|
[1]
|
Escobar-Morreale, H.F. (2018) Polycystic Ovary Syndrome: Definition, Aetiology, Diagnosis and Treatment. Nature Reviews Endocrinology, 14, 270-284. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Teede, H., Tay, C.T. and Azziz, R. (2024) Response to Letter to the Editor from Rosenfield Et Al: “Recommendations from the 2023 International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome”. The Journal of Clinical Endocrinology & Metabolism, 189, G43-G64. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
左莉, 等. 多囊卵巢综合征的病因及治疗进展[J]. 重庆医学, 2018, 47(9): 4.
|
|
[4]
|
Hallajzadeh, J., Khoramdad, M., Karamzad, N., Almasi-Hashiani, A., Janati, A., Ayubi, E., et al. (2018) Metabolic Syndrome and Its Components among Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Journal of Cardiovascular and Thoracic Research, 10, 56-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhang, M., Hu, R., Huang, Y., Zhou, F., Li, F., Liu, Z., et al. (2022) Present and Future: Crosstalks between Polycystic Ovary Syndrome and Gut Metabolites Relating to Gut Microbiota. Frontiers in Endocrinology, 13, Article 933110. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Dalby, M.J. (2023) Questioning the Foundations of the Gut Microbiota and Obesity. Philosophical Transactions of the Royal Society B: Biological Sciences, 378, Article 20220221. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Siddiqui, S., Mateen, S., Ahmad, R. and Moin, S. (2022) A Brief Insight into the Etiology, Genetics, and Immunology of Polycystic Ovarian Syndrome (PCOS). Journal of Assisted Reproduction and Genetics, 39, 2439-2473. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Insenser, M., Murri, M., del Campo, R., Martínez-García, M.Á., Fernández-Durán, E. and Escobar-Morreale, H.F. (2018) Gut Microbiota and the Polycystic Ovary Syndrome: Influence of Sex, Sex Hormones, and Obesity. The Journal of Clinical Endocrinology & Metabolism, 103, 2552-2562. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Torres, P.J., Siakowska, M., Banaszewska, B., Pawelczyk, L., Duleba, A.J., Kelley, S.T., et al. (2018) Gut Microbial Diversity in Women with Polycystic Ovary Syndrome Correlates with Hyperandrogenism. The Journal of Clinical Endocrinology & Metabolism, 103, 1502-1511. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Scher, J.U., Sczesnak, A., Longman, R.S., Segata, N., Ubeda, C., Bielski, C., et al. (2013) Expansion of Intestinal Prevotella Copri Correlates with Enhanced Susceptibility to Arthritis. eLife, 2, e01202. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Chu, W., Han, Q., Xu, J., Wang, J., Sun, Y., Li, W., et al. (2020) Metagenomic Analysis Identified Microbiome Alterations and Pathological Association between Intestinal Microbiota and Polycystic Ovary Syndrome. Fertility and Sterility, 113, 1286-1298.e4. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ley, R.E. (2016) Prevotella in the Gut: Choose Carefully. Nature Reviews Gastroenterology & Hepatology, 13, 69-70. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Guo, Y., Qi, Y., Yang, X., Zhao, L., Wen, S., Liu, Y., et al. (2016) Association between Polycystic Ovary Syndrome and Gut Microbiota. PLOS ONE, 11, e0153196. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Olaniyi, K.S., Bashir, A.M., Areloegbe, S.E., Sabinari, I.W., Akintayo, C.O., Oniyide, A.A., et al. (2022) Short Chain Fatty Acid, Acetate Restores Ovarian Function in Experimentally Induced PCOS Rat Model. PLOS ONE, 17, e0272124. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Winters, S., Martin, C., Murphy, D. and Shokar, N.K. (2017) Breast Cancer Epidemiology, Prevention, and Screening. Progress in Molecular Biology and Translational Science, 151, 1-32. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Aydin, K., Arusoglu, G., Koksal, G., Cinar, N., Yazgan Aksoy, D. and Yildiz, B.O. (2014) Fasting and Post-Prandial Glucagon Like Peptide 1 and Oral Contraception in Polycystic Ovary Syndrome. Clinical Endocrinology, 81, 588-592. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kohlné Papp, I. (2014) Psychosocial Approach of Polycystic Ovary Syndrome. Orvosi Hetilap, 155, 1867-1871. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Colldén, H., Landin, A., Wallenius, V., Elebring, E., Fändriks, L., Nilsson, M.E., et al. (2019) The Gut Microbiota Is a Major Regulator of Androgen Metabolism in Intestinal Contents. American Journal of Physiology-Endocrinology and Metabolism, 317, E1182-E1192. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
陈苗, 等. 基于NLRP3炎症通路探讨健脾益肾化浊方对多囊卵巢综合征大鼠卵巢功能的影响[J]. 中国实验方剂学杂志, 2022, 28(20): 61-70.
