[1]
|
Melo-González, F., Sepúlveda-Alfaro, J., Schultz, B.M., Suazo, I.D., Boone, D.L., Kalergis, A.M., et al. (2022) Distal Consequences of Mucosal Infections in Intestinal and Lung Inflammation. Frontiers in Immunology, 13, Article 877533. https://doi.org/10.3389/fimmu.2022.877533
|
[2]
|
Gu, J., Han, B. and Wang, J. (2020) COVID-19: Gastrointestinal Manifestations and Potential Fecal-Oral Transmission. Gastroenterology, 158, 1518-1519. https://doi.org/10.1053/j.gastro.2020.02.054
|
[3]
|
Budden, K.F., Gellatly, S.L., Wood, D.L.A., Cooper, M.A., Morrison, M., Hugenholtz, P., et al. (2016) Emerging Pathogenic Links between Microbiota and the Gut-Lung Axis. Nature Reviews Microbiology, 15, 55-63. https://doi.org/10.1038/nrmicro.2016.142
|
[4]
|
Dickson, K. and Lehmann, C. (2019) Inflammatory Response to Different Toxins in Experimental Sepsis Models. International Journal of Molecular Sciences, 20, Article 4341. https://doi.org/10.3390/ijms20184341
|
[5]
|
Yang, X., Liu, D., Ren, H., Zhang, X., Zhang, J. and Yang, X. (2021) Effects of Sepsis and Its Treatment Measures on Intestinal Flora Structure in Critical Care Patients. World Journal of Gastroenterology, 27, 2376-2393. https://doi.org/10.3748/wjg.v27.i19.2376
|
[6]
|
van der Poll, T., van de Veerdonk, F.L., Scicluna, B.P. and Netea, M.G. (2017) The Immunopathology of Sepsis and Potential Therapeutic Targets. Nature Reviews Immunology, 17, 407-420. https://doi.org/10.1038/nri.2017.36
|
[7]
|
Strnad, P., Tacke, F., Koch, A. and Trautwein, C. (2016) Liver—Guardian, Modifier and Target of Sepsis. Nature Reviews Gastroenterology & Hepatology, 14, 55-66. https://doi.org/10.1038/nrgastro.2016.168
|
[8]
|
HAMER, H.M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F.J. and Brummer, R.‐. (2007) Review Article: The Role of Butyrate on Colonic Function. Alimentary Pharmacology & Therapeutics, 27, 104-119. https://doi.org/10.1111/j.1365-2036.2007.03562.x
|
[9]
|
De la Cuesta-Zuluaga, J., Mueller, N., Álvarez-Quintero, R., Velásquez-Mejía, E., Sierra, J., Corrales-Agudelo, V., et al. (2018) Higher Fecal Short-Chain Fatty Acid Levels Are Associated with Gut Microbiome Dysbiosis, Obesity, Hypertension and Cardiometabolic Disease Risk Factors. Nutrients, 11, Article 51. https://doi.org/10.3390/nu11010051
|
[10]
|
Li, S., Chen, F., Zou, Y., Ning, L., Zhang, G., Zhang, S., et al. (2022) Yinzhihuang Oral Liquid Protects against Non-Alcoholic Steatohepatitis via Modulation of the Gut-Liver Axis in Mice. Annals of Translational Medicine, 10, 631-631. https://doi.org/10.21037/atm-21-4809
|
[11]
|
Cui, H., Zhang, J., Cheng, X., Zheng, J., Zhang, Q., Zheng, R., et al. (2022) Immunometabolism at the Service of Traditional Chinese Medicine. Pharmacological Research, 176, Article ID: 106081. https://doi.org/10.1016/j.phrs.2022.106081
|
[12]
|
Li, T., Wang, P., Guo, W., Huang, X., Tian, X., Wu, G., et al. (2019) Natural Berberine-Based Chinese Herb Medicine Assembled Nanostructures with Modified Antibacterial Application. ACS Nano, 13, 6770-6781. https://doi.org/10.1021/acsnano.9b01346
|
[13]
|
