基于肠道菌群失调防治多囊卵巢综合征的研究进展
Research Advance on the Prevention and Treatment of Polycystic Ovary Syndrome Based on Dysbiosis of Gut Microbiota
DOI: 10.12677/acm.2024.1482299, PDF, HTML, XML,   
作者: 王钰炜:西藏民族大学医学院,陕西 咸阳;中山大学中山医学院生化系,广东 广州;吴 博:中山大学中山医学院生化系,广东 广州;赵静毅, 杨蜀岚:中山大学附属第一医院临床转化中心,广东 广州;王海河*:西藏民族大学医学院,陕西 咸阳;中山大学中山医学院生化系,广东 广州;西藏民族大学,西藏自治区高原胃肠病医学研究中心,陕西 咸阳
关键词: 多囊卵巢综合征胃肠道菌群胰岛素抵抗代谢失调Polycystic Ovary Syndrome Gastrointestinal Microbiota Insulin Resistance Metabolism Disfunction
摘要: 多囊卵巢综合征(polycystic ovary syndrome, PCOS)是一种生殖内分泌失调和代谢异常的疾病,目前关于其发病机制暂不清楚,可能是因遗传、代谢和环境因素之间相互作用导致的。近年来,许多研究表明PCOS的发病与肠道菌群失衡有关,其中的肠道菌群代谢产物,如胆汁酸和短链脂肪酸等参与了PCOS发病过程。此外,肠道菌群还在高雄激素血症(Hyperandrogenism, HA)、胰岛素抵抗(Insulin Resistance, IR)、慢性炎症及肥胖等多种并发症的女性患者中来影响PCOS的发生发展。此外,本文还归纳了基于肠道微生物改善PCOS患者肠道菌群的研究进展,如粪菌移植、补充益生菌、益生元策略及中药等,为PCOS的研究和将来的临床应用提供参考依据和治疗选择。
Abstract: Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder and metabolic disorder, and its pathogenesis still remains elusive. The occurrence of PCOS may be attributed to the interplaying among the genetic and/or metabolic matters of females, as well as the inner and outside environmental factors. Recently, evidence indicates that PCOS occurrence is positively related to a homeostasis abnormity in the gut microbiota, by which metabolites of the gut microbiota, including bile acids and short-chain fatty acids, are involved in the pathogenesis of PCOS. In addition, gut microbiota can affect the occurrence and development of PCOS in female patients with various complications, accompanied by hyperandrogenism (HA), insulin resistance (IR), chronic inflammation, and obesity. In addition, in this review, we also summarize the research progress on rebalancing the gut microbiota of PCOS patients with gut microbiota, such as fecal microbiota transplantation, supplementation of probiotics, prebiotic strategies, and traditional Chinese medicine. Taken together, our summarized information here on PCOS advances would provide a helpful reference for PCOS research and clinical applications.
文章引用:王钰炜, 吴博, 赵静毅, 杨蜀岚, 王海河. 基于肠道菌群失调防治多囊卵巢综合征的研究进展[J]. 临床医学进展, 2024, 14(8): 895-904. https://doi.org/10.12677/acm.2024.1482299

1. 引言

多囊卵巢综合征(polycystic ovary syndrome, PCOS)是一种育龄女性的异质性内分泌疾病,也是育龄期女性不孕的主要原因,通常患病率为6%~20%,随所用诊断标准和所研究的人群不同而诊断率不同[1] [2]。病人可出现双侧卵巢多囊样病变、间歇性排卵或无排卵、月经周期异常、雄激素水平升高、多毛、肥胖等特征。PCOS的发病病因较复杂,目前认为是多种因素及功能障碍导致,主要与遗传因素及环境因素密切关联,其中遗传因素被认为是PCOS发病的重要原因[2]。从遗传学角度来看,部分PCOS患者表现出家族聚集性,主要以常染色体显性遗传方式进行。但目前尚未发现诱发PCOS的特异基因,另外,临床上患PCOS的单卵双胞胎的同胞不一定患病。

从生理学角度来说,宫腔内激素水平变化通常会影响成年个体内分泌状态,如孕期暴露于高雄激素环境的雌性动物,成年后就会产生排卵功能障碍和多囊卵巢样病变。此外,若肥胖病人存在胰岛素抵抗及高胰岛素血症,可使其患PCOS的风险增加。由于胰岛素受体基因缺陷引起肥胖者脂肪细胞膜上特异性胰岛素受体相对减少,因此脂肪细胞对胰岛素敏感性下降,从而导致胰岛素抵抗(IR)与高胰岛素血症,过高的胰岛素水平进而使机体分泌过量雄激素,以此促进PCOS的发展。此外,肥胖人群易发PCOS,因肥胖会降低性激素结合球蛋白水平,增加雄激素和胰岛素水平以发生胰岛素抵抗,从而引起PCOS的发生[3]。因此肥胖也被认为是PCOS发病的一个关键诱因。整体而言,PCOS可能与多基因异常和特定的环境诱导因素相关,包括外界所处环境、饮食结构与营养、肠道微生物菌群,甚至精神等身心压力因素。本综述将主要探讨肠道菌群及其平衡与PCOS发生发展方面的研究进展,为PCOS的发病机制研究和临床治疗策略提供可能的参考和借鉴。