|
|
[20]
|
Zhou, J., et al. (2023) Comprehensive Analysis of Gut Microbiota Alteration in the Patients and Animal Models with Polycystic Ovary Syndrome. Journal of Microbiology, 61, 821-836. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yu, X., Li, X. and Yang, H. (2024) Unraveling Intestinal Microbiota’s Dominance in Polycystic Ovary Syndrome Pathogenesis over Vaginal Microbiota. Frontiers in Cellular and Infection Microbiology, 14, Article 1364097. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Li, Y., et al. (2023) Depletion of Gut Microbiota Influents Glucose Metabolism and Hyperandrogenism Traits of Mice with PCOS Induced by Letrozole. Frontiers in Endocrinology, 14, Article 1265152. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Aversa, A., et al. (2020) Fundamental Concepts and Novel Aspects of Polycystic Ovarian Syndrome: Expert Consensus Resolutions. Frontiers in Endocrinology, 11, Article 516. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wu, H., et al. (2020) The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metabolism, 32, 379-390.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zeng, B., et al. (2019) Structural and Functional Profiles of the Gut Microbial Community in Polycystic Ovary Syndrome with Insulin Resistance (IR-PCOS): A Pilot Study. Research in Microbiology, 170, 43-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Kootte, R.S., et al. (2017) Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metabolism, 26, 611-619.e6. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Yang, Y.L., et al. (2021) Intestinal Flora is a Key Factor in Insulin Resistance and Contributes to the Development of Polycystic Ovary Syndrome. Endocrinology, 162, bqab118.
|
|
[28]
|
Xu, S., et al. (2022) Kombucha Reduces Hyperglycemia in Type 2 Diabetes of Mice by Regulating Gut Microbiota and Its Metabolites. Foods, 11, Article 754. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Guan, H.R., et al. (2024) Exploring the Efficacy and Mechanism of Bailing Capsule to Improve Polycystic Ovary Syndrome in Mice Based on Intestinal-Derived LPS-TLR4 Pathway. Journal of Ethnopharmacology, 331, Article 118274. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Tremellen, K. and Pearce, K. (2012) Dysbiosis of Gut Microbiota (DOGMA)—A Novel Theory for the Development of Polycystic Ovarian Syndrome. Medical Hypotheses, 79, 104-112. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Pedersen, H.K., et al. (2016) Human Gut Microbes Impact Host Serum Metabolome and Insulin Sensitivity. Nature, 535, 376-381. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhou, Z., et al. (2022) Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus. Frontiers in Cellular and Infection Microbiology, 12, Article 834485. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Yun, C., et al. (2024) The Microbial Metabolite Agmatine Acts as an FXR Agonist to Promote Polycystic Ovary Syndrome in Female Mice. Nature Metabolism, 6, 947-962.
