|
[1]
|
Yan, J. (2018) Negative-Emissions Hydrogen Energy. Nature Climate Change, 8, 560-561. [Google Scholar] [CrossRef]
|
|
[2]
|
Martin, A., Agnoletti, M. and Brangier, E. (2020) Users in the Design of Hydrogen Energy Systems: A Systematic Review. International Journal of Hydrogen Energy, 45, 11889-11900. [Google Scholar] [CrossRef]
|
|
[3]
|
Li, Y., Hu, W., Zhang, F. and Li, Y. (2024) Collaborative Operational Model for Shared Hydrogen Energy Storage and Park Cluster: A Multiple Values Assessment. Journal of Energy Storage, 82, Article ID: 110507. [Google Scholar] [CrossRef]
|
|
[4]
|
Nithya, V.D. (2021) Recent Advances in CoSe2 Electrocatalysts for Hydrogen Evolution Reaction. International Journal of Hydrogen Energy, 46, 36080-36102. [Google Scholar] [CrossRef]
|
|
[5]
|
Yu, Y., Liu, R., Sun, Y., Liu, Z., Shi, X., Lai, J., et al. (2024) Sub-Nanometric Materials for Hydrogen Evolution Reaction. Materials Chemistry Frontiers, 8, 159-178. [Google Scholar] [CrossRef]
|
|
[6]
|
Li, S., Gao, Y., Li, N., Ge, L., Bu, X. and Feng, P. (2021) Transition Metal-Based Bimetallic MOFs and MOF-Derived Catalysts for Electrochemical Oxygen Evolution Reaction. Energy & Environmental Science, 14, 1897-1927. [Google Scholar] [CrossRef]
|
|
[7]
|
Jamesh, M. and Harb, M. (2021) Tuning the Electronic Structure of the Earth-Abundant Electrocatalysts for Oxygen Evolution Reaction (OER) to Achieve Efficient Alkaline Water Splitting—A Review. Journal of Energy Chemistry, 56, 299-342. [Google Scholar] [CrossRef]
|
|
[8]
|
Wang, J., Yu, J., Wang, J., Wang, K., Yu, L., Zhu, C., et al. (2023) Adsorbed p‐Aminothiophenol Molecules on Platinum Nanoparticles Improve Electrocatalytic Hydrogen Evolution. Small, 19, Article ID: 2207135. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Shah, A.H., Wan, C., Huang, Y. and Duan, X. (2023) Toward Molecular Level Understandings of Hydrogen Evolution Reaction on Platinum Surface. The Journal of Physical Chemistry C, 127, 12841-12848. [Google Scholar] [CrossRef]
|
|
[10]
|
Zhao, F., Wen, B., Niu, W., Chen, Z., Yan, C., Selloni, A., et al. (2021) Increasing Iridium Oxide Activity for the Oxygen Evolution Reaction with Hafnium Modification. Journal of the American Chemical Society, 143, 15616-15623. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Sun, H. and Jung, W. (2021) Recent Advances in Doped Ruthenium Oxides as High-Efficiency Electrocatalysts for the Oxygen Evolution Reaction. Journal of Materials Chemistry A, 9, 15506-15521. [Google Scholar] [CrossRef]
|
|
[12]
|
Wang, H., Yi, Q., Gao, L., Gao, Y., Liu, T., Jiang, Y., et al. (2017) Hierarchically Interconnected Nitrogen-Doped Carbon Nanosheets for an Efficient Hydrogen Evolution Reaction. Nanoscale, 9, 16342-16348. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhao, R., Li, Q., Jiang, X., Huang, S., Fu, G. and Lee, J. (2021) Interface Engineering in Transition Metal-Based Heterostructures for Oxygen Electrocatalysis. Materials Chemistry Frontiers, 5, 1033-1059. [Google Scholar] [CrossRef]
|
|
[14]
|
Bonnefont, A., Ryabova, A.S., Schott, T., Kéranguéven, G., Istomin, S.Y., Antipov, E.V., et al. (2019) Challenges in the Understanding Oxygen Reduction Electrocatalysis on Transition Metal Oxides. Current Opinion in Electrochemistry, 14, 23-31. [Google Scholar] [CrossRef]