Ye, L., Zhang, J., Xiao, W. and Liu, S. (2020) Efficacy and Mechanism of Actions of Natural Antimicrobial Drugs. Pharmacology & Therapeutics, 216, Article ID: 107671. https://doi.org/10.1016/j.pharmthera.2020.107671
|
[14]
|
Chiu, Y., Lee, C., Lin, T., Lin, H., Lee, S., Mesri, M., et al. (2018) Chinese Herbal Medicine Glycyrrhiza inflata Reduces Aβ Aggregation and Exerts Neuroprotection through Anti-Oxidation and Anti-inflammation. The American Journal of Chinese Medicine, 46, 1535-1559. https://doi.org/10.1142/s0192415x18500799
|
[15]
|
Yan, H., Lu, J., Wang, Y., Gu, W., Yang, X. and Yu, J. (2017) Intake of Total Saponins and Polysaccharides from Polygonatum kingianum Affects the Gut Microbiota in Diabetic Rats. Phytomedicine, 26, 45-54. https://doi.org/10.1016/j.phymed.2017.01.007
|
[16]
|
Feng, W., Ao, H., Peng, C. and Yan, D. (2019) Gut Microbiota, a New Frontier to Understand Traditional Chinese Medicines. Pharmacological Research, 142, 176-191. https://doi.org/10.1016/j.phrs.2019.02.024
|
[17]
|
Scheithauer, T.P.M., Rampanelli, E., Nieuwdorp, M., Vallance, B.A., Verchere, C.B., van Raalte, D.H., et al. (2020) Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Frontiers in Immunology, 11, Article 571731. https://doi.org/10.3389/fimmu.2020.571731
|
[18]
|
Xu, L., Zhang, J., Wang, Y., Zhang, Z., Wang, F. and Tang, X. (2021) Uncovering the Mechanism of Ge-Gen-Qin-Lian Decoction for Treating Ulcerative Colitis Based on Network Pharmacology and Molecular Docking Verification. Bioscience Reports, 41, BSR20203565. https://doi.org/10.1042/bsr20203565
|
[19]
|
Ding, Z., Zhong, R., Yang, Y., Xia, T., Wang, W., Wang, Y., et al. (2020) Systems Pharmacology Reveals the Mechanism of Activity of Ge-Gen-Qin-Lian Decoction against LPS-Induced Acute Lung Injury: A Novel Strategy for Exploring Active Components and Effective Mechanism of TCM Formulae. Pharmacological Research, 156, Article ID: 104759. https://doi.org/10.1016/j.phrs.2020.104759
|
[20]
|
Li, Y., Li, N., Liu, J., et al. (2022) Gegen Qinlian Decoction Alleviates Experimental Colitis and Concurrent Lung Inflammation by Inhibiting the Recruitment of Inflammatory Myeloid Cells and Restoring Microbial Balance. Journal of Inflammation Research, 15, 1273-1291.
|
[21]
|
Li, W., Ding, Z., Chen, Y., Wang, Y., Peng, M., Li, C., et al. (2022) Integrated Pharmacology Reveals the Molecular Mechanism of Gegen Qinlian Decoction against Lipopolysaccharide-Induced Acute Lung Injury. Frontiers in Pharmacology, 13, Article 854544. https://doi.org/10.3389/fphar.2022.854544
|
[22]
|
Xu, X., Niu, L., Liu, Y., Pang, M., Lu, W., Xia, C., et al. (2020) Study on the Mechanism of Gegen Qinlian Decoction for Treating Type II Diabetes Mellitus by Integrating Network Pharmacology and Pharmacological Evaluation. Journal of Ethnopharmacology, 262, Article ID: 113129. https://doi.org/10.1016/j.jep.2020.113129
|
[23]
|
Erben, U., Loddenkemper, C., Doerfel, K., et al. (2014) A Guide to Histomorphological Evaluation of Intestinal Inflammation in Mouse Models. International Journal of Clinical and Experimental Pathology, 7, 4557-4576.
