating the Maintenance of Attention among Substance Dependent Patients. Psychopharmacology, 238, 2937-2946.
https://doi.org/10.1007/s00213-021-05909-5
[17] Bauer, L. O., & Hesselbrock, V. M. (1999a). P300 Decrements in Teenagers with Conduct Problems: Implications for Substance Abuse Risk and Brain Development. Biological Psychiatry, 46, 263-272.
https://doi.org/10.1016/s0006-3223(98)00335-7
[18] Bauer, L. O., & Hesselbrock, V. M. (1999b). Subtypes of Family History and Conduct Disorder Effects on P300 during the Stroop Test. Neuropsychopharmacology, 21, 51-62.
https://doi.org/10.1016/s0893-133x(98)00139-0
[19] Bauer, L. O., & Hesselbrock, V. M. (2003). Brain Maturation and Subtypes of Conduct Disorder: Interactive Effects on P300 Amplitude and Topography in Male Adolescents. Journal of the American Academy of Child & Adolescent Psychiatry, 42, 106-115.
https://doi.org/10.1097/00004583-200301000-00017
[20] Bauer, L. O., O’Connor, S., & Hesselbrock, V. M. (1994). Frontal P300 Decrements in Antisocial Personality Disorder. Alcoholism: Clinical and Experimental Research, 18, 1300-1305.
https://doi.org/10.1111/j.1530-0277.1994.tb01427.x
[21] Bel-Bahar, T. S., Khan, A. A., Shaik, R. B., & Parvaz, M. A. (2022). A Scoping Review of Electroencephalographic (EEG) Markers for Tracking Neurophysiological Changes and Predicting Outcomes in Substance Use Disorder Treatment. Frontiers in Human Neuroscience, 16, Article 995534.
https://doi.org/10.3389/fnhum.2022.995534
[22] Bernat, E. M., Ellis, J. S., Bachman, M. D., & Hicks, B. M. (2020). P3 Amplitude Reductions Are Associated with Shared Variance between Internalizing and Externalizing Psychopathology. Psychophysiology, 57, e13618.
https://doi.org/10.1111/psyp.13618
[23] Bernat, E. M., Hall, J. R., Steffen, B. V., & Patrick, C. J. (2007). Violent Offending Predicts P300 Amplitude. International Journal of Psychophysiology, 66, 161-167.
[24] Black, D. W. (2015). The Natural History of Antisocial Personality Disorder. The Canadian Journal of Psychiatry, 60, 309-314.
https://doi.org/10.1177/070674371506000703
[25] Blignaut, J., & Vandenheever, D. (2022). Prevalence of a Late Readiness Potential during a Deliberate Decision-Making Task. BRAIN. Broad Research in Artificial Intelligence and Neuroscience, 13, 382-402.
https://doi.org/10.18662/brain/13.2/349
[26] Bochkarev, V. K., Solnceva, S. V., Kirenskaya, A. V., & Tkachenko, A. A. (2020). A Comparative Study of the P300 Wave and Evoked Theta-Rhythm in Schizophrenia and Personality Disorders. S.S. Korsakov Journal of Neurology and Psychiatry, 120, 41-47.
https://doi.org/10.17116/jnevro202012003141
[27] Branchey, M. H., Buydens-Branchey, L., & Lieber, C. S. (1988). P3 in Alcoholics with Disordered Regulation of Aggression. Psychiatry Research, 25, 49-58.
https://doi.org/10.1016/0165-1781(88)90157-6
[28] Brislin, S. J., Salvatore, J. E., Meyers, J. M., Kamarajan, C., Plawecki, M. H., Edenberg, H. J. et al. (2023). Examining Associations between Genetic and Neural Risk for Externalizing Behaviors in Adolescence and Early Adulthood. Psychological Medicine, 54, 267-277.
https://doi.org/10.1017/s0033291723001174
[29] Bushman, B. J., & Anderson, C. A. (2001). Is It Time to Pull the Plug on Hostile versus Instrumental Aggression Dichotomy? Psychological Review, 108, 273-279.