|
|
[15]
|
Wen, Y., Meng, W., Li, C., Dai, L., He, Z., Wang, L., et al. (2018) Enhanced Glucose Sensing Based on a Novel Composite Coii-MOF/Acb Modified Electrode. Dalton Transactions, 47, 3872-3879. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Akhtar, A., Zink, D. and Becker, P.B. (2000) Chromodomains Are Protein-RNA Interaction Modules. Nature, 407, 405-409. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Tan, H., Zhou, Y., Qiao, S. and Fan, H.J. (2021) Metal Organic Framework (MOF) in Aqueous Energy Devices. Materials Today, 48, 270-284. [Google Scholar] [CrossRef]
|
|
[18]
|
Liu, Y., Wang, Y., Zhao, S. and Tang, Z. (2022) Metal-Organic Framework‐Based Nanomaterials for Electrocatalytic Oxygen Evolution. Small Methods, 6, Article ID: 2200773. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Yang, Y., Yang, Y., Liu, Y., Zhao, S. and Tang, Z. (2021) Metal-Organic Frameworks for Electrocatalysis: Beyond Their Derivatives. Small Science, 1, Article ID: 2100015. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Dong, J., Liu, Y., Pei, J., Li, H., Ji, S., Shi, L., et al. (2023) Continuous Electroproduction of Formate via CO2 Reduction on Local Symmetry-Broken Single-Atom Catalysts. Nature Communications, 14, Article No. 6849. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Sun, Y., Xue, Z., Liu, Q., Jia, Y., Li, Y., Liu, K., et al. (2021) Modulating Electronic Structure of Metal-Organic Frameworks by Introducing Atomically Dispersed Ru for Efficient Hydrogen Evolution. Nature Communications, 12, Article No. 1369. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhou, Z., Kong, Y., Tan, H., Huang, Q., Wang, C., Pei, Z., et al. (2022) Cation‐Vacancy‐Enriched Nickel Phosphide for Efficient Electrosynthesis of Hydrogen Peroxides. Advanced Materials, 34, Article ID: 2106541. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yang, D., Su, Z., Chen, Y., Srinivas, K., Zhang, X., Zhang, W., et al. (2022) Self-reconstruction of a MOF-Derived Chromium-Doped Nickel Disulfide in Electrocatalytic Water Oxidation. Chemical Engineering Journal, 430, Article ID: 133046. [Google Scholar] [CrossRef]
|
|
[24]
|
Srinivas, K., Ma, F., Liu, Y., Zhang, Z., Wu, Y. and Chen, Y. (2022) Metal-Organic Framework-Derived Fe-Doped Ni3Se4/NiSe2 Heterostructure-Embedded Mesoporous Tubes for Boosting Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 14, 52927-52939. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Xu, X., Zhou, Q. and Yu, D. (2022) The Future of Hydrogen Energy: Bio-Hydrogen Production Technology. International Journal of Hydrogen Energy, 47, 33677-33698. [Google Scholar] [CrossRef]
|
|
[26]
|
Guo, J., Liang, Y., Liu, L., Hu, J., Wang, H., An, W., et al. (2020) Noble-Metal-Free CdS/Ni-MOF Composites with Highly Efficient Charge Separation for Photocatalytic H2 Evolution. Applied Surface Science, 522, Article ID: 146356. [Google Scholar] [CrossRef]
|
|
[27]
|
