[1]
|
Yan, J. (2018) Negative-Emissions Hydrogen Energy. Nature Climate Change, 8, 560-561. https://doi.org/10.1038/s41558-018-0215-9
|
[2]
|
Martin, A., Agnoletti, M. and Brangier, E. (2020) Users in the Design of Hydrogen Energy Systems: A Systematic Review. International Journal of Hydrogen Energy, 45, 11889-11900. https://doi.org/10.1016/j.ijhydene.2020.02.163
|
[3]
|
Li, Y., Hu, W., Zhang, F. and Li, Y. (2024) Collaborative Operational Model for Shared Hydrogen Energy Storage and Park Cluster: A Multiple Values Assessment. Journal of Energy Storage, 82, Article ID: 110507. https://doi.org/10.1016/j.est.2024.110507
|
[4]
|
Nithya, V.D. (2021) Recent Advances in CoSe2 Electrocatalysts for Hydrogen Evolution Reaction. International Journal of Hydrogen Energy, 46, 36080-36102. https://doi.org/10.1016/j.ijhydene.2021.08.157
|
[5]
|
Yu, Y., Liu, R., Sun, Y., Liu, Z., Shi, X., Lai, J., et al. (2024) Sub-Nanometric Materials for Hydrogen Evolution Reaction. Materials Chemistry Frontiers, 8, 159-178. https://doi.org/10.1039/d3qm00586k
|
[6]
|
Li, S., Gao, Y., Li, N., Ge, L., Bu, X. and Feng, P. (2021) Transition Metal-Based Bimetallic MOFs and MOF-Derived Catalysts for Electrochemical Oxygen Evolution Reaction. Energy & Environmental Science, 14, 1897-1927. https://doi.org/10.1039/d0ee03697h
|
[7]
|
Jamesh, M. and Harb, M. (2021) Tuning the Electronic Structure of the Earth-Abundant Electrocatalysts for Oxygen Evolution Reaction (OER) to Achieve Efficient Alkaline Water Splitting—A Review. Journal of Energy Chemistry, 56, 299-342. https://doi.org/10.1016/j.jechem.2020.08.001
|
[8]
|
Wang, J., Yu, J., Wang, J., Wang, K., Yu, L., Zhu, C., et al. (2023) Adsorbed p‐Aminothiophenol Molecules on Platinum Nanoparticles Improve Electrocatalytic Hydrogen Evolution. Small, 19, Article ID: 2207135. https://doi.org/10.1002/smll.202207135
|
[9]
|
Shah, A.H., Wan, C., Huang, Y. and Duan, X. (2023) Toward Molecular Level Understandings of Hydrogen Evolution Reaction on Platinum Surface. The Journal of Physical Chemistry C, 127, 12841-12848. https://doi.org/10.1021/acs.jpcc.3c03217
|
[10]
|
Zhao, F., Wen, B., Niu, W., Chen, Z., Yan, C., Selloni, A., et al. (2021) Increasing Iridium Oxide Activity for the Oxygen Evolution Reaction with Hafnium Modification. Journal of the American Chemical Society, 143, 15616-15623. https://doi.org/10.1021/jacs.1c03473
|
[11]
|
Sun, H. and Jung, W. (2021) Recent Advances in Doped Ruthenium Oxides as High-Efficiency Electrocatalysts for the Oxygen Evolution Reaction. Journal of Materials Chemistry A, 9, 15506-15521. https://doi.org/10.1039/d1ta03452a
|
[12]
|
Wang, H., Yi, Q., Gao, L., Gao, Y., Liu, T., Jiang, Y., et al. (2017) Hierarchically Interconnected Nitrogen-Doped Carbon Nanosheets for an Efficient Hydrogen Evolution Reaction. Nanoscale, 9, 16342-16348. https://doi.org/10.1039/c7nr06374a
|
[13]
|
Zhao, R., Li, Q., Jiang, X., Huang, S., Fu, G. and Lee, J. (2021) Interface Engineering in Transition Metal-Based Heterostructures for Oxygen Electrocatalysis. Materials Chemistry Frontiers, 5, 1033-1059. https://doi.org/10.1039/d0qm00729c
|
[14]
|
Bonnefont, A., Ryabova, A.S., Schott, T., Kéranguéven, G., Istomin, S.Y., Antipov, E.V., et al. (2019) Challenges in the Understanding Oxygen Reduction Electrocatalysis on Transition Metal Oxides. Current Opinion in Electrochemistry, 14, 23-31. https://doi.org/10.1016/j.coelec.2018.09.010