目前大量研究发现,PCOS患者常伴肠道微生物群紊乱,且肠道微生态失衡的程度和PCOS的病程进展密切相关[4]。人类肠道内存在庞大的肠道微生物群,尤其影响人体对物质的吸收利用及代谢,因此被称为人体的“第二基因组”、“第二大脑”或“肠脑”。在人体正常状态下,肠道菌群可与宿主及外部环境构建了一整套的动态生态系统,该系统的正常运转状态可保证人体适应当前所处环境。因此,肠道微生物及其代谢产物在维持人体生理稳态方面起重要作用。短链脂肪酸(short-chain free fatty acid, SCFA)、次生胆汁酸(bile acid, BA)、支链氨基酸(branched chain amino acid, BCAA)等肠道代谢产物既维护了肠道屏障完整性和外周组织生理代谢的平衡,又参与了人体组织细胞的正常代谢[5]。特别是SCFA在参与代谢过程外,还在抑制炎症和调节免疫方面起着重要作用。与之相反,若肠道微生物组出现平衡紊乱,肠道屏障功能则可能被破坏,从而发生肠道来源的脂多糖(lipopolysaccharide, LPS)泄露和内毒素血症,并诱导全身性低度炎症,还会干扰葡萄糖代谢和心血管功能[6],同时也代表着肠道中产生LPS作用的细菌增加,有益菌及产生SCFA作用的细菌减少,从而干扰PCOS的代谢[7]

2. 肠道菌群与PCOS

如前所述,PCOS是一种复杂的内分泌代谢紊乱的女性不孕症。肠道菌群通过其代谢产物参与了人体组织细胞的代谢过程,由此必然会影响人体的内分泌系统和其组成成分。越来越多研究证明,肠道菌群不仅影响肠道微环境,还通过分泌物调节全身各种代谢活动,且肠道菌群与PCOS的发生发展密切相关[5]。Insenser等发现在患雄激素增高(HA)的PCOS患者肠道菌群中α多样性(即肠道微生物中的细菌种类)未变,β多样性(即微生物群落组成)较健康对照组降低[8]。但Torres等却发现在不含有HA的PCOS患者肠道菌群中α多样性要低于健康对照组[9]。以上两项研究区别在是否以HA为筛选标准,因此根据两者结果提示,肠道菌群中的生物多样性与患者的血清雄激素水平升高有关。人体肠道中两大菌群属厚壁菌门和拟杆菌门,其中拟杆菌属和普雷沃氏菌属在拟杆菌门中占主导地位,且两者都与慢性炎症相关[10]。以往研究结果指出,PCOS患者体内肠道菌属的丰度会发生改变,但对于其丰度变化尚有争议。Zeng等[11]研究人员利用健康组与PCOS组作为对照,发现PCOS患者的拟杆菌属丰度明显升高(与胰岛素抵抗、性激素和炎症反应趋势相同),而普雷沃氏菌属丰度显著降低,且普雷沃氏菌属的减少与睾酮和促炎细胞因子的增加呈正相关,综合以上PCOS肠道菌群的相对丰度产生的显著变化,从而导致机体产生明显的炎症反应。但另一个研究表明,PCOS患者普雷沃菌属丰度增加促进机体的炎症反应[12]。此外,PCOS患者的肠道生态失调可能以SCFA和BA的产生菌减少为特征,提示肠道菌群的平衡向促炎菌倾斜。据报道,将健康小鼠肠道菌群移植治疗PCOS小鼠后效果显著,PCOS组小鼠性激素水平和卵巢功能都趋向正常,表明肠道菌群与PCOS的发生发展密切相关[13]。Olaniyi等发现醋酸盐(肠道来源的短链脂肪酸)通过抑制表观遗传调节因子来减轻PCOS卵巢功能障碍并恢复了性激素水平,表明肠道微生物群衍生代谢物对维持卵巢正常功能具有重要意义[14]

肠道微生物群还通过肠–脑轴的迷走神经、神经内分泌和免疫途径与宿主进行交流。目前已知在50种胃肠激素存在20余种激素跟脑–肠轴相关[15]。有研究表明,PCOS患者的胰高血糖素样肽1(GLP-1)水平降低,通过迷走神经影响胃肠道和中枢神经系统,导致肠道菌群失调和激素分泌紊乱[16]。Sun等也发现GLP-1有利于延缓胃排空、降低食欲、促进胰岛β细胞增殖和刺激胰岛素分泌。此外,脑–肠轴异常会对PCOS患者心理造成严重影响,会使患者产生抑郁、社交恐惧症、焦虑和攻击性等极端变化[17]。综上所述,证明肠道菌群及肠道代谢物在PCOS发生发展中的重要性,这些研究也为治疗PCOS提供潜在靶点。

3. 肠道菌群参与PCOS的作用机制

3.1. 肠道菌群与高雄激素血症

高雄激素水平是临床确诊PCOS的主要标准。研究表明,高雄激素血症会影响卵泡的正常发育和成熟,从而导致排卵功能障碍和月经周期紊乱。另外,肠道菌群紊乱会破坏肠道屏障,导致雄激素过多和卵巢功能障碍,从而引发PCOS。研究表明肠道菌群参与肠道雄激素代谢,肝脏来源的肠道葡萄糖醛酸化睾酮(glucuronated testosterone, T-G)和双氢睾酮(dihydrotestosterone, DHT)受肠道菌群影响去葡萄糖醛酸化,使远端肠道游离睾酮和DHT水平升高[18]。雄激素水平与肠道菌群的生物多样性及丰度变化密切相关,调节内分泌与代谢功能,加重PCOS样表型。在PCOS患者中,肠道菌群生物α多样性总睾酮水平相关[9]。另外一项研究也发现,PCOS组与健康对照组相比,肠道微生物群α多样性下降,且与雄激素水平呈负相关,从而引发PCOS [19]。Zhou等[20]在探究PCOS的菌属丰度的关联性中,发现睾酮水平与双歧杆菌属呈正相关,与阿克曼菌属、脱硫弧菌属呈负相关。此外,在PCOS小鼠模型发现中睾酮、黄体生成素水平与肠杆菌、乳酸杆菌呈正相关[21]。近来研究发现,抗生素干预由来曲唑诱导的PCOS小鼠后,PCOS小鼠肠道菌群紊乱且显着降低了血清总睾酮水平[22]。以上说明,肠道菌群紊乱会影响PCOS的雄激素代谢,但其机制还需进一步研究。