You, B. and Sun, Y. (2018) Innovative Strategies for Electrocatalytic Water Splitting. Accounts of Chemical Research, 51, 1571-1580. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wei, Y., Su, J., Guo, L. and Vayssieres, L. (2019) Something New under the Sun for Ultra Low-Cost Single-Junction Photoanodes for Highly Efficient Photocatalytic Water Splitting. Solar Energy Materials and Solar Cells, 201, Article ID: 110083. [Google Scholar] [CrossRef]
|
|
[29]
|
Zhou, S., Shi, L., Li, Y., Yang, T. and Zhao, S. (2024) Metal‐Organic Framework‐based Electrocatalysts for Acidic Water Splitting. Advanced Functional Materials. [Google Scholar] [CrossRef]
|
|
[30]
|
Zhu, J., Hu, L., Zhao, P., Lee, L.Y.S. and Wong, K. (2019) Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chemical Reviews, 120, 851-918. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
van der Heijden, O., Park, S., Vos, R.E., Eggebeen, J.J.J. and Koper, M.T.M. (2024) Tafel Slope Plot as a Tool to Analyze Electrocatalytic Reactions. ACS Energy Letters, 9, 1871-1879. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Cheng, W., Guan, W., Lin, Y. and Lu, C. (2022) Rapid Discrimination of Adsorbed Oxygen and Lattice Oxygen in Catalysts by the Cataluminescence Method. Analytical Chemistry, 94, 1382-1389. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Suen, N., Hung, S., Quan, Q., Zhang, N., Xu, Y. and Chen, H.M. (2017) Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chemical Society Reviews, 46, 337-365. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zeng, F., Mebrahtu, C., Liao, L., Beine, A.K. and Palkovits, R. (2022) Stability and Deactivation of OER Electrocatalysts: A Review. Journal of Energy Chemistry, 69, 301-329. [Google Scholar] [CrossRef]
|
|
[35]
|
Nie, M., Xue, Z.H., Sun, H., Liao, J.M., Xue, F.J. and Wang, X.X. (2020) Pd Doped Ni Derived from Ni-Metal Organic Framework for Efficient Hydrogen Evolution Reaction in Alkaline Electrolyte. International Journal of Hydrogen Energy, 45, 28870-28875. [Google Scholar] [CrossRef]
|
|
[36]
|
Wang, T., Jin, R., Wu, X., Zheng, J., Li, X. and Ostrikov, K. (2018) A Highly Efficient Ni-Mo Bimetallic Hydrogen Evolution Catalyst Derived from a Molybdate Incorporated Ni-MOF. Journal of Materials Chemistry A, 6, 9228-9235. [Google Scholar] [CrossRef]
|
|
[37]
|
Zhang, X., Lin, R., Meng, X., Li, W., Chen, F. and Hou, J. (2021) Iron Phthalocyanine/Two-Dimensional Metal-Organic Framework Composite Nanosheets for Enhanced Alkaline Hydrogen Evolution. Inorganic Chemistry, 60, 9987-9995. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhu, F., Zhang, X., Han, X., Zhou, C., Lu, S., Lang, J., et al. (2022) Nanostructured Catalyst Assembled from CNTs, NiSe2 Nanoparticles, and 2D Ni-MOF Nanosheets for Electrocatalytic Hydrogen Evolution Reaction. CrystEngComm, 24, 8503-8508. [Google Scholar] [CrossRef]
|
|
[39]
|
Qu, H., Ma, Y., Gou, Z., Li, B., Liu, Y., Zhang, Z., et al. (2020) Ni2P/C Nanosheets Derived from Oriented Growth Ni-MOF on Nickel Foam for Enhanced Electrocatalytic Hydrogen Evolution. Journal of Colloid and Interface Science, 572, 83-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Gothandapani, K., Jeniffer, R.S., Tamil Selvi, G., Velmurugan, V., Assaifan, A.K., Alzahrani, K.E., et al. (2024) Nickel Nanoparticles Supported on Carbon Surface as an Electrocatalyst for Hydrogen Evolution Reaction. International Journal of Hydrogen Energy, 52, 1137-1146. [Google Scholar] [CrossRef]