https://doi.org/10.1037//0033-295x.108.1.273
[30] Cleckley, H. M. (1951). The Mask of Sanity. Postgraduate Medicine, 9, 193-197.
https://doi.org/10.1080/00325481.1951.11694097
[31] Convit, A., Czobor, P., & Volavka, J. (1991). Lateralized Abnormality in the EEG of Persistently Violent Psychiatric Inpatients. Biological Psychiatry, 30, 363-370.
https://doi.org/10.1016/0006-3223(91)90292-t
[32] Coppens, C. M., Coolen, A., de Boer, S. F., & Koolhaas, J. M. (2014). Adolescent Social Defeat Disturbs Adult Aggression-Related Impulsivity in Wild-Type Rats. Behavioural Processes, 108, 191-196.
https://doi.org/10.1016/j.beproc.2014.10.013
[33] Costa, L., Bauer, L., Kuperman, S., Porjesz, B., O’Connor, S., Hesselbrock, V. et al. (2000). Frontal P300 Decrements, Alcohol Dependence, and Antisocial Personality Disorder. Biological Psychiatry, 47, 1064-1071.
https://doi.org/10.1016/s0006-3223(99)00317-0
[34] Crago, R. V., Renoult, L., Biggart, L., Nobes, G., Satmarean, T., & Bowler, J. O. (2019). Physical Aggression and Attentional Bias to Angry Faces: An Event Related Potential Study. Brain Research, 1723, Article ID: 146387.
https://doi.org/10.1016/j.brainres.2019.146387
[35] Degenhardt, L., Charlson, F., Ferrari, A., Santomauro, D., Erskine, H., Mantilla-Herrara, A. et al. (2018). The Global Burden of Disease Attributable to Alcohol and Drug Use in 195 Countries and Territories, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. The Lancet Psychiatry, 5, 987-1012.
https://doi.org/10.1016/s2215-0366(18)30337-7
[36] Delfin, C., Ruzich, E., Wallinius, M., Björnsdotter, M., & Andiné, P. (2020). Trait Disinhibition and NoGo Event-Related Potentials in Violent Mentally Disordered Offenders and Healthy Controls. Frontiers in Psychiatry, 11, Article 577491.
https://doi.org/10.3389/fpsyt.2020.577491
[37] Delfin, C., Wallinius, M., Björnsdotter, M., Ruzich, E., & Andiné, P. (2022). Prolonged NoGo P3 Latency as a Possible Neurobehavioral Correlate of Aggressive and Antisocial Behaviors: A Go/NoGo ERP Study. Biological Psychology, 168, Article ID: 108245.
https://doi.org/10.1016/j.biopsycho.2021.108245
[38] Elsheikh, M. (2020). Study of Attention Measured by Event-Related Potential as a Predictive Factor of Violence among Patients with Schizophrenia and Substance Use Disorder. Middle East Current Psychiatry, 27, Article No. 17.
https://doi.org/10.1186/s43045-020-00024-1
[39] Fanning, J. R., Berman, M. E., & Long, J. M. (2014). P3 and Provoked Aggressive Behavior. Social Neuroscience, 9, 118-129.
https://doi.org/10.1080/17470919.2013.866596
[40] Fido, D., Santo, M. G. E., Bloxsom, C. A. J., Gregson, M., & Sumich, A. L. (2017). Electrophysiological Study of the Violence Inhibition Mechanism in Relation to Callous-Unemotional and Aggressive Traits. Personality and Individual Differences, 118, 44-49.
https://doi.org/10.1016/j.paid.2017.01.049
[41] Finger, E. C., Marsh, A. A., Blair, K. S., Reid, M. E., Sims, C., Ng, P. et al. (2011). Disrupted Reinforcement Signaling in the Orbitofrontal Cortex and Caudate in Youths with Conduct Disorder or Oppositional Defiant Disorder and a High Level of Psychopathic Traits. American Journal of Psychiatry, 168, 152-162.