|
[15]
|
Wen, Y., Meng, W., Li, C., Dai, L., He, Z., Wang, L., et al. (2018) Enhanced Glucose Sensing Based on a Novel Composite Coii-MOF/Acb Modified Electrode. Dalton Transactions, 47, 3872-3879. https://doi.org/10.1039/c8dt00296g
|
[16]
|
Akhtar, A., Zink, D. and Becker, P.B. (2000) Chromodomains Are Protein-RNA Interaction Modules. Nature, 407, 405-409. https://doi.org/10.1038/35030169
|
[17]
|
Tan, H., Zhou, Y., Qiao, S. and Fan, H.J. (2021) Metal Organic Framework (MOF) in Aqueous Energy Devices. Materials Today, 48, 270-284. https://doi.org/10.1016/j.mattod.2021.03.011
|
[18]
|
Liu, Y., Wang, Y., Zhao, S. and Tang, Z. (2022) Metal-Organic Framework‐Based Nanomaterials for Electrocatalytic Oxygen Evolution. Small Methods, 6, Article ID: 2200773. https://doi.org/10.1002/smtd.202200773
|
[19]
|
Yang, Y., Yang, Y., Liu, Y., Zhao, S. and Tang, Z. (2021) Metal-Organic Frameworks for Electrocatalysis: Beyond Their Derivatives. Small Science, 1, Article ID: 2100015. https://doi.org/10.1002/smsc.202100015
|
[20]
|
Dong, J., Liu, Y., Pei, J., Li, H., Ji, S., Shi, L., et al. (2023) Continuous Electroproduction of Formate via CO2 Reduction on Local Symmetry-Broken Single-Atom Catalysts. Nature Communications, 14, Article No. 6849. https://doi.org/10.1038/s41467-023-42539-1
|
[21]
|
Sun, Y., Xue, Z., Liu, Q., Jia, Y., Li, Y., Liu, K., et al. (2021) Modulating Electronic Structure of Metal-Organic Frameworks by Introducing Atomically Dispersed Ru for Efficient Hydrogen Evolution. Nature Communications, 12, Article No. 1369. https://doi.org/10.1038/s41467-021-21595-5
|
[22]
|
Zhou, Z., Kong, Y., Tan, H., Huang, Q., Wang, C., Pei, Z., et al. (2022) Cation‐Vacancy‐Enriched Nickel Phosphide for Efficient Electrosynthesis of Hydrogen Peroxides. Advanced Materials, 34, Article ID: 2106541. https://doi.org/10.1002/adma.202106541
|
[23]
|
Yang, D., Su, Z., Chen, Y., Srinivas, K., Zhang, X., Zhang, W., et al. (2022) Self-reconstruction of a MOF-Derived Chromium-Doped Nickel Disulfide in Electrocatalytic Water Oxidation. Chemical Engineering Journal, 430, Article ID: 133046. https://doi.org/10.1016/j.cej.2021.133046
|
[24]
|
Srinivas, K., Ma, F., Liu, Y., Zhang, Z., Wu, Y. and Chen, Y. (2022) Metal-Organic Framework-Derived Fe-Doped Ni3Se4/NiSe2 Heterostructure-Embedded Mesoporous Tubes for Boosting Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 14, 52927-52939. https://doi.org/10.1021/acsami.2c16133
|
[25]
|
Xu, X., Zhou, Q. and Yu, D. (2022) The Future of Hydrogen Energy: Bio-Hydrogen Production Technology. International Journal of Hydrogen Energy, 47, 33677-33698. https://doi.org/10.1016/j.ijhydene.2022.07.261
|
[26]
|
Guo, J., Liang, Y., Liu, L., Hu, J., Wang, H., An, W., et al. (2020) Noble-Metal-Free CdS/Ni-MOF Composites with Highly Efficient Charge Separation for Photocatalytic H2 Evolution. Applied Surface Science, 522, Article ID: 146356. https://doi.org/10.1016/j.apsusc.2020.146356
|
[27]
|
You, B. and Sun, Y. (2018) Innovative Strategies for Electrocatalytic Water Splitting. Accounts of Chemical Research, 51, 1571-1580. https://doi.org/10.1021/acs.accounts.8b00002
|
[28]
|