3.2. 肠道菌群与胰岛素抵抗

PCOS患者发生胰岛素抵抗的几率占25%~70% [23]。大量研究表明,PCOS患者中胰岛素抵抗的发生与肠道菌群紊乱息息相关。在2型糖尿病患者(T2DM)中,肠道菌群发生明显失调,比如丁酸产生菌减少,说明肠道菌群的变化与胰岛素抵抗密切相关[24]。研究表明,相比健康女性,不伴有胰岛素抵抗的PCOS患者的肠道菌群失调更为明显,其中普雷沃菌属减少,而肠球菌和拟杆菌属增加,且相关性分析显示胰岛素抵抗、性激素和炎症等水平的增加与拟杆菌科的丰度呈正相关[25]。据报道,补充膳食纤维、移植胰岛素敏感个体的粪便微生物群等,可恢复胰岛素抵抗患者的外周胰岛素敏感性[26]。在PCOS患者临床菌群检测中,拟杆菌是最具有诊断价值的肠道微生物标志物。一项研究表明,初级胆汁酸去氧胆酸(CDCA)作为肠道法尼醇X受体(Farnesate X receptor, FXR)的激动剂,减轻拟杆菌在PCOS患者及大鼠模型中的富集程度,改善PCOS表型和胰岛素抵抗[27]。Li等探究抗生素治疗改善来曲唑诱导的PCOS小鼠肠道菌群多样性,即通过降低梭菌属、肠杆菌属的丰度改善了PCOS小鼠葡萄糖敏感性[22]。Xu等研究发现红茶菌应用于高脂高糖饮食诱导的2型糖尿病小鼠模型,可使SCFA产生菌增加,革兰氏阴性菌和致病菌的丰度降低,从而改善肠道黏膜屏障功能完整性,减少LPS“泄露”,缓解全身炎症反应与胰岛素抵抗[28]。最近一项研究发现,百令胶囊干预脱氢表雄酮(DHEA)诱导的PCOS小鼠模型,可通过改善肠道微生物群状态来降低肠道来源的脂多糖(LPS)水平,同时也可通过TLR4炎症通路来减少全身炎症反应和改善胰岛素抵抗,缓解PCOS [29]。2012年,Tremellen提出了DOGMA理论,提出肠道微生物群紊乱导致PCOS发生发展的假说,发现由不健康饮食习惯引起的肠道菌群紊乱会导致肠道通透性增加,从而增加脂多糖穿过肠壁进入体循环[30]。由此引发全身慢性炎症导致胰岛素受体功能缺陷,从而使机体产生胰岛素抵抗并扰乱正常的卵泡发育及成熟。Pedersen等[31]研究表明PCOS大鼠模型肠道微生物群中普雷沃菌属丰度增加,加重胰岛素抵抗、扰乱葡萄糖代谢。肠道菌群在2型糖尿病(T2DM)的发生发展中扮演重要角色。与健康人群相比,T2DM患者的肠道菌群表现出明显差异,肠道菌群通过调节葡萄糖代谢来诱导全身炎症反应,影响T2DM的发生发展[32]。最新研究表明,胍丁胺(肠道中芽孢杆菌的代谢物)作为肠上皮中内源性法尼醇X受体(FXR)激动剂,通过抑制糖酵解途径减少胰高血糖素样肽1的分泌,诱导PCOS样病变,发生卵巢功能障碍和胰岛素抵抗[33]。但根据目前的文献报道,肠道FXR在PCOS葡萄糖代谢中的作用存在争议,有待进一步确定。肠道代谢物SCFA可维持胃肠激素稳定,改善糖脂代谢,降低胰岛素抵抗。研究发现,PCOS患者的肠道微生物群中缺少对机体有利的微生物粪肠杆菌和双歧杆菌,从而降低SCFA产生导致糖脂代谢异常发生胰岛素抵抗,促进PCOS的发生[34]。研究发现,过量胰岛素促进卵泡膜细胞和间质细胞增生、抑制性激素结合球蛋白合成,从而导致雄激素水平升高,扰乱正常卵泡发育加重PCOS的发生发展[35]。胰岛素抵抗与随之而来的高胰岛素血症不仅能促进卵巢和肾上腺产生过多的雄激素,还能降低性激素结合球蛋白(sex hormone binding globulin, SHBG)的合成来提高游离睾酮的水平。高雄激素水平能够促进内脏脂肪分解,增加游离脂肪酸水平,进一步加重胰岛素抵抗。