https://doi.org/10.1176/appi.ajp.2010.10010129
[42] Gao, Y., & Raine, A. (2009). P3 Event-Related Potential Impairments in Antisocial and Psychopathic Individuals: A Meta-Analysis. Biological Psychology, 82, 199-210.
https://doi.org/10.1016/j.biopsycho.2009.06.006
[43] García-Gutiérrez, M. S., Navarrete, F., Sala, F., Gasparyan, A., Austrich-Olivares, A., & Manzanares, J. (2020). Biomarkers in Psychiatry: Concept, Definition, Types and Relevance to the Clinical Reality. Frontiers in Psychiatry, 11, Article 432.
https://doi.org/10.3389/fpsyt.2020.00432
[44] Gerstle, J. E., Mathias, C. W., & Stanford, M. S. (1998). Auditory P300 and Self-Reported Impulsive Aggression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 22, 575-583.
https://doi.org/10.1016/s0278-5846(98)00027-x
[45] Harmon-Jones, E., & Sigelman, J. (2001). State Anger and Prefrontal Brain Activity: Evidence That Insult-Related Relative Left-Prefrontal Activation Is Associated with Experienced Anger and Aggression. Journal of Personality and Social Psychology, 80, 797-803.
https://doi.org/10.1037/0022-3514.80.5.797
[46] Harmon-Jones, E., Barratt, E. S., & Wigg, C. (1997). Impulsiveness, Aggression, Reading, and the P300 of the Event-Related Potential. Personality and Individual Differences, 22, 439-445.
https://doi.org/10.1016/s0191-8869(96)00235-8
[47] Hecht, L. K., & Latzman, R. D. (2018). Exploring the Differential Associations between Components of Executive Functioning and Reactive and Proactive Aggression. Journal of Clinical and Experimental Neuropsychology, 40, 62-74.
https://doi.org/10.1080/13803395.2017.1314450
[48] Herzog, N. D., Steinfath, T. P., & Tarrasch, R. (2021). Critical Dynamics in Spontaneous Resting-State Oscillations Are Associated with the Attention-Related P300 ERP in a Go/NoGo Task. Frontiers in Neuroscience, 15, Article 632922.
https://doi.org/10.3389/fnins.2021.632922
[49] Hoptman, M. J. (2015). Impulsivity and Aggression in Schizophrenia: A Neural Circuitry Perspective with Implications for Treatment. CNS Spectrums, 20, 280-286.
https://doi.org/10.1017/s1092852915000206
[50] Iacono, W. G., Carlson, S. R., Malone, S. M., & McGue, M. (2002). P3 Event-Related Potential Amplitude and the Risk for Disinhibitory Disorders in Adolescent Boys. Archives of General Psychiatry, 59, 750-757.
https://doi.org/10.1001/archpsyc.59.8.750
[51] Irak, M., Soylu, C., & Tümen, C. (2021). Effects of Excessive Violent Video Game Playing on Verbal Memory: An Event-Related Brain Potentials Study. Cognitive Processing, 22, 487-500.
https://doi.org/10.1007/s10339-021-01018-5
[52] Key, A. P., Thornton-Wells, T. A., & Smith, D. G. (2023). Electrophysiological Biomarkers and Age Characterize Phenotypic Heterogeneity among Individuals with Major Depressive Disorder. Frontiers in Human Neuroscience, 16, Article 1055385.
https://doi.org/10.3389/fnhum.2022.1055685
[53] Khosravani, V., Sharifibastan, F., Aghaeimazraji, M., Berk, M., & Samimi Ardestani, S. M. (2024). The Contribution of Alexithymia, Childhood Maltreatment, Impulsivity, C-Reactive Protein, Lipid Profile, and Thyroid Hormones to Aggression and Psychological Distress (Depression and Anxiety) in Schizophrenia. Psychoneuroendocrinology, 167, Article ID: 107087.
