[1]
|
Steele, A.R., Tymko, M.M., Meah, V.L., Simpson, L.L., Gasho, C., Dawkins, T.G., et al. (2021) Global REACH 2018: Volume Regulation in High-Altitude Andeans with and without Chronic Mountain Sickness. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 321, R504-R512. https://doi.org/10.1152/ajpregu.00102.2021
|
[2]
|
Leiner, T., Bogaert, J., Friedrich, M.G., Mohiaddin, R., Muthurangu, V., Myerson, S., et al. (2020) SCMR Position Paper (2020) on Clinical Indications for Cardiovascular Magnetic Resonance. Journal of Cardiovascular Magnetic Resonance, 22, 76-79. https://doi.org/10.1186/s12968-020-00682-4
|
[3]
|
Han, S., Zhao, L., Ma, S., Chen, Z., Wu, S., Shen, M., et al. (2020) Alterations to Cardiac Morphology and Function among High-Altitude Workers: A Retrospective Cohort Study. Occupational and Environmental Medicine, 77, 447-453. https://doi.org/10.1136/oemed-2019-106108
|
[4]
|
Doutreleau, S., Ulliel-Roche, M., Hancco, I., Bailly, S., Oberholzer, L., Robach, P., et al. (2022) Cardiac Remodelling in the Highest City in the World: Effects of Altitude and Chronic Mountain Sickness. European Journal of Preventive Cardiology, 29, 2154-2162. https://doi.org/10.1093/eurjpc/zwac166
|
[5]
|
Lu, K.J., Chen, J.X.C., Profitis, K., Kearney, L.G., DeSilva, D., Smith, G., et al. (2014) Right Ventricular Global Longitudinal Strain Is an Independent Predictor of Right Ventricular Function: A Multimodality Study of Cardiac Magnetic Resonance Imaging, Real Time Three‐Dimensional Echocardiography and Speckle Tracking Echocardiography. Echocardiography, 32, 966-974. https://doi.org/10.1111/echo.12783
|
[6]
|
Wang, F.F., Bao, H.H., Li, C.W., et al. (2016) Diffusion Tensor Imaging in High Altitude Adults and Sea Level Normal Adults: An Analysis Using Tract-Based Spatial Statistics. Clinical Radiology, 35, 1341-1346.
|
[7]
|
范媛媛, 吴岑岑, 祖凌云. 高海拔环境对心血管系统生理指标及疾病的影响[J]. 中国循证心血管医学杂志, 2021, 13(10): 1267-1269.
|
[8]
|
宋晶, 陈友三, 孔祥闯, 等. 肺动脉高压患者左室心肌应变的MRI研究[J]. 临床放射学杂志, 2020, 39(5): 913-918.
|
[9]
|
Cao, J., Li, S., Cui, L., Zhu, K., Huo, H. and Liu, T. (2022) Biventricular Myocardial Strain Analysis in Patients with Pulmonary Arterial Hypertension Using Cardiac Magnetic Resonance Tissue-Tracking Technology. Journal of Clinical Medicine, 11, Article No. 2230. https://doi.org/10.3390/jcm11082230
|
[10]
|
van Everdingen, W.M., Zweerink, A., Nijveldt, R., Salden, O.A.E., Meine, M., Maass, A.H., et al. (2017) Comparison of Strain Imaging Techniques in CRT Candidates: CMR Tagging, CMR Feature Tracking and Speckle Tracking Echocardiography. The International Journal of Cardiovascular Imaging, 34, 443-456. https://doi.org/10.1007/s10554-017-1253-5
|
[11]
|
蒋月薪, 郭应坤. 心脏磁共振技术在高原心脏病早期心肌损伤中的应用研究进展[J]. 实用临床医药杂志, 2021, 25(11): 120-123+128.
|
[12]
|
Alexis, J.A., Costello, B., Iles, L.M., Ellims, A.H., Hare, J.L. and Taylor, A.J. (2016) Assessment of the Accuracy of Common Clinical Thresholds for Cardiac Morphology and Function by Transthoracic Echocardiography. Journal of Echocardiography, 15, 27-36. https://doi.org/10.1007/s12574-016-0322-4
|
[13]
|
颜春龙, 马金凤, 齐先龙, 等. 3.0T MRI对高原与平原地区健康正常人心脏结构及功能的对比研究[J]. 磁共振成像, 2020, 11(7): 526-530.
|
[14]
|
欧伟, 梁羽, 卿羽, 等. 短期间歇性低氧暴露对小鼠心肌氧化应激及心脏功能的影响研究[J]. 四川大学学报(医学版), 2022, 53(1): 98-104.
|
[15]
|
陈慧勤, 林默君, 刘晓如. 慢性低氧对大鼠左右心室的功能及TRPC亚家族表达的影响[J]. 中国应用生理学杂志, 2014, 30(3): 274-278.
|
[16]
|
Stembridge, M., Ainslie, P.N. and Shave, R. (2014) Short‐Term Adaptation and Chronic Cardiac Remodelling to High Altitude in Lowlander Natives and Himalayan Sherpa. Experimental Physiology, 100, 1242-1246. https://doi.org/10.1113/expphysiol.2014.082503
|
[17]
|
Boushel, R., Calbet, J.L., Rådegran, G., Sondergaard, H., Wagner, P.D. and Saltin, B. (2001) Parasympathetic Neural Activity Accounts for the Lowering of Exercise Heart Rate at High Altitude. Circulation, 104, 1785-1791. https://doi.org/10.1161/hc4001.097040
|
[18]
|
李政波, 张进, 王雪. 高原低氧环境短期暴露对官兵心脏的影响[J]. 西北国防医学杂志, 2019, 40(3): 174-178.