3.3. 肠道菌群与慢性炎症

慢性炎症是PCOS发病的重要因素之一,影响卵泡的发育及成熟。已有研究证实PCOS患者卵巢颗粒细胞中的氧化应激标志物水平升高且卵巢组织中的淋巴细胞、巨噬细胞及TNF-α和IL-6等炎症因子的水平增加[36]。此外,有研究发现高脂糖饮食的PCOS患者会诱发多种炎症介质的产生导致体内炎症反应,刺激雄激素的产生,干扰正常卵泡发育与葡萄糖代谢,恶化PCOS的发展[37]。脂多糖(LPS)与是革兰氏阴性菌外膜的主要成分,代谢异常可导致多种炎症。在PCOS患者中肠道菌群失调主要表现为LPS的产生菌增多,导致炎症因子水平增加、诱导肠上皮细胞凋亡并加剧肠道黏膜通透性,LPS进入体循环后通过结合非特异性免疫细胞表面的CD14/Toll样受体,激活NF-κB信号通路,促进全身炎症反应,同时通过与胰岛素受体共同的信号通路促进胰岛素受体底物-1磷酸化而加剧胰岛素抵抗,进一步刺激雄激素的产生,导致PCOS [30]。一项体外研究表明,用LPS刺激人卵巢颗粒细胞会激活NF-κB和NLRP3炎症小体,该过程中TLR4表达也显著增加[38]。另一种机制是,肠道微生物组还可以通过脑肠轴干扰宿主免疫调节。Lang等表明,PCOS相关不孕症患者外周血中辅助性T细胞(Th1/Th2)的比例高于对照组,Th1和Th2细胞平衡失调导致卵母细胞质量差和排卵功能障碍,导致PCOS患者妊娠率降低,流产风险增加[39]。应用百令胶囊治疗脱氢表雄酮造模的小鼠PCOS表型就是通过肠源性LPS-TLR4通路来减少全身炎症反应和改善胰岛素抵抗来缓解PCOS [29]。综上所述,肠道菌群可从多种途径诱发机体炎症反应,进而参与性激素的代谢,调控PCOS的病理过程。

3.4. 肠道菌群与肥胖

肠道菌群失调会使宿主摄取食物中的能量不均衡,导致肥胖的发生。早期研究表明肥胖与肠道菌群失调相关,当肥胖者与正常体重者比较,厚壁菌门(Firmicutes)与拟杆菌门(Bacteroidetes)的菌群总量比值显著升高;然而当肥胖者减重后,二者的比例逐渐接近正常体重者[40]。在人体肠道菌群中,有益菌嗜黏蛋白阿克曼菌(Akkermansia muciniphila, Akk)与健康的代谢状态相关[41]。Liu等发现伴有肥胖PCOS患者较不伴有肥胖PCOS患者的肠道菌群失调程度较高,其中Akk减少和多种革兰氏阴性细菌增加[42]。这些可能导致脂多糖(LPS)增多渗透入机体循环,引发慢性全身性炎症反应,加剧肥胖。研究表明,补充Akk可降低某种肝酶的活性和炎症反应相关的血清标志物,改善机体代谢,且减少LPS,改善肠道屏障功能[43]。近来研究表明,与健康女性相比,PCOS患者的粪杆菌和霍尔德曼氏菌的丰度降低,这两类菌与甘油三酯和总胆固醇水平呈负相关,且假单胞菌的丰度也降低(类固醇降解的最常见细菌之一),以调节患者的脂质代谢,说明肠道菌群失调与PCOS患者的脂质代谢紊乱相关[44]。另外,SCFA可改善小鼠的肥胖、糖脂代谢紊乱,而肠道菌群紊乱会影响SCFA的产生进而使体重增加[45]。研究人员也证实,过量脂肪饮食会破坏肠道菌群结构,导致肠上皮细胞内的紧密连接蛋白Occludin和闭锁连接蛋白-1 (zonula occludens-1, ZO-1)的表达量下降,从而破坏肠道屏障功能的完整性,促使LPS释放进入全身循环,加重PCOS的临床并发症[46]

4. 针对PCOS患者肠道菌群的治疗策略

4.1. 西医治疗

在临床上,PCOS通常使用促排卵药物、孕激素、服用避孕药、拮抗雄激素受体等药物可以达到一定的疗效,但整体疗效并不是否理想,仍需要探究开发新的治疗策略和药物。我国学者最新发现,青蒿素能够靶向线粒体蛋白酶LONP1来促进LONP1与其底物雄性激素合成限速酶CYP11A1的结合加速该酶降解,抑制卵巢雄激素合成来改善患者卵巢多囊样变[47]

如前所述,人类肠道菌群失调与 PCOS的病因有着复杂且密切的关联,因此,基于改善和平衡肠道菌群就是治疗和预防PCOS的一个可行途径。已有多项研究表明,适量补充益生菌、益生元可改善肠道微生物的组成,且利用粪菌移植方法(fecal microbiota transplantation, FMT)可重建患者肠道的微生态环境,从而有效治疗PCOS的临床表征[30] [48]

4.1.1. 益生菌和益生元

益生菌和益生元均有助于机体健康。益生菌定植在人体内和存在于发酵食品中。目前常用的益生菌有双歧杆菌和乳杆菌,且已有研究证明这两种菌株会调整小鼠胰岛素信号通路,而且可通过提高脂联素和瘦素浓度来改善葡萄糖代谢,导致血糖水平降低[49]。最近一项研究发现,大肠埃希菌Nissle1917 (Escherichia coli Nissle 1917)同样具有改善PCOS表型的作用,可使PCOS小鼠肠道菌群数量减少,大肠杆菌等的丰度增加,通过改善氨基糖和核苷酸糖代谢通路调节PCOS小鼠的代谢和炎症状况[50]。研究表明,补充益生菌有助于改善由PCOS引起的糖脂代谢紊乱、肥胖及患心血管疾病的风险[51],同时还在改善生育能力方面具有很大潜力[52]。“益生元”代表人体中难以消化的食物成分[53]。常见的益生元有低聚果糖、菊粉、半乳糖和乳果糖,作用是可通过调节微生物的组成来维持集体健康[54]。益生元能够显著提高胰高血糖素样肽1和肽YY水平,延缓胃排空,促进双歧杆菌属和乳杆菌属的生长,增加SCFA的含量,进而改善PCOS症状。目前对益生菌和益生元的研究存在一定的局限性,表现为在不同研究中使用的益生菌的种类差异大,缺乏一定剂量标准。因此,后续研究还需更多临床试验以确定合适的益生菌种类及剂量以达到更好的疗效。