https://doi.org/10.1016/j.psyneuen.2024.107087
[54] Klein Tuente, S., Bogaerts, S., & Veling, W. (2019). Hostile Attribution Bias and Aggression in Adults—A Systematic Review. Aggression and Violent Behavior, 46, 66-81.
https://doi.org/10.1016/j.avb.2019.01.009
[55] Koelsch, S. (2009). P3a and Mismatch Negativity in Individuals with Moderate Intermittent Explosive Disorder. Neuroscience Letters, 460, 21-26.
https://doi.org/10.1016/j.neulet.2009.05.047
[56] Krakowski, M. I., De Sanctis, P., Foxe, J. J., Hoptman, M. J., Nolan, K., Kamiel, S. et al. (2016). Disturbances in Response Inhibition and Emotional Processing as Potential Pathways to Violence in Schizophrenia: A High-Density Event-Related Potential Study. Schizophrenia Bulletin, 42, 963-974.
https://doi.org/10.1093/schbul/sbw005
[57] Krämer, U. M., Büttner, S., Roth, G., & Münte, T. F. (2008). Trait Aggressiveness Modulates Neurophysiological Correlates of Laboratory-Induced Reactive Aggression in Humans. Journal of Cognitive Neuroscience, 20, 1464-1477.
https://doi.org/10.1162/jocn.2008.20103
[58] Krueger, R. F., Hicks, B. M., Patrick, C. J., Carlson, S. R., Iacono, W. G., & McGue, M. (2002). Etiologic Connections among Substance Dependence, Antisocial Behavior and Personality: Modeling the Externalizing Spectrum. Journal of Abnormal Psychology, 111, 411-424.
https://doi.org/10.1037/0021-843x.111.3.411
[59] Krueger, R. F., Hobbs, K. A., Conway, C. C., Dick, D. M., Dretsch, M. N., Eaton, N. R. et al. (2021). Validity and Utility of Hierarchical Taxonomy of Psychopathology (HiTOP): II. Externalizing Superspectrum. World Psychiatry, 20, 171-193.
https://doi.org/10.1002/wps.20844
[60] Kunaharan, S., Halpin, S., Sitharthan, T., & Walla, P. (2019). Do EEG and Startle Reflex Modulation Vary with Self-Reported Aggression in Response to Violent Images? Brain Sciences, 9, Article 298.
https://doi.org/10.3390/brainsci9110298
[61] Lahnakoski, J. M., Eickhoff, S. B., Dukart, J., & Schilbach, L. (2022). Naturalizing Psychopathology—Towards a Quantitative Real-World Psychiatry. Molecular Psychiatry, 27, 781-783.
https://doi.org/10.1038/s41380-021-01322-8
[62] Lansbergen, M. M., Böcker, K. B. E., Bekker, E. M., & Kenemans, J. L. (2007). Neural Correlates of Stopping and Self-Reported Impulsivity. Clinical Neurophysiology, 118, 2089-2103.
https://doi.org/10.1016/j.clinph.2007.06.011
[63] Li, Y. Q., Pan, J. H., Wang, F., & Yu, Z. L. (2013). A Hybrid BCI System Combining P300 and SSVEP and Its Application to Wheelchair Control. IEEE Transactions on Biomedical Engineering, 60, 3156-3166.
https://doi.org/10.1109/tbme.2013.2270283
[64] Lievaart, M., van der Veen, F. M., Huijding, J., Naeije, L., Hovens, J. E., & Franken, I. H. A. (2016). Trait Anger in Relation to Neural and Behavioral Correlates of Response Inhibition and Error-Processing. International Journal of Psychophysiology, 99, 40-47.
https://doi.org/10.1016/j.ijpsycho.2015.12.001
[65] Lijffijt, M., Cox, B., Acas, M. D., Lane, S. D., Moeller, F. G., & Swann, A. C. (2012). Differential Relationships of Impulsivity or Antisocial Symptoms on P50, N100, or P200 Auditory Sensory Gating in Controls and Antisocial Personality Disorder. Journal of Psychiatric Research, 46, 743-750.
