膜性肾病临床治疗标准的研究进展
Research Progress on Clinical Treatment Standards for Membranous Nephropathy
DOI: 10.12677/acm.2024.1482322, PDF, HTML, XML,   
作者: 常婷外:延安大学附属医院肾内科,陕西 延安
关键词: 膜性肾病治疗靶抗原补体疗法Membranous Nephropathy Treatment Treatment Antigen Complement Therapy
摘要: 膜性肾病是临床上较为常见的慢性肾小球疾病病理类型,分为特发性膜性肾病和继发性膜性肾病,病理特征是免疫复合物的沉积导致肾小球基底膜增厚。该疾病病理机制较为复杂,目前尚不明确。近年来,随着肾活检人数的增加,膜性肾病的发病率也呈上升趋势。任何年龄段均可发作,但大多数患者年龄集中在40~60岁之间,男性比女性更多见。约30%的患者临床症状会伴有镜下血尿,一般无肉眼血尿。本文拟对近来膜性肾病的临床治疗方案新认识做一综述。
Abstract: Membranous nephropathy is a common pathological type of chronic glomerular disease in clinical practice, divided into idiopathic membranous nephropathy and secondary membranous nephropathy. The pathological feature is the deposition of immune complexes leading to thickening of the glomerular basement membrane. The pathological mechanism of this disease is relatively complex and currently unclear. In recent years, with the increase of the number of renal biopsy, the incidence rate of membranous nephropathy is also on the rise. It can occur at any age, but most patients are concentrated between the ages of 40~60, with males more common than females. About 30% of patients have clinical symptoms accompanied by microscopic hematuria, generally without gross hematuria. This article aims to review the new understanding of recent clinical treatment strategies for membranous nephropathy.
文章引用:常婷外. 膜性肾病临床治疗标准的研究进展[J]. 临床医学进展, 2024, 14(8): 1073-1080. https://doi.org/10.12677/acm.2024.1482322

1. 引言

在以往的研究中,多种新型靶抗原的发现比如磷脂酶A2受体(PLA2R)、1型血小板反应蛋白7A域(THSD7A)、外泌素1/外泌素2 (EXT1/EXT2)、信号素3B (Sema-3B)、神经表皮生长因子1 (NELL-1)和疾病活动相关的循环抗体的检测,比如中性肽链内切酶(NEP)、抗磷脂酶A2受体(PLA2R)等,让我们对膜性肾病有更为深刻的理解,进一步了解本病的发病机制,为本病的早期诊断、治疗以及后期预后效果提供依据。本文回顾讲述了MN从病理生理学方面的新发展,包括靶抗原的鉴定和目前的治疗标准,侧重于获得缓解和预防疾病进展的循证干预措施。

2. MN靶抗原

1) M型磷脂酶A2受体(PLA2R1) Beck等[1]等在约70%的IMN患者血清样本中检测到一种与相对分子质量为1.85 × 105蛋白反应的抗体,质谱鉴定该蛋白为PLA2R1。这种蛋白位于肾小球的足细胞膜上,在MN患者的体内抗PLA2R1抗体会与PLA2R1蛋白结合,抑制PLA2R1蛋白与可溶性磷脂酶A2的结合,致使患者体内的可溶性磷脂酶A2清除不足,足细胞发生病变[2] [3]。这个结论无论从基础医学还是临床研究都极大的加深了MN的认识。

2) 1型血小板反应蛋白7A域(THSD7A)是一种分布于足细胞内的跨膜蛋白[4]。抗血栓形成素抗体的患病率在所有NM病例中高达5%,在无PLA2R抗体的病例中高达10%。

3) NELL-1 2019年Sethi等[5]在PLA2R1阴性MN患者的肾小球中检测到一种新的蛋白-NELL-1。免疫组化显示为明亮的沿肾小球基底膜均匀分布的颗粒状染色,免疫荧光共聚焦显微镜显示,NELL-1和IgG共定位于肾小球基底膜,且NELL-1阳性患者的临床表现及肾活检结果也均表现为IMN的特征,因此可推测出该抗原为IMN的靶抗原。

3. MN分类

膜性肾病按照传统的分类,分为特发性和继发性,特发性膜性肾病大约占2/3,大多与抗磷脂酶A2受体抗体相关,抗磷脂酶A2受体抗体与足细胞上的相关抗原相结合,形成原位免疫复合物,然后通过旁路途径激活补体,形成C5b-9膜攻击复合物,损伤足细胞,破坏肾小球滤过屏障,大量蛋白漏出,形成蛋白尿;继发性膜性肾病,顾名思义,继发于多种系统性疾病,例如系统性红斑狼疮、类风湿性关节炎、乙肝病毒性肝炎,以及药物、毒物、肿瘤或环境因素等,药物主要有一些金制剂、汞、青霉胺、布洛芬、双氯芬酸等。这种分类在基于是否存在全身性疾病关联来确定免疫抑制的需要方面具有临床相关性。但是因为出现了可能有或可能没有某种疾病关联的新型靶抗原,所以需要一种新的分类方法,其中首先使用血清学、免疫荧光或免疫组织化学和/或质谱法检测与膜性肾病相关的抗原。2023年梅奥诊所公布了膜性肾病的最新分类方法——两步法。第一步是识别靶抗原,第二步识别和靶抗原相关的疾病或暴露。根据确定的靶抗原,患者应接受与抗原相关的全身性疾病的临床评估[6]