|
[24]
|
Potrykus, M., Czaja-Stolc, S., Stankiewicz, M., Kaska, Ł. and Małgorzewicz, S. (2021) Intestinal Microbiota as a Contributor to Chronic Inflammation and Its Potential Modifications. Nutrients, 13, Article 3839. https://doi.org/10.3390/nu13113839
|
[25]
|
Xu, C., Lee, S.K., Zhang, D. and Frenette, P.S. (2020) The Gut Microbiome Regulates Psychological-Stress-Induced Inflammation. Immunity, 53, 417-428.e4. https://doi.org/10.1016/j.immuni.2020.06.025
|
[26]
|
Chen, H., Ma, X., Liu, Y., Ma, L., Chen, Z., Lin, X., et al. (2019) Gut Microbiota Interventions with Clostridium Butyricum and Norfloxacin Modulate Immune Response in Experimental Autoimmune Encephalomyelitis Mice. Frontiers in Immunology, 10, Article 1662. https://doi.org/10.3389/fimmu.2019.01662
|
[27]
|
Angelucci, F., Cechova, K., Amlerova, J. and Hort, J. (2019) Antibiotics, Gut Microbiota, and Alzheimer’s Disease. Journal of Neuroinflammation, 16, Article No. 108. https://doi.org/10.1186/s12974-019-1494-4
|
[28]
|
Dickson, R.P., Singer, B.H., Newstead, M.W., Falkowski, N.R., Erb-Downward, J.R., Standiford, T.J., et al. (2016) Enrichment of the Lung Microbiome with Gut Bacteria in Sepsis and the Acute Respiratory Distress Syndrome. Nature Microbiology, 1, Article No. 16113. https://doi.org/10.1038/nmicrobiol.2016.113
|
[29]
|
Wei, X., Zhang, B., Wei, F., Ding, M., Luo, Z., Han, X., et al. (2022) Gegen Qinlian Pills Alleviate Carrageenan-Induced Thrombosis in Mice Model by Regulating the HMGB1/NF-κB/NLRP3 Signaling. Phytomedicine, 100, Article ID: 154083. https://doi.org/10.1016/j.phymed.2022.154083
|
[30]
|
Zhang, M., Lian, B., Zhang, R., Guo, Y., Zhao, J., He, S., et al. (2022) Emodin Ameliorates Intestinal Dysfunction by Maintaining Intestinal Barrier Integrity and Modulating the Microbiota in Septic Mice. Mediators of Inflammation, 2022, Article ID: 5026103. https://doi.org/10.1155/2022/5026103
|
[31]
|
Wang, Q., Wang, Y., Zhang, W., Li, K., Luo, X. and Cui, Y. (2021) Puerarin from Pueraria lobata Alleviates the Symptoms of Irritable Bowel Syndrome-Diarrhea. Food & Function, 12, 2211-2224. https://doi.org/10.1039/d0fo02848g
|
[32]
|
Tian, J., Bai, B., Gao, Z., Yang, Y., Wu, H., Wang, X., et al. (2021) Alleviation Effects of GQD, a Traditional Chinese Medicine Formula, on Diabetes Rats Linked to Modulation of the Gut Microbiome. Frontiers in Cellular and Infection Microbiology, 11, Article 740236. https://doi.org/10.3389/fcimb.2021.740236
|
[33]
|
Deng, L., Shi, Y., Liu, P., Wu, S., Lv, Y., Xu, H., et al. (2021) Gegen Qinlian Decoction Alleviate Influenza Virus Infectious Pneumonia through Intestinal Flora. Biomedicine & Pharmacotherapy, 141, Article ID: 111896. https://doi.org/10.1016/j.biopha.2021.111896
|
[34]
|
Xu, X., Gao, Z., Yang, F., Yang, Y., Chen, L., Han, L., et al. (2020) Antidiabetic Effects of Gegen Qinlian Decoction via the Gut Microbiota Are Attributable to Its Key Ingredient Berberine. Genomics, Proteomics & Bioinformatics, 18, 721-736. https://doi.org/10.1016/j.gpb.2019.09.007
|
[35]
|
Liu, C., Liang, X., Wei, X., Jin, Z., Chen, F., Tang, Q., et al. (2019) Gegen Qinlian Decoction Treats Diarrhea in Piglets by Modulating Gut Microbiota and Short-Chain Fatty Acids. Frontiers in Microbiology, 10, Article 825. https://doi.org/10.3389/fmicb.2019.00825
|
[36]
|
Zhang, T., Li, Q., Cheng, L., Buch, H. and Zhang, F. (2019) Akkermansia muciniphila Is a Promising Probiotic. Microbial Biotechnology, 12, 1109-1125. https://doi.org/10.1111/1751-7915.13410
|