4.1.2. 粪菌移植

肠道菌群移植(FMT)是指将健康供体内粪便微生物组转移到患者受体的肠道,以恢复患者肠道微生物群稳态的方法[55]。研究表明,与未治疗的对照组相比,FMT治疗的PCOS大鼠模型的雄激素水平降低、雌二醇和雌酮显着增加,以及卵巢功能也恢复正常[13]。将健康个体肠道菌群用于FMT处理后恢复多种肠道有益菌属丰度及菌群多样性,从而有效缓解PCOS [20] [56]。FMT是未来临床治疗PCOS的潜在方法之一,但目前只在动物模型上进行FMT治疗PCOS的研究,还需更多临床试验数据来确保FMT的疗效和具体机制。

4.2. 中医治疗

中医认为PCOS的发病与内脏功能失调有关。中医常采用单一药材或多种草药复方构成的药物组合,调节机体代谢状态和炎症反应,从而改善肠道生态失衡。小檗碱是一种生物碱,且具有与二甲双胍相似的治疗效果,已被证实可以通过增强肠道屏障作用来改善胰岛素抵抗[57]。另一研究还表明,小檗碱可通过抑制布氏瘤胃球菌的脱氧胆酸生物转化来降低血糖水平[58]。槲皮素是一种多酚,可使肠道有益菌阿克曼菌的数量增加,厚壁菌门与拟杆菌门的菌群总量比值下降,从而改善PCOS患者的生殖及代谢异常等情况[59]。Zhang等[60]研究发现黄连、黄芩等中药药材,以及参苓白术散、葛根芩连汤等中药复方,可使有益菌的产生增加,病原菌产生减少,以及肠道微生物群的多样性增加,来改善肠黏膜屏障功能完整性,减轻全身慢性炎症反应。此外,中药复方也可改善胰岛素抵抗。研究表明,哈氏补肾化痰方可通过提高肠道菌群代谢物SCFA水平,抑制炎症介质分泌和调节脂联素受体表达,从而降低肥胖型PCOS人群的胰岛素抵抗[61]。Li等发现中药复方荷芪散不仅具有抗炎作用,还可调节肠道菌群丰度,使双歧杆菌和副杆菌的丰度增加,拉氏梭菌的丰度降低,从而改善胰岛素抵抗及卵巢组织结构,减轻PCOS临床病症[62]。目前,许多中药在治疗PCOS可见显著成效,为了保证药物使用安全性,其具体机制尚需研究。

5. 总结与讨论

大量证据表明,肠道微生物群可通过多种途径和因素影响机体的内分泌及代谢表型,参与PCOS的发生发展。研究已知益生菌、益生元以及粪菌移植能够改善肠道菌群平衡,但其治疗机制和具体的治疗方法还需更多研究来完善。尽管本文概述了调节肠道微生物群稳态对PCOS管理的潜力,但是由于肠道菌群的复杂多样性以及PCOS发病机制的不确定性,更多的动物模型和临床样本需要建立来验证肠道菌群及其具体的次生代谢产物与PCOS发生之间的具体生理生化机制。此外,本文综述了基于肠道菌群失调的疗法,为以肠道菌群为靶点的PCOS及代谢性疾病提供了新的防治思路。