|
[19]
|
张来平. 急性高原暴露对肾素-血管紧张素-醛固酮系统和血流动力学的影响及其与AMS的关系[D]: [硕士学位论文]. 重庆: 中国人民解放军陆军军医大学, 2019.
|
[20]
|
孔晓婷, 汪元汲, 沈国双, 等. 高原低氧环境下对人体的影响及药物干预研究进展[J]. 现代医药卫生, 2022, 38(9): 1523-1527.
|
[21]
|
Messroghli, D.R., Moon, J.C., Ferreira, V.M., Grosse-Wortmann, L., He, T., Kellman, P., et al. (2016) Clinical Recommendations for Cardiovascular Magnetic Resonance Mapping of T1, T2, T2* and Extracellular Volume: A Consensus Statement by the Society for Cardiovascular Magnetic Resonance (SCMR) Endorsed by the European Association for Cardiovascular Imaging (EACVI). Journal of Cardiovascular Magnetic Resonance, 19, 75-81. https://doi.org/10.1186/s12968-017-0389-8
|
[22]
|
Yang, F., Zhang, Z., Ren, W., et al. (2019) Magnetic Resonance Imaging in Evaluating Myocardial Tissue Characteristics and the Clinical Application: An Update. Academic Journal of Second Military Medical University, 40, 243-249.
|
[23]
|
Ganesan, A.N., Gunton, J., Nucifora, G., McGavigan, A.D. and Selvanayagam, J.B. (2018) Impact of Late Gadolinium Enhancement on Mortality, Sudden Death and Major Adverse Cardiovascular Events in Ischemic and Nonischemic Cardiomyopathy: A Systematic Review and Meta-Analysis. International Journal of Cardiology, 254, 230-237. https://doi.org/10.1016/j.ijcard.2017.10.094
|
[24]
|
Halliday, B.P., Baksi, A.J., Gulati, A., Ali, A., Newsome, S., Izgi, C., et al. (2019) Outcome in Dilated Cardiomyopathy Related to the Extent, Location, and Pattern of Late Gadolinium Enhancement. JACC: Cardiovascular Imaging, 12, 1645-1655. https://doi.org/10.1016/j.jcmg.2018.07.015
|
[25]
|
Pereda, D., García-Lunar, I., Sierra, F., Sánchez-Quintana, D., Santiago, E., Ballesteros, C., et al. (2016) Magnetic Resonance Characterization of Cardiac Adaptation and Myocardial Fibrosis in Pulmonary Hypertension Secondary to Systemic-to-Pulmonary Shunt. Circulation: Cardiovascular Imaging, 9, 45-66. https://doi.org/10.1161/circimaging.116.004566
|
[26]
|
Li, M., Wang, G.H., Bao, H.H., et al. (2024) Assessment of Biventricular Function in Patients with Chronic Mountain Sickness by Cardiac Magnetic Resonance T1 Mapping and Feature Tracking Technique. Research Square, 1, 1-14.
|
[27]
|
Mou, A., Zhang, C., Li, M., Jin, F., Song, Q., Liu, A., et al. (2017) Evaluation of Myocardial Microcirculation Using Intravoxel Incoherent Motion Imaging. Journal of Magnetic Resonance Imaging, 46, 1818-1828. https://doi.org/10.1002/jmri.25706
|
[28]
|
Wu, L., Chen, B., Yao, Q., Ou, Y., Wu, R., Jiang, M., et al. (2016) Quantitative Diffusion-Weighted Magnetic Resonance Imaging in the Assessment of Myocardial Fibrosis in Hypertrophic Cardiomyopathy Compared with T1 Mapping. The International Journal of Cardiovascular Imaging, 32, 1289-1297. https://doi.org/10.1007/s10554-016-0909-x
|
[29]
|
Liao, P., Lin, G., Tsai, S., Wang, C., Juan, Y., Lin, Y., et al. (2016) Myocardial Triglyceride Content at 3 T Cardiovascular Magnetic Resonance and Left Ventricular Systolic Function: A Cross-Sectional Study in Patients Hospitalized with Acute Heart Failure. Journal of Cardiovascular Magnetic Resonance, 18, 9. https://doi.org/10.1186/s12968-016-0228-3
|
[30]
|
Zhou, Z., Nguyen, C., Chen, Y., Shaw, J.L., Deng, Z., Xie, Y., et al. (2016) Optimized CEST Cardiovascular Magnetic Resonance for Assessment of Metabolic Activity in the Heart. Journal of Cardiovascular Magnetic Resonance, 19, 95. https://doi.org/10.1186/s12968-017-0411-1
|
[31]
|
Holloway, C.J., Montgomery, H.E., Murray, A.J., Cochlin, L.E., Codreanu, I., Hopwood, N., et al. (2010) Cardiac Response to Hypobaric Hypoxia: Persistent Changes in Cardiac Mass, Function, and Energy Metabolism after a Trek to Mt. Everest Base Camp. The FASEB Journal, 25, 792-796. https://doi.org/10.1096/fj.10-172999
|