Wei, Y., Su, J., Guo, L. and Vayssieres, L. (2019) Something New under the Sun for Ultra Low-Cost Single-Junction Photoanodes for Highly Efficient Photocatalytic Water Splitting. Solar Energy Materials and Solar Cells, 201, Article ID: 110083. https://doi.org/10.1016/j.solmat.2019.110083
|
[29]
|
Zhou, S., Shi, L., Li, Y., Yang, T. and Zhao, S. (2024) Metal‐Organic Framework‐based Electrocatalysts for Acidic Water Splitting. Advanced Functional Materials. https://doi.org/10.1002/adfm.202400767
|
[30]
|
Zhu, J., Hu, L., Zhao, P., Lee, L.Y.S. and Wong, K. (2019) Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chemical Reviews, 120, 851-918. https://doi.org/10.1021/acs.chemrev.9b00248
|
[31]
|
van der Heijden, O., Park, S., Vos, R.E., Eggebeen, J.J.J. and Koper, M.T.M. (2024) Tafel Slope Plot as a Tool to Analyze Electrocatalytic Reactions. ACS Energy Letters, 9, 1871-1879. https://doi.org/10.1021/acsenergylett.4c00266
|
[32]
|
Cheng, W., Guan, W., Lin, Y. and Lu, C. (2022) Rapid Discrimination of Adsorbed Oxygen and Lattice Oxygen in Catalysts by the Cataluminescence Method. Analytical Chemistry, 94, 1382-1389. https://doi.org/10.1021/acs.analchem.1c04663
|
[33]
|
Suen, N., Hung, S., Quan, Q., Zhang, N., Xu, Y. and Chen, H.M. (2017) Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chemical Society Reviews, 46, 337-365. https://doi.org/10.1039/c6cs00328a
|
[34]
|
Zeng, F., Mebrahtu, C., Liao, L., Beine, A.K. and Palkovits, R. (2022) Stability and Deactivation of OER Electrocatalysts: A Review. Journal of Energy Chemistry, 69, 301-329. https://doi.org/10.1016/j.jechem.2022.01.025
|
[35]
|
Nie, M., Xue, Z.H., Sun, H., Liao, J.M., Xue, F.J. and Wang, X.X. (2020) Pd Doped Ni Derived from Ni-Metal Organic Framework for Efficient Hydrogen Evolution Reaction in Alkaline Electrolyte. International Journal of Hydrogen Energy, 45, 28870-28875. https://doi.org/10.1016/j.ijhydene.2020.07.260
|
[36]
|
Wang, T., Jin, R., Wu, X., Zheng, J., Li, X. and Ostrikov, K. (2018) A Highly Efficient Ni-Mo Bimetallic Hydrogen Evolution Catalyst Derived from a Molybdate Incorporated Ni-MOF. Journal of Materials Chemistry A, 6, 9228-9235. https://doi.org/10.1039/c8ta01325j
|
[37]
|
Zhang, X., Lin, R., Meng, X., Li, W., Chen, F. and Hou, J. (2021) Iron Phthalocyanine/Two-Dimensional Metal-Organic Framework Composite Nanosheets for Enhanced Alkaline Hydrogen Evolution. Inorganic Chemistry, 60, 9987-9995. https://doi.org/10.1021/acs.inorgchem.1c01259
|
[38]
|
Zhu, F., Zhang, X., Han, X., Zhou, C., Lu, S., Lang, J., et al. (2022) Nanostructured Catalyst Assembled from CNTs, NiSe2 Nanoparticles, and 2D Ni-MOF Nanosheets for Electrocatalytic Hydrogen Evolution Reaction. CrystEngComm, 24, 8503-8508. https://doi.org/10.1039/d2ce01205g
|
[39]
|
Qu, H., Ma, Y., Gou, Z., Li, B., Liu, Y., Zhang, Z., et al. (2020) Ni2P/C Nanosheets Derived from Oriented Growth Ni-MOF on Nickel Foam for Enhanced Electrocatalytic Hydrogen Evolution. Journal of Colloid and Interface Science, 572, 83-90. https://doi.org/10.1016/j.jcis.2020.03.068
|
[40]
|
Gothandapani, K., Jeniffer, R.S., Tamil Selvi, G., Velmurugan, V., Assaifan, A.K., Alzahrani, K.E., et al. (2024) Nickel Nanoparticles Supported on Carbon Surface as an Electrocatalyst for Hydrogen Evolution Reaction. International Journal of Hydrogen Energy, 52, 1137-1146. https://doi.org/10.1016/j.ijhydene.2023.08.027