NOTES

*通讯作者。

参考文献

[1] Escobar-Morreale, H.F. (2018) Polycystic Ovary Syndrome: Definition, Aetiology, Diagnosis and Treatment. Nature Reviews Endocrinology, 14, 270-284.
https://doi.org/10.1038/nrendo.2018.24
[2] Teede, H., Tay, C.T. and Azziz, R. (2024) Response to Letter to the Editor from Rosenfield Et Al: “Recommendations from the 2023 International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome”. The Journal of Clinical Endocrinology & Metabolism, 189, G43-G64.
https://doi.org/10.1210/clinem/dgae370
[3] 左莉, 等. 多囊卵巢综合征的病因及治疗进展[J]. 重庆医学, 2018, 47(9): 4.
[4] Hallajzadeh, J., Khoramdad, M., Karamzad, N., Almasi-Hashiani, A., Janati, A., Ayubi, E., et al. (2018) Metabolic Syndrome and Its Components among Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Journal of Cardiovascular and Thoracic Research, 10, 56-69.
https://doi.org/10.15171/jcvtr.2018.10
[5] Zhang, M., Hu, R., Huang, Y., Zhou, F., Li, F., Liu, Z., et al. (2022) Present and Future: Crosstalks between Polycystic Ovary Syndrome and Gut Metabolites Relating to Gut Microbiota. Frontiers in Endocrinology, 13, Article 933110.
https://doi.org/10.3389/fendo.2022.933110
[6] Dalby, M.J. (2023) Questioning the Foundations of the Gut Microbiota and Obesity. Philosophical Transactions of the Royal Society B: Biological Sciences, 378, Article 20220221.
https://doi.org/10.1098/rstb.2022.0221
[7] Siddiqui, S., Mateen, S., Ahmad, R. and Moin, S. (2022) A Brief Insight into the Etiology, Genetics, and Immunology of Polycystic Ovarian Syndrome (PCOS). Journal of Assisted Reproduction and Genetics, 39, 2439-2473.
https://doi.org/10.1007/s10815-022-02625-7
[8] Insenser, M., Murri, M., del Campo, R., Martínez-García, M.Á., Fernández-Durán, E. and Escobar-Morreale, H.F. (2018) Gut Microbiota and the Polycystic Ovary Syndrome: Influence of Sex, Sex Hormones, and Obesity. The Journal of Clinical Endocrinology & Metabolism, 103, 2552-2562.
https://doi.org/10.1210/jc.2017-02799
[9] Torres, P.J., Siakowska, M., Banaszewska, B., Pawelczyk, L., Duleba, A.J., Kelley, S.T., et al. (2018) Gut Microbial Diversity in Women with Polycystic Ovary Syndrome Correlates with Hyperandrogenism. The Journal of Clinical Endocrinology & Metabolism, 103, 1502-1511.
https://doi.org/10.1210/jc.2017-02153
[10] Scher, J.U., Sczesnak, A., Longman, R.S., Segata, N., Ubeda, C., Bielski, C., et al. (2013) Expansion of Intestinal Prevotella Copri Correlates with Enhanced Susceptibility to Arthritis. eLife, 2, e01202.
https://doi.org/10.7554/elife.01202
[11] Chu, W., Han, Q., Xu, J., Wang, J., Sun, Y., Li, W., et al. (2020) Metagenomic Analysis Identified Microbiome Alterations and Pathological Association between Intestinal Microbiota and Polycystic Ovary Syndrome. Fertility and Sterility, 113, 1286-1298.e4.
https://doi.org/10.1016/j.fertnstert.2020.01.027
[12] Ley, R.E. (2016) Prevotella in the Gut: Choose Carefully. Nature Reviews Gastroenterology & Hepatology, 13, 69-70.
https://doi.org/10.1038/nrgastro.2016.4
[13] Guo, Y., Qi, Y., Yang, X., Zhao, L., Wen, S., Liu, Y., et al. (2016) Association between Polycystic Ovary Syndrome and Gut Microbiota. PLOS ONE, 11, e0153196.
https://doi.org/10.1371/journal.pone.0153196
[14] Olaniyi, K.S., Bashir, A.M., Areloegbe, S.E., Sabinari, I.W., Akintayo, C.O., Oniyide, A.A., et al. (2022) Short Chain Fatty Acid, Acetate Restores Ovarian Function in Experimentally Induced PCOS Rat Model. PLOS ONE, 17, e0272124.
https://doi.org/10.1371/journal.pone.0272124
[15] Winters, S., Martin, C., Murphy, D. and Shokar, N.K. (2017) Breast Cancer Epidemiology, Prevention, and Screening. Progress in Molecular Biology and Translational Science, 151, 1-32.
https://doi.org/10.1016/bs.pmbts.2017.07.002
[16] Aydin, K., Arusoglu, G., Koksal, G., Cinar, N., Yazgan Aksoy, D. and Yildiz, B.O. (2014) Fasting and Post-Prandial Glucagon Like Peptide 1 and Oral Contraception in Polycystic Ovary Syndrome. Clinical Endocrinology, 81, 588-592.
https://doi.org/10.1111/cen.12468
[17] Kohlné Papp, I. (2014) Psychosocial Approach of Polycystic Ovary Syndrome. Orvosi Hetilap, 155, 1867-1871.
https://doi.org/10.1556/oh.2014.30024
[18] Colldén, H., Landin, A., Wallenius, V., Elebring, E., Fändriks, L., Nilsson, M.E., et al. (2019) The Gut Microbiota Is a Major Regulator of Androgen Metabolism in Intestinal Contents. American Journal of Physiology-Endocrinology and Metabolism, 317, E1182-E1192.
https://doi.org/10.1152/ajpendo.00338.2019
[19] 陈苗, 等. 基于NLRP3炎症通路探讨健脾益肾化浊方对多囊卵巢综合征大鼠卵巢功能的影响[J]. 中国实验方剂学杂志, 2022, 28(20): 61-70.
[20] Zhou, J., et al. (2023) Comprehensive Analysis of Gut Microbiota Alteration in the Patients and Animal Models with Polycystic Ovary Syndrome. Journal of Microbiology, 61, 821-836.
https://doi.org/10.1007/s12275-023-00079-9
[21] Yu, X., Li, X. and Yang, H. (2024) Unraveling Intestinal Microbiota’s Dominance in Polycystic Ovary Syndrome Pathogenesis over Vaginal Microbiota. Frontiers in Cellular and Infection Microbiology, 14, Article 1364097.