|
|
[41]
|
Huang, Z., Yuan, S., Zhang, T., Cai, B., Xu, B., Lu, X., et al. (2020) Selective Selenization of Mixed-Linker Ni-MOFs: NiSe2@NC Core-Shell Nano-Octahedrons with Tunable Interfacial Electronic Structure for Hydrogen Evolution Reaction. Applied Catalysis B: Environmental, 272, Article ID: 118976. [Google Scholar] [CrossRef]
|
|
[42]
|
Xu, Z., Tao, Y., Sun, Z., Bi, P., Zhong, X., Liao, J., et al. (2023) Ligand-Engineered Ni-Based Metal-Organic Frameworks for Electrochemical Oxygen Evolution Reaction. Chemical Engineering Journal, 478, Article ID: 147418. [Google Scholar] [CrossRef]
|
|
[43]
|
Huang, Z., Liao, M., Zhang, S., Wang, L., Gao, M., Luo, Z., et al. (2024) Valence Electronic Engineering of Superhydrophilic Dy-Evoked Ni-MOF Outperforming RuO2 for Highly Efficient Electrocatalytic Oxygen Evolution. Journal of Energy Chemistry, 90, 244-252. [Google Scholar] [CrossRef]
|
|
[44]
|
Wang, X., Xiao, H., Li, A., Li, Z., Liu, S., Zhang, Q., et al. (2018) Constructing NiCo/Fe3O4 Heteroparticles within MOF-74 for Efficient Oxygen Evolution Reactions. Journal of the American Chemical Society, 140, 15336-15341. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Cao, C., Ma, D., Xu, Q., Wu, X. and Zhu, Q. (2018) Semisacrificial Template Growth of Self‐supporting MOF Nanocomposite Electrode for Efficient Electrocatalytic Water Oxidation. Advanced Functional Materials, 29, Article ID: 1807418. [Google Scholar] [CrossRef]
|
|
[46]
|
Cao, L., Chen, B., Yan, J., Jiang, S., Su, Z., Chen, K., et al. (2023) Nickel Nanoparticle-Embedded N-Doped Carbon Catalysts Formed by MOF Derivatives for the Oxygen Evolution Reaction. New Journal of Chemistry, 47, 12799-12805. [Google Scholar] [CrossRef]
|
|
[47]
|
Ramesh, S.K., Son, J., Ganesan, V. and Kim, J. (2022) Carbon-Incorporated Ni2P-Fe2P Hollow Nanorods as Superior Electrocatalysts for the Oxygen Evolution Reaction. Nanoscale, 14, 16262-16269. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Li, W., Guo, B., Zhang, K., Chen, X., Zhang, H., Chen, W., et al. (2024) Ru-Regulated Electronic Structure CoNi-MOF Nanosheets Advance Water Electrolysis Kinetics in Alkaline and Seawater Media. Journal of Colloid and Interface Science, 668, 181-189. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Kashif, M., Thangarasu, S., Murugan, N., Magdum, S.S., Kim, Y.A., Kurkuri, M., et al. (2024) Interatomic Interaction of 2D Crumpled V2O5 Nanosheets Layered with Ni-MOF as a Bifunctional Electrocatalyst for Overall Water Splitting and Supercapacitor Applications. Journal of Energy Storage, 81, Article ID: 110348. [Google Scholar] [CrossRef]
|
|
[50]
|
Senthil Raja, D., Lin, H. and Lu, S. (2019) Synergistically Well-Mixed MOFs Grown on Nickel Foam as Highly Efficient Durable Bifunctional Electrocatalysts for Overall Water Splitting at High Current Densities. Nano Energy, 57, 1-13. [Google Scholar] [CrossRef]
|
|
[51]
|
Patel, K.B., Parmar, B., Ravi, K., Patidar, R., Chaudhari, J.C., Srivastava, D.N., et al. (2023) Metal-Organic Framework Derived Core-Shell Nanoparticles as High Performance Bifunctional Electrocatalysts for HER and OER. Applied Surface Science, 616, Article ID: 156499. [Google Scholar] [CrossRef]
|