https://doi.org/10.1016/j.jpsychires.2012.03.001
[66] Luijten, M., van Meel, C. S., & Franken, I. H. A. (2011). Diminished Error Processing in Smokers during Smoking Cue Exposure. Pharmacology Biochemistry and Behavior, 97, 514-520.
https://doi.org/10.1016/j.pbb.2010.10.012
[67] Mathias, C. W., & Stanford, M. S. (1999). P300 under Standard and Surprise Conditions in Self-Reported Impulsive Aggression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 23, 1037-1051.
https://doi.org/10.1016/s0278-5846(99)00053-6
[68] Niculescu, A. B., & Le-Niculescu, H. (2022). Precision Medicine in Psychiatry: Biomarkers to the Forefront. Neuropsychopharmacology, 47, 422-423.
https://doi.org/10.1038/s41386-021-01183-3
[69] O’Connor, S., Bauer, L., Tasman, A., & Hesselbrock, V. (1994). Reduced P3 Amplitudes Are Associated with Both a Family History of Alcoholism and Antisocial Personality Disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 18, 1307-1321.
https://doi.org/10.1016/0278-5846(94)90095-7
[70] Olichney, J., Xia, J., Church, K. J., & Moebius, H. J. (2022). Predictive Power of Cognitive Biomarkers in Neurodegenerative Disease Drug Development: Utility of the P300 Event-Related Potential. Neural Plasticity, 2022, Article ID: 2104880.
https://doi.org/10.1155/2022/2104880
[71] Olvet, D., & Hajcak, G. (2008). The Error-Related Negativity (ERN) and Psychopathology: Toward an Endophenotype. Clinical Psychology Review, 28, 1343-1354.
https://doi.org/10.1016/j.cpr.2008.07.003
[72] Pasion, R., Fernandes, C., Pereira, M. R., & Barbosa, F. (2018). Antisocial Behaviour and Psychopathy: Uncovering the Externalizing Link in the P3 Modulation. Neuroscience & Biobehavioral Reviews, 91, 170-186.
https://doi.org/10.1016/j.neubiorev.2017.03.012
[73] Pasion, R., Ribes-Guardiola, P., Patrick, C., Stewart, R. A., Paiva, T. O., Macedo, I. et al. (2023). Modeling Relations between Event-Related Potential Factors and Broader versus Narrower Dimensions of Externalizing Psychopathology. Journal of Psychopathology and Clinical Science, 132, 867-880.
https://doi.org/10.1037/abn0000856
[74] Patrick, C. J. (2008). Psychophysiological Correlates of Aggression and Violence: An Integrative Review. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 2543-2555.
https://doi.org/10.1098/rstb.2008.0028
[75] Patrick, C. J., Bernat, E. M., Malone, S. M., Iacono, W. G., Krueger, R. F., & McGue, M. (2006). P300 Amplitude as an Indicator of Externalizing in Adolescent Males. Psychophysiology, 43, 84-92.
https://doi.org/10.1111/j.1469-8986.2006.00376.x
[76] Patrick, C. J., Fowles, D. C., & Krueger, R. F. (2009). Triarchic Conceptualization of Psychopathy: Developmental Origins of Disinhibition, Boldness, and Meanness. Development and Psychopathology, 21, 913-938.
https://doi.org/10.1017/s0954579409000492
[77] Paulhus, D. L., Curtis, S. R., & Jones, D. N. (2018). Aggression as a Trait: The Dark Tetrad Alternative. Current Opinion in Psychology, 19, 88-92.
https://doi.org/10.1016/j.copsyc.2017.04.007
[78] Peng, M., Wang, X., Chen, W., Chen, T., Cai, M., Sun, X. et al. (2021). Cooperate or Aggress? An Opponent’s Tendency to Cooperate Modulates the Neural Dynamics of Interpersonal Cooperation. Neuropsychologia, 162, Article ID: 108025.