https://doi.org/10.3389/fcimb.2024.1364097
[22] Li, Y., et al. (2023) Depletion of Gut Microbiota Influents Glucose Metabolism and Hyperandrogenism Traits of Mice with PCOS Induced by Letrozole. Frontiers in Endocrinology, 14, Article 1265152.
https://doi.org/10.3389/fendo.2023.1265152
[23] Aversa, A., et al. (2020) Fundamental Concepts and Novel Aspects of Polycystic Ovarian Syndrome: Expert Consensus Resolutions. Frontiers in Endocrinology, 11, Article 516.
https://doi.org/10.3389/fendo.2020.00516
[24] Wu, H., et al. (2020) The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metabolism, 32, 379-390.e3.
https://doi.org/10.1016/j.cmet.2020.06.011
[25] Zeng, B., et al. (2019) Structural and Functional Profiles of the Gut Microbial Community in Polycystic Ovary Syndrome with Insulin Resistance (IR-PCOS): A Pilot Study. Research in Microbiology, 170, 43-52.
https://doi.org/10.1016/j.resmic.2018.09.002
[26] Kootte, R.S., et al. (2017) Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metabolism, 26, 611-619.e6.
https://doi.org/10.1016/j.cmet.2017.09.008
[27] Yang, Y.L., et al. (2021) Intestinal Flora is a Key Factor in Insulin Resistance and Contributes to the Development of Polycystic Ovary Syndrome. Endocrinology, 162, bqab118.
[28] Xu, S., et al. (2022) Kombucha Reduces Hyperglycemia in Type 2 Diabetes of Mice by Regulating Gut Microbiota and Its Metabolites. Foods, 11, Article 754.
https://doi.org/10.3390/foods11050754
[29] Guan, H.R., et al. (2024) Exploring the Efficacy and Mechanism of Bailing Capsule to Improve Polycystic Ovary Syndrome in Mice Based on Intestinal-Derived LPS-TLR4 Pathway. Journal of Ethnopharmacology, 331, Article 118274.
https://doi.org/10.1016/j.jep.2024.118274
[30] Tremellen, K. and Pearce, K. (2012) Dysbiosis of Gut Microbiota (DOGMA)—A Novel Theory for the Development of Polycystic Ovarian Syndrome. Medical Hypotheses, 79, 104-112.
https://doi.org/10.1016/j.mehy.2012.04.016
[31] Pedersen, H.K., et al. (2016) Human Gut Microbes Impact Host Serum Metabolome and Insulin Sensitivity. Nature, 535, 376-381.
https://doi.org/10.1038/nature18646
[32] Zhou, Z., et al. (2022) Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus. Frontiers in Cellular and Infection Microbiology, 12, Article 834485.
https://doi.org/10.3389/fcimb.2022.834485
[33] Yun, C., et al. (2024) The Microbial Metabolite Agmatine Acts as an FXR Agonist to Promote Polycystic Ovary Syndrome in Female Mice. Nature Metabolism, 6, 947-962.
[34] Zhang, J., Sun, Z., Jiang, S., Bai, X., Ma, C., Peng, Q., et al. (2019) Probiotic Bifidobacterium lactis V9 Regulates the Secretion of Sex Hormones in Polycystic Ovary Syndrome Patients through the Gut-Brain Axis. mSystems, 4, e00017-e00019.
https://doi.org/10.1128/msystems.00017-19
[35] Panidis, D., Tziomalos, K., Misichronis, G., Papadakis, E., Betsas, G., Katsikis, I., et al. (2011) Insulin Resistance and Endocrine Characteristics of the Different Phenotypes of Polycystic Ovary Syndrome: A Prospective Study. Human Reproduction, 27, 541-549.
https://doi.org/10.1093/humrep/der418
[36] Gao, Y., Zou, Y., Wu, G. and Zheng, L. (2023) Oxidative Stress and Mitochondrial Dysfunction of Granulosa Cells in Polycystic Ovarian Syndrome. Frontiers in Medicine, 10, Article 1193749.
https://doi.org/10.3389/fmed.2023.1193749
[37] González, F., Considine, R.V., Abdelhadi, O.A. and Acton, A.J. (2020) Inflammation Triggered by Saturated Fat Ingestion Is Linked to Insulin Resistance and Hyperandrogenism in Polycystic Ovary Syndrome. The Journal of Clinical Endocrinology & Metabolism, 105, e2152-e2167.
https://doi.org/10.1210/clinem/dgaa108
[38] Liu, Y., Liu, H., Li, Z., Fan, H., Yan, X., Liu, X., et al. (2021) The Release of Peripheral Immune Inflammatory Cytokines Promote an Inflammatory Cascade in PCOS Patients via Altering the Follicular Microenvironment. Frontiers in Immunology, 12, Article 685724.
https://doi.org/10.3389/fimmu.2021.685724
[39] Zhao, X., Jiang, Y., Xi, H., Chen, L. and Feng, X. (2020) Exploration of the Relationship between Gut Microbiota and Polycystic Ovary Syndrome (PCOS): A Review. Geburtshilfe und Frauenheilkunde, 80, 161-171.
https://doi.org/10.1055/a-1081-2036
[40] Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R. and Gordon, J.I. (2006) An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature, 444, 1027-1031.
https://doi.org/10.1038/nature05414
[41] Dao, M.C., Everard, A., Aron-Wisnewsky, J., Sokolovska, N., Prifti, E., Verger, E.O., et al. (2015) Akkermansia muciniphila and Improved Metabolic Health during a Dietary Intervention in Obesity: Relationship with Gut Microbiome Richness and Ecology. Gut, 65, 426-436.
https://doi.org/10.1136/gutjnl-2014-308778
[42] Liu, R., Zhang, C., Shi, Y., Zhang, F., Li, L., Wang, X., et al. (2017) Dysbiosis of Gut Microbiota Associated with Clinical Parameters in Polycystic Ovary Syndrome. Frontiers in Microbiology, 8, Article 324.
https://doi.org/10.3389/fmicb.2017.00324