|
|
[34]
|
Zhang, J., Sun, Z., Jiang, S., Bai, X., Ma, C., Peng, Q., et al. (2019) Probiotic Bifidobacterium lactis V9 Regulates the Secretion of Sex Hormones in Polycystic Ovary Syndrome Patients through the Gut-Brain Axis. mSystems, 4, e00017-e00019. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Panidis, D., Tziomalos, K., Misichronis, G., Papadakis, E., Betsas, G., Katsikis, I., et al. (2011) Insulin Resistance and Endocrine Characteristics of the Different Phenotypes of Polycystic Ovary Syndrome: A Prospective Study. Human Reproduction, 27, 541-549. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Gao, Y., Zou, Y., Wu, G. and Zheng, L. (2023) Oxidative Stress and Mitochondrial Dysfunction of Granulosa Cells in Polycystic Ovarian Syndrome. Frontiers in Medicine, 10, Article 1193749. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
González, F., Considine, R.V., Abdelhadi, O.A. and Acton, A.J. (2020) Inflammation Triggered by Saturated Fat Ingestion Is Linked to Insulin Resistance and Hyperandrogenism in Polycystic Ovary Syndrome. The Journal of Clinical Endocrinology & Metabolism, 105, e2152-e2167. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Liu, Y., Liu, H., Li, Z., Fan, H., Yan, X., Liu, X., et al. (2021) The Release of Peripheral Immune Inflammatory Cytokines Promote an Inflammatory Cascade in PCOS Patients via Altering the Follicular Microenvironment. Frontiers in Immunology, 12, Article 685724. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhao, X., Jiang, Y., Xi, H., Chen, L. and Feng, X. (2020) Exploration of the Relationship between Gut Microbiota and Polycystic Ovary Syndrome (PCOS): A Review. Geburtshilfe und Frauenheilkunde, 80, 161-171. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R. and Gordon, J.I. (2006) An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature, 444, 1027-1031. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Dao, M.C., Everard, A., Aron-Wisnewsky, J., Sokolovska, N., Prifti, E., Verger, E.O., et al. (2015) Akkermansia muciniphila and Improved Metabolic Health during a Dietary Intervention in Obesity: Relationship with Gut Microbiome Richness and Ecology. Gut, 65, 426-436. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Liu, R., Zhang, C., Shi, Y., Zhang, F., Li, L., Wang, X., et al. (2017) Dysbiosis of Gut Microbiota Associated with Clinical Parameters in Polycystic Ovary Syndrome. Frontiers in Microbiology, 8, Article 324. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Depommier, C., Everard, A., Druart, C., Plovier, H., Van Hul, M., Vieira-Silva, S., et al. (2019) Supplementation with Akkermansia muciniphila in Overweight and Obese Human Volunteers: A Proof-of-Concept Exploratory Study. Nature Medicine, 25, 1096-1103. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Yang, T., Li, G., Xu, Y., He, X., Song, B. and Cao, Y. (2024) Characterization of the Gut Microbiota in Polycystic Ovary Syndrome with Dyslipidemia. BMC Microbiology, 24, Article No. 169. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
刘倩, 等. 短链脂肪酸对高脂饮食诱导肥胖小鼠糖脂代谢紊乱的影响[J]. 肝脏, 2018, 23(7): 591-595.