https://doi.org/10.1016/j.neuropsychologia.2021.108025
[79] Pérez Fuentes, M. D. C., Molero Jurado, M. D. M., Carrión Martínez, J. J., Mercader Rubio, I., & Gázquez, J. J. (2016). Sensation-Seeking and Impulsivity as Predictors of Reactive and Proactive Aggression in Adolescents. Frontiers in Psychology, 7, Article 1447.
https://doi.org/10.3389/fpsyg.2016.01447
[80] Peterson, C., Li, M., Xu, L., Mikosz, C. A., & Luo, F. (2021). Assessment of Annual Cost of Substance Use Disorder in US Hospitals. JAMA Network Open, 4, e210242.
https://doi.org/10.1001/jamanetworkopen.2021.0242
[81] Pincham, H. L., Bryce, D., Fonagy, P., & Fearon, R. M. P. (2019). Psychosocial Intervention in At-Risk Adolescents: Using Event-Related Potentials to Assess Changes in Decision Making and Feedback Processing. European Child & Adolescent Psychiatry, 28, 223-236.
https://doi.org/10.1007/s00787-018-1167-3
[82] Prata, C., Pasion, R., Fernandes, M., Almeida, R., Pereira, M. R., Mazer, P. et al. (2019). Callousness and Meanness Traits Are Associated with Increased N2 Amplitude in a Community Sample of Adolescents and Adults. Neuroscience Letters, 706, 1-6.
https://doi.org/10.1016/j.neulet.2019.04.056
[83] Ribes‐Guardiola, P., Poy, R., Patrick, C. J., & Moltó, J. (2020). Electrocortical Measures of Performance Monitoring from Go/No‐Go and Flanker Tasks: Differential Relations with Trait Dimensions of the Triarchic Model of Psychopathy. Psychophysiology, 57, e13573.
https://doi.org/10.1111/psyp.13573
[84] Richetto, J., & Meyer, U. (2021). Epigenetic Modifications in Schizophrenia and Related Disorders: Molecular Scars of Environmental Exposures and Source of Phenotypic Variability. Biological Psychiatry, 89, 215-226.
https://doi.org/10.1016/j.biopsych.2020.03.008
[85] Ruchsow, M., Groen, G., Kiefer, M., Hermle, L., Spitzer, M., & Falkenstein, M. (2008). Impulsiveness and ERP Components in a Go/NoGo Task. Journal of Neural Transmission, 115, 909-915.
https://doi.org/10.1007/s00702-008-0042-7
[86] Salas, F., Nvo-Fernández, M., Leiva-Bianchi, M., Sáez, D. A., Páeza, G. S., García, M. V. et al. (2024). Components of Event-Related Potentials and Borderline Personality Disorder: A Meta-Analysis. European Journal of Psychotraumatology, 15, Article ID: 2297641.
https://doi.org/10.1080/20008066.2023.2297641
[87] Scarpa, A., & Raine, A. (1997). Psychophysiology of Anger and Violent Behavior. Psychiatric Clinics of North America, 20, 375-394.
https://doi.org/10.1016/s0193-953x(05)70318-x
[88] Shackman, J. E., & Pollak, S. D. (2014). Impact of Physical Maltreatment on the Regulation of Negative Affect and Aggression. Development and Psychopathology, 26, 1021-1033.
https://doi.org/10.1017/s0954579414000546
[89] Sheffler, J. L., Meynadasy, M. A., Taylor, D. T., Kiosses, D. N., & Hajcak, G. (2022). Subjective, Neuropsychological, and Neural Markers of Memory in Older Adults. International Psychogeriatrics, 34, 1035-1043.
https://doi.org/10.1017/s1041610221002623
[90] Silverstein, S. M., Del Pozzo, J., Roché, M., Boyle, D., & Miskimen, T. (2015). Schizophrenia and Violence: Realities and Recommendations. Crime Psychology Review, 1, 21-42.