|
[41]
|
Huang, Z., Yuan, S., Zhang, T., Cai, B., Xu, B., Lu, X., et al. (2020) Selective Selenization of Mixed-Linker Ni-MOFs: NiSe2@NC Core-Shell Nano-Octahedrons with Tunable Interfacial Electronic Structure for Hydrogen Evolution Reaction. Applied Catalysis B: Environmental, 272, Article ID: 118976. https://doi.org/10.1016/j.apcatb.2020.118976
|
[42]
|
Xu, Z., Tao, Y., Sun, Z., Bi, P., Zhong, X., Liao, J., et al. (2023) Ligand-Engineered Ni-Based Metal-Organic Frameworks for Electrochemical Oxygen Evolution Reaction. Chemical Engineering Journal, 478, Article ID: 147418. https://doi.org/10.1016/j.cej.2023.147418
|
[43]
|
Huang, Z., Liao, M., Zhang, S., Wang, L., Gao, M., Luo, Z., et al. (2024) Valence Electronic Engineering of Superhydrophilic Dy-Evoked Ni-MOF Outperforming RuO2 for Highly Efficient Electrocatalytic Oxygen Evolution. Journal of Energy Chemistry, 90, 244-252. https://doi.org/10.1016/j.jechem.2023.11.012
|
[44]
|
Wang, X., Xiao, H., Li, A., Li, Z., Liu, S., Zhang, Q., et al. (2018) Constructing NiCo/Fe3O4 Heteroparticles within MOF-74 for Efficient Oxygen Evolution Reactions. Journal of the American Chemical Society, 140, 15336-15341. https://doi.org/10.1021/jacs.8b08744
|
[45]
|
Cao, C., Ma, D., Xu, Q., Wu, X. and Zhu, Q. (2018) Semisacrificial Template Growth of Self‐supporting MOF Nanocomposite Electrode for Efficient Electrocatalytic Water Oxidation. Advanced Functional Materials, 29, Article ID: 1807418. https://doi.org/10.1002/adfm.201807418
|
[46]
|
Cao, L., Chen, B., Yan, J., Jiang, S., Su, Z., Chen, K., et al. (2023) Nickel Nanoparticle-Embedded N-Doped Carbon Catalysts Formed by MOF Derivatives for the Oxygen Evolution Reaction. New Journal of Chemistry, 47, 12799-12805. https://doi.org/10.1039/d3nj01102j
|
[47]
|
Ramesh, S.K., Son, J., Ganesan, V. and Kim, J. (2022) Carbon-Incorporated Ni2P-Fe2P Hollow Nanorods as Superior Electrocatalysts for the Oxygen Evolution Reaction. Nanoscale, 14, 16262-16269. https://doi.org/10.1039/d2nr02663e
|
[48]
|
Li, W., Guo, B., Zhang, K., Chen, X., Zhang, H., Chen, W., et al. (2024) Ru-Regulated Electronic Structure CoNi-MOF Nanosheets Advance Water Electrolysis Kinetics in Alkaline and Seawater Media. Journal of Colloid and Interface Science, 668, 181-189. https://doi.org/10.1016/j.jcis.2024.04.144
|
[49]
|
Kashif, M., Thangarasu, S., Murugan, N., Magdum, S.S., Kim, Y.A., Kurkuri, M., et al. (2024) Interatomic Interaction of 2D Crumpled V2O5 Nanosheets Layered with Ni-MOF as a Bifunctional Electrocatalyst for Overall Water Splitting and Supercapacitor Applications. Journal of Energy Storage, 81, Article ID: 110348. https://doi.org/10.1016/j.est.2023.110348
|
[50]
|
Senthil Raja, D., Lin, H. and Lu, S. (2019) Synergistically Well-Mixed MOFs Grown on Nickel Foam as Highly Efficient Durable Bifunctional Electrocatalysts for Overall Water Splitting at High Current Densities. Nano Energy, 57, 1-13. https://doi.org/10.1016/j.nanoen.2018.12.018
|
[51]
|
Patel, K.B., Parmar, B., Ravi, K., Patidar, R., Chaudhari, J.C., Srivastava, D.N., et al. (2023) Metal-Organic Framework Derived Core-Shell Nanoparticles as High Performance Bifunctional Electrocatalysts for HER and OER. Applied Surface Science, 616, Article ID: 156499. https://doi.org/10.1016/j.apsusc.2023.156499
|