|
|
[46]
|
Cifarelli, V., Peche, V.S. and Abumrad, N.A. (2022) Vascular and Lymphatic Regulation of Gastrointestinal Function and Disease Risk. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 1867, Article 159207. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Liu, Y., et al. (2024) Artemisinins Ameliorate Polycystic Ovarian Syndrome by Mediating LONP1-CYP11A1 Interaction. Science, 384, eadk5382. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Yurtdaş, G. and Akdevelioğlu, Y. (2020) A New Approach to Polycystic Ovary Syndrome: The Gut Microbiota. Journal of the American College of Nutrition, 39, 371-382. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Pintarič, M. and Langerholc, T. (2022) Probiotic Mechanisms Affecting Glucose Homeostasis: A Scoping Review. Life, 12, Article 1187. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Luo, M., Chen, Y., Pan, X., Chen, H., Fan, L. and Wen, Y. (2023) E. Coli Nissle 1917 Ameliorates Mitochondrial Injury of Granulosa Cells in Polycystic Ovary Syndrome through Promoting Gut Immune Factor IL-22 via Gut Microbiota and Microbial Metabolism. Frontiers in Immunology, 14, Article ID: 1137089. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
da Silva Pontes, K.S., Guedes, M.R., da Cunha, M.R., Mattos, S.d.S., Barreto Silva, M.I., Neves, M.F., et al. (2021) Effects of Probiotics on Body Adiposity and Cardiovascular Risk Markers in Individuals with Overweight and Obesity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clinical Nutrition, 40, 4915-4931. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Calcaterra, V., Rossi, V., Massini, G., Casini, F., Zuccotti, G. and Fabiano, V. (2023) Probiotics and Polycystic Ovary Syndrome: A Perspective for Management in Adolescents with Obesity. Nutrients, 15, Article 3144. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Xie, D., Zhao, X. and Chen, M. (2021) Prevention and Treatment Strategies for Type 2 Diabetes Based on Regulating Intestinal Flora. BioScience Trends, 15, 313-320. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Zhou, M., Yu, J., Li, X., Ruan, Z. and Yu, S. (2024) Role of the Gut Microbiota and Innate Immunity in Polycystic Ovary Syndrome: Current Updates and Future Prospects. Journal of Cellular and Molecular Medicine, 28, e18258. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Hvas, C.L., Dahl Jørgensen, S.M., Jørgensen, S.P., Storgaard, M., Lemming, L., Hansen, M.M., et al. (2019) Fecal Microbiota Transplantation Is Superior to Fidaxomicin for Treatment of Recurrent Clostridium Difficile Infection. Gastroenterology, 156, 1324-1332.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Corrie, L., Gulati, M., Vishwas, S., Kapoor, B., Singh, S.K., Awasthi, A., et al. (2021) Combination Therapy of Curcumin and Fecal Microbiota Transplant: Potential Treatment of Polycystic Ovarian Syndrome. Medical Hypotheses, 154, Article 110644. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Liu, D., Zhang, Y., Liu, Y., Hou, L., Li, S., Tian, H., et al. (2018) Berberine Modulates Gut Microbiota and Reduces Insulin Resistance via the TLR4 Signaling Pathway. Experimental and Clinical Endocrinology & Diabetes, 126, 513-520. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Zhang, Y., Gu, Y., Ren, H., Wang, S., Zhong, H., Zhao, X., et al. (2020) Gut Microbiome-Related Effects of Berberine and Probiotics on Type 2 Diabetes (the PREMOTE Study). Nature Communications, 11, Article No. 5015. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Tan, Y., Tam, C.C., Rolston, M., Alves, P., Chen, L., Meng, S., et al. (2021) Quercetin Ameliorates Insulin Resistance and Restores Gut Microbiome in Mice on High-Fat Diets. Antioxidants, 10, Article 1251. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Zhang, B., Liu, K., Yang, H., Jin, Z., Ding, Q. and Zhao, L. (2022) Gut Microbiota: The Potential Key Target of TCM’s Therapeutic Effect of Treating Different Diseases Using the Same Method—UC and T2DM as Examples. Frontiers in Cellular and Infection Microbiology, 12, Article 855075. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
张晗, 等. 哈氏补肾化痰方对痰湿证多囊卵巢综合征大鼠卵巢局部氧化应激的影响[J]. 中华中医药杂志, 2022, 37(4): 2280-2283.
|
|
[62]
|
Li, J., Liu, D., Zhao, H., Zhang, P., Cai, F., Li, H., et al. (2024) Chinese Medicine Compound Prescription Heqi San Ameliorates Chronic Inflammatory States and Modulates Gut Flora in Dehydroepiandrosterone-Induced Polycystic Ovary Syndrome Mouse Model. International Immunopharmacology, 137, Article 112491. [Google Scholar] [CrossRef] [PubMed]
|