https://doi.org/10.1080/23744006.2015.1033154
[91] Stoddard, S. A., Epstein-Ngo, Q., Walton, M. A., Zimmerman, M. A., Chermack, S. T., Blow, F. C. et al. (2015). Substance Use and Violence among Youth: A Daily Calendar Analysis. Substance Use & Misuse, 50, 328-339.
https://doi.org/10.3109/10826084.2014.980953
[92] Sun, L., Li, J., Niu, G., Zhang, L., & Chang, H. (2020). Reactive Aggression Affects Response Inhibition to Angry Expressions in Adolescents: An Event-Related Potential Study Using the Emotional Go/No-Go Paradigm. Frontiers in Psychology, 11, Article 558461.
https://doi.org/10.3389/fpsyg.2020.558461
[93] Sun, L., Liu, Z., Zhang, Y., Jing, Y., Lei, Y., & Zhang, Y. (2023). The Cognitive Neural Mechanism of Response Inhibition and Error Processing to Fearful Expressions in Adolescents with High Reactive Aggression. Frontiers in Psychology, 13, Article 984474.
https://doi.org/10.3389/fpsyg.2022.984474
[94] Surguy, S. M., & Bond, A. J. (2006). P300 to Emotionally Relevant Stimuli as an Indicator of Aggression Levels. Aggressive Behavior, 32, 253-260.
https://doi.org/10.1002/ab.20124
[95] Tao, Q., Jiang, L., Li, F., Qiu, Y., Yi, C., Si, Y. et al. (2022). Dynamic Networks of P300-Related Process. Cognitive Neurodynamics, 16, 975-985.
https://doi.org/10.1007/s11571-021-09753-3
[96] Teplin, L. A., McClelland, G. M., Abram, K. M., & Weiner, D. A. (2005). Crime Victimization in Adults with Severe Mental Illness: Comparison with the National Crime Victimization Survey. Archives of General Psychiatry, 62, 911-921.
https://doi.org/10.1001/archpsyc.62.8.911
[97] Teti Mayer, J., Compagne, C., Nicolier, M., Grandperrin, Y., Chabin, T., Giustiniani, J. et al. (2021). Towards a Functional Neuromarker of Impulsivity: Feedback-Related Brain Potential during Risky Decision-Making Associated with Self-Reported Impulsivity in a Non-Clinical Sample. Brain Sciences, 11, Article 671.
https://doi.org/10.3390/brainsci11060671
[98] Tillem, S., Weinstein, H., & Baskin-Sommers, A. (2021). Psychopathy Is Associated with an Exaggerated Attention Bottleneck: EEG and Behavioral Evidence from a Dual-Task Paradigm. Cognitive, Affective, & Behavioral Neuroscience, 21, 881-893.
https://doi.org/10.3758/s13415-021-00891-z
[99] Tremblay, P. F., & Belchevski, M. (2004). Did the Instigator Intend to Provoke? A Key Moderator in the Relation between Trait Aggression and Aggressive Behavior. Aggressive Behavior, 30, 409-424.
https://doi.org/10.1002/ab.20027
[100] Tsuchiya, N., Wilke, M., Frässle, S., & Lamme, V. A. F. (2015). No-Report Paradigms: Extracting the True Neural Correlates of Consciousness. Trends in Cognitive Sciences, 19, 757-770.
https://doi.org/10.1016/j.tics.2015.10.002
[101] Venables, N. C., Patrick, C. J., Hall, J. R., & Bernat, E. M. (2011). Clarifying Relations between Dispositional Aggression and Brain Potential Response: Overlapping and Distinct Contributions of Impulsivity and Stress Reactivity. Biological Psychology, 86, 279-288.
https://doi.org/10.1016/j.biopsycho.2010.12.009
[102] Verdejo-García, A., Lawrence, A. J., & Clark, L. (2008). Impulsivity as a Vulnerability Marker for Substance-Use Disorders: Review of Findings from High-Risk Research, Problem Gamblers and Genetic Association Studies. Neuroscience & Biobehavioral Reviews, 32, 777-810.
