[1]
|
Saul, D. and Khosla, S. (2022) Fracture Healing in the Setting of Endocrine Diseases, Aging, and Cellular Senescence. Endocrine Reviews, 43, 984-1002. https://doi.org/10.1210/endrev/bnac008
|
[2]
|
Rose, S. and Maffulli, N. (1999) Hip Fractures. An Epidemiological Review. Bulletin of the Hospital for Joint Diseases, 58, 197-201.
|
[3]
|
Omi, M. and Mishina, Y. (2022) Roles of Osteoclasts in Alveolar Bone Remodeling. Genesis, 60, e23490. https://doi.org/10.1002/dvg.23490
|
[4]
|
Szczęsny, G. (2015) Fracture Healing and Its Disturbances. A Literature Review. Ortopedia Traumatologia Rehabilitacja, 17, 437-454. https://doi.org/10.5604/15093492.1186809
|
[5]
|
Hankenson, K.D., Zimmerman, G. and Marcucio, R. (2014) Biological Perspectives of Delayed Fracture Healing. Injury, 45, S8-S15. https://doi.org/10.1016/j.injury.2014.04.003
|
[6]
|
Marsell, R. and Einhorn, T.A. (2011) The Biology of Fracture Healing. Injury, 42, 551-555. https://doi.org/10.1016/j.injury.2011.03.031
|
[7]
|
Yamagiwa, H. and Endo, N. (2009) Bone Fracture and the Healing Mechanisms. Histological Aspect of Fracture Healing. Primary and Secondary Healing. Clinical Calcium, 19, 627-633.
|
[8]
|
Huang, W., Zhang, K., Zhu, Y., Wang, Z., Li, Z. and Zhang, J. (2018) Genetic Polymorphisms of NOS2 and Predisposition to Fracture Non-Union: A Case Control Study Based on Han Chinese Population. PLOS ONE, 13, e0193673. https://doi.org/10.1371/journal.pone.0193673
|
[9]
|
Boyce, B.F. (2013) Advances in the Regulation of Osteoclasts and Osteoclast Functions. Journal of Dental Research, 92, 860-867. https://doi.org/10.1177/0022034513500306
|
[10]
|
Chen, Z., Wu, J., Guo, D., Li, Y., Chen, M., Zhang, Z., et al. (2023) Physiological Functions of Podosomes: From Structure and Function to Therapy Implications in Osteoclast Biology of Bone Resorption. Ageing Research Reviews, 85, Article 101842. https://doi.org/10.1016/j.arr.2023.101842
|
[11]
|
Kong, L., Wang, B., Yang, X., He, B., Hao, D. and Yan, L. (2020) Integrin‐Associated Molecules and Signalling Cross Talking in Osteoclast Cytoskeleton Regulation. Journal of Cellular and Molecular Medicine, 24, 3271-3281. https://doi.org/10.1111/jcmm.15052
|
[12]
|
Cao, J.J., Wronski, T.J., Iwaniec, U., Phleger, L., Kurimoto, P., Boudignon, B., et al. (2005) Aging Increases Stromal/Osteoblastic Cell-Induced Osteoclastogenesis and Alters the Osteoclast Precursor Pool in the Mouse. Journal of Bone and Mineral Research, 20, 1659-1668. https://doi.org/10.1359/jbmr.050503
|
[13]
|
Matsumoto, K., Shimo, T., Kurio, N., et al. (2016) Expression and Role of Sonic Hedgehog in the Process of Fracture Healing with Aging. In vivo (Athens, Greece), 30, 99-105.
|
[14]
|
Clark, D., Nakamura, M., Miclau, T. and Marcucio, R. (2017) Effects of Aging on Fracture Healing. Current Osteoporosis Reports, 15, 601-608. https://doi.org/10.1007/s11914-017-0413-9
|
[15]
|
Lin, H., Sohn, J., Shen, H., Langhans, M.T. and Tuan, R.S. (2019) Bone Marrow Mesenchymal Stem Cells: Aging and Tissue Engineering Applications to Enhance Bone Healing. Biomaterials, 203, 96-110. https://doi.org/10.1016/j.biomaterials.2018.06.026
|
[16]
|
Deng, W., Li, H., Zhang, Y., Lin, Y., Chen, C., Chen, J., et al. (2023) Isoliensinine Suppresses Bone Loss by Targeted Inhibition of RANKL-RANK Binding. Biochemical Pharmacology, 210, Article 115463. https://doi.org/10.1016/j.bcp.2023.115463
|
[17]
|
Jin, Y., Xu, M., Zhu, H., Dong, C., Ji, J., Liu, Y., et al. (2021) Therapeutic Effects of Bone Marrow Mesenchymal Stem Cells‐Derived Exosomes on Osteoarthritis. Journal of Cellular and Molecular Medicine, 25, 9281-9294. https://doi.org/10.1111/jcmm.16860
|
[18]
|
Polito, A., Barnaba, L., Ciarapica, D. and Azzini, E. (2022) Osteosarcopenia: A Narrative Review on Clinical Studies. International Journal of Molecular Sciences, 23, Article No. 5591. https://doi.org/10.3390/ijms23105591
|