[43] Depommier, C., Everard, A., Druart, C., Plovier, H., Van Hul, M., Vieira-Silva, S., et al. (2019) Supplementation with Akkermansia muciniphila in Overweight and Obese Human Volunteers: A Proof-of-Concept Exploratory Study. Nature Medicine, 25, 1096-1103.
https://doi.org/10.1038/s41591-019-0495-2
[44] Yang, T., Li, G., Xu, Y., He, X., Song, B. and Cao, Y. (2024) Characterization of the Gut Microbiota in Polycystic Ovary Syndrome with Dyslipidemia. BMC Microbiology, 24, Article No. 169.
https://doi.org/10.1186/s12866-024-03329-x
[45] 刘倩, 等. 短链脂肪酸对高脂饮食诱导肥胖小鼠糖脂代谢紊乱的影响[J]. 肝脏, 2018, 23(7): 591-595.
[46] Cifarelli, V., Peche, V.S. and Abumrad, N.A. (2022) Vascular and Lymphatic Regulation of Gastrointestinal Function and Disease Risk. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 1867, Article 159207.
https://doi.org/10.1016/j.bbalip.2022.159207
[47] Liu, Y., et al. (2024) Artemisinins Ameliorate Polycystic Ovarian Syndrome by Mediating LONP1-CYP11A1 Interaction. Science, 384, eadk5382.
https://doi.org/10.1126/science.adk5382
[48] Yurtdaş, G. and Akdevelioğlu, Y. (2020) A New Approach to Polycystic Ovary Syndrome: The Gut Microbiota. Journal of the American College of Nutrition, 39, 371-382.
https://doi.org/10.1080/07315724.2019.1657515
[49] Pintarič, M. and Langerholc, T. (2022) Probiotic Mechanisms Affecting Glucose Homeostasis: A Scoping Review. Life, 12, Article 1187.
https://doi.org/10.3390/life12081187
[50] Luo, M., Chen, Y., Pan, X., Chen, H., Fan, L. and Wen, Y. (2023) E. Coli Nissle 1917 Ameliorates Mitochondrial Injury of Granulosa Cells in Polycystic Ovary Syndrome through Promoting Gut Immune Factor IL-22 via Gut Microbiota and Microbial Metabolism. Frontiers in Immunology, 14, Article ID: 1137089.
https://doi.org/10.3389/fimmu.2023.1137089
[51] da Silva Pontes, K.S., Guedes, M.R., da Cunha, M.R., Mattos, S.d.S., Barreto Silva, M.I., Neves, M.F., et al. (2021) Effects of Probiotics on Body Adiposity and Cardiovascular Risk Markers in Individuals with Overweight and Obesity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clinical Nutrition, 40, 4915-4931.
https://doi.org/10.1016/j.clnu.2021.06.023
[52] Calcaterra, V., Rossi, V., Massini, G., Casini, F., Zuccotti, G. and Fabiano, V. (2023) Probiotics and Polycystic Ovary Syndrome: A Perspective for Management in Adolescents with Obesity. Nutrients, 15, Article 3144.
https://doi.org/10.3390/nu15143144
[53] Xie, D., Zhao, X. and Chen, M. (2021) Prevention and Treatment Strategies for Type 2 Diabetes Based on Regulating Intestinal Flora. BioScience Trends, 15, 313-320.
https://doi.org/10.5582/bst.2021.01275
[54] Zhou, M., Yu, J., Li, X., Ruan, Z. and Yu, S. (2024) Role of the Gut Microbiota and Innate Immunity in Polycystic Ovary Syndrome: Current Updates and Future Prospects. Journal of Cellular and Molecular Medicine, 28, e18258.
https://doi.org/10.1111/jcmm.18258
[55] Hvas, C.L., Dahl Jørgensen, S.M., Jørgensen, S.P., Storgaard, M., Lemming, L., Hansen, M.M., et al. (2019) Fecal Microbiota Transplantation Is Superior to Fidaxomicin for Treatment of Recurrent Clostridium Difficile Infection. Gastroenterology, 156, 1324-1332.e3.
https://doi.org/10.1053/j.gastro.2018.12.019
[56] Corrie, L., Gulati, M., Vishwas, S., Kapoor, B., Singh, S.K., Awasthi, A., et al. (2021) Combination Therapy of Curcumin and Fecal Microbiota Transplant: Potential Treatment of Polycystic Ovarian Syndrome. Medical Hypotheses, 154, Article 110644.
https://doi.org/10.1016/j.mehy.2021.110644
[57] Liu, D., Zhang, Y., Liu, Y., Hou, L., Li, S., Tian, H., et al. (2018) Berberine Modulates Gut Microbiota and Reduces Insulin Resistance via the TLR4 Signaling Pathway. Experimental and Clinical Endocrinology & Diabetes, 126, 513-520.
https://doi.org/10.1055/s-0043-125066
[58] Zhang, Y., Gu, Y., Ren, H., Wang, S., Zhong, H., Zhao, X., et al. (2020) Gut Microbiome-Related Effects of Berberine and Probiotics on Type 2 Diabetes (the PREMOTE Study). Nature Communications, 11, Article No. 5015.
https://doi.org/10.1038/s41467-020-18414-8
[59] Tan, Y., Tam, C.C., Rolston, M., Alves, P., Chen, L., Meng, S., et al. (2021) Quercetin Ameliorates Insulin Resistance and Restores Gut Microbiome in Mice on High-Fat Diets. Antioxidants, 10, Article 1251.
https://doi.org/10.3390/antiox10081251
[60] Zhang, B., Liu, K., Yang, H., Jin, Z., Ding, Q. and Zhao, L. (2022) Gut Microbiota: The Potential Key Target of TCM’s Therapeutic Effect of Treating Different Diseases Using the Same Method—UC and T2DM as Examples. Frontiers in Cellular and Infection Microbiology, 12, Article 855075.
https://doi.org/10.3389/fcimb.2022.855075
[61] 张晗, 等. 哈氏补肾化痰方对痰湿证多囊卵巢综合征大鼠卵巢局部氧化应激的影响[J]. 中华中医药杂志, 2022, 37(4): 2280-2283.
[62] Li, J., Liu, D., Zhao, H., Zhang, P., Cai, F., Li, H., et al. (2024) Chinese Medicine Compound Prescription Heqi San Ameliorates Chronic Inflammatory States and Modulates Gut Flora in Dehydroepiandrosterone-Induced Polycystic Ovary Syndrome Mouse Model. International Immunopharmacology, 137, Article 112491.
https://doi.org/10.1016/j.intimp.2024.112491