https://doi.org/10.1016/j.neubiorev.2007.11.003
[103] Wan, L., Baldridge, R. M., Colby, A. M., & Stanford, M. S. (2010). Association of P3 Amplitude to Treatment Completion in Substance Dependent Individuals. Psychiatry Research, 177, 223-227.
https://doi.org/10.1016/j.psychres.2009.01.033
[104] Wang, Y., Yang, Q., Zhu, B., Ye, S., Tian, X., & Krueger, F. (2020). High Levels of Psychopathic Traits Increase the Risk of Transferring Reactive Aggression to Innocent People after Provocation: Evidence from an ERP Study. Biological Psychology, 153, Article ID: 107891.
https://doi.org/10.1016/j.biopsycho.2020.107891
[105] Wilkowski, B. M., & Robinson, M. D. (2012). When Aggressive Individuals See the World More Accurately: The Case of Perceptual Sensitivity to Subtle Facial Expressions of Anger. Personality and Social Psychology Bulletin, 38, 540-553.
https://doi.org/10.1177/0146167211430233
[106] Wu, Y., Kang, R., Yan, Y., Gao, K., Li, Z., Jiang, J. et al. (2018). Epidemiology of Schizophrenia and Risk Factors of Schizophrenia-Associated Aggression from 2011 to 2015. Journal of International Medical Research, 46, 4039-4049.
https://doi.org/10.1177/0300060518786634
[107] Wu, Z., Zhou, Z., Lu, W., Liu, L., Zhu, Q., & Su, G. (2023). Study on Clinical Characteristics of Event‐related Potential P300 in Elderly Schizophrenics and Associated Risk Factors. Brain and Behavior, 13, e2966.
https://doi.org/10.1002/brb3.2966
[108] Xian, Z., Liu, H., Gu, Y., Hu, Z., & Li, G. (2024). EEG Biomarkers of Behavioral Inhibition in Patients with Depression Who Committed Violent Offenses: A Go/NoGo ERP Study. Cerebral Cortex, 34, bhae010.
https://doi.org/10.1093/cercor/bhae010
[109] Yancey, J. R., Venables, N. C., Hicks, B. M., & Patrick, C. J. (2013). Evidence for a Heritable Brain Basis to Deviance-Promoting Deficits in Self-Control. Journal of Criminal Justice, 41, 309-317.
https://doi.org/10.1016/j.jcrimjus.2013.06.002
[110] Yi, F., Chen, H., Wang, X., Shi, H., Yi, J., Zhu, X. et al. (2012). Amplitude and Latency of Feedback-Related Negativity: Aging and Sex Difference. NeuroReport, 23, 963-969.
https://doi.org/10.1097/wnr.0b013e328359d1c4
[111] Yu, C., Chen, C., Muggleton, N. G., Ko, C., & Liu, S. (2022). Acute Exercise Improves Inhibitory Control but Not Error Detection in Male Violent Perpetrators: An ERPs Study with the Emotional Stop Signal Task. Frontiers in Human Neuroscience, 16, Article 796180.
https://doi.org/10.3389/fnhum.2022.796180
[112] Zhang, Z., Wang, Q., Liu, X., Song, P., & Yang, B. (2017). Differences in Inhibitory Control between Impulsive and Premeditated Aggression in Juvenile Inmates. Frontiers in Human Neuroscience, 11, Article 373.
https://doi.org/10.3389/fnhum.2017.00373
[113] Žukov, I., Ptáček, R., Kozelek, P., Fischer, S., Domluvílová, D., Raboch, J., Hruby, T., & Susta, M. (2009). Brain Wave P300: A Comparative Study of Various Forms of Criminal Activity. Medical Science Monitor, 15, CR349-354.
https://www.medscimonit.com/abstract/index/idArt/869709