4. MN治疗标准方案

主要为针对肾病综合征对症治疗及诱导蛋白尿的缓解,具体包括四大类:① 免疫抑制剂治疗,以延缓或阻止疾病中免疫因素介导的损伤;② 非特异性、非免疫抑制剂治疗(支持治疗),主要作用是利尿消肿、减少尿蛋白,降脂治疗,延缓肾功能进展;③ 针对并发症治疗,如高脂血症及血栓栓塞等;④ 服用药物治疗过程中可能出现的不良反应。

4.1. 原发性膜性肾病

4.1.1. 支持疗法

① 利尿消肿:是否开始使用免疫抑制剂,所有的MN患者均应接受最大耐受性的保守治疗。减轻水肿的治疗:卧床休息、低盐饮食以及使用利尿剂。一线治疗方法是袢利尿剂(临床上呋塞米最为常见) 2次/日。但是长期服用呋塞米会导致患者出现适应机制,有证据表明托塞米和布美他尼的效果较呋塞米好[7]。如果存在利尿剂抵抗,可添加噻嗪类利尿剂,如氯噻酮、氢氯噻嗪或美托拉宗,以防止肾远端钠离子重吸收。在使用该种组合时,应在袢利尿剂使用前2至5小时服用噻嗪类利尿剂,可使远端钠离子重吸收效果降至最低。阿米洛利和乙酰唑胺可分别用于低钾血症和代谢性碱中毒的治疗。由于这些利尿剂的胃肠道吸收可能受到肠壁水肿的影响,可静脉注射袢利尿剂。静脉注射白蛋白可能有助于改善利尿剂在肾单位靶向输送,如果血清白蛋白水平低于2.0 g/dL,则应予以考虑。每日钠摄入量不应超过2 g或88 mEq,除非出现低钠血症或液体过载,否则不需要限制饮水[8]。② 血压控制的治疗:1) 血管紧张素转换酶抑制剂(ACEi)或血管紧张素II受体阻滞剂(ARBs),减少蛋白尿。目标血压(收缩压 < 120 mmHg)既可预防心血管风险,又可减缓GFR下降。另一方面,如果蛋白尿减少到每天0.5克以下或减少到每天1.5克以下,则可以防止肾功能丧失。此外,蛋白尿的减少以及随后血清蛋白和白蛋白水平的升高可预防感染、代谢和血栓栓塞风险。ACEi和ARBs可使蛋白尿减少50%。这些药物应以患者的最大耐受剂量给药[9]-[11];2) 当肌酐增加超过30%,肾功能持续丧失,或者诱发的高钾血症对任何可用的药物治疗无效时,直接使用肾素抑制剂(DRI)或盐皮质激素受体拮抗剂(MRA) [12] [13];3) 非二氢吡啶钙通道阻滞剂(CCB)也有减少蛋白尿的作用。③ 高脂血症:患者有其他心血管疾病的危险因素,包括糖尿病、吸烟、高血压或超重,则必须治疗高脂血症。1) 改变饮食和生活方式;2) 他汀类药物阿托伐他汀、瑞舒伐他汀,阿托伐他汀还有降低蛋白尿的作用;3) 依折麦布或PCSK9抑制剂,临床使用较少。对于无禁忌症的长期心血管益处患者,也应考虑使用他汀类药物治疗高脂血症,尽管缺乏他汀类药物治疗肾病综合征的长期益处的证据[14]。然而,这些药物不太可能使完全肾病患者的血脂正常化。虽然钠-葡萄糖协同转运蛋白2抑制剂如达格列净在前瞻性试验和预防慢性肾病不良后果和恩格列净心脏和肾脏保护研究中,达格列净和恩格列净已被证明可降低慢性肾病(CKD)进展的风险,这些药物在完全肾病和/或免疫抑制的MN患者中的使用数据缺乏[15] [16]。在免疫抑制后达到部分缓解和免疫缓解但仍有继发性节段性硬化引起的蛋白尿的患者中,可以考虑将这些药物与RAAS阻断剂一起使用,以减少蛋白尿和CKD进展。

4.1.2. 免疫抑制疗法

指南推荐免疫抑制治疗选择。

① 激素/烷化剂治疗:环孢素以3~5 mg/kg/天的剂量分两次给药,靶向125~175 ng/mL的谷浓度。他克莫司的剂量为0.05~0.1 mg/kg/天,分两次服用,谷浓度为5~8 ng/mL。对于部分缓解的患者,尤其是抗PLA2R抗体阳性的患者,CNI应再持续12~24个月。在达到完全缓解的患者(包括抗PLA2R阳性患者的免疫缓解)中,CNI可以在3~6个月内逐渐减少,同时监测复发情况。短期副作用包括感染,高血压,胃肠道不耐受,震颤和高脂血症的风险增加,而长期使用与肾毒性和更高的恶性风险有关[16];② 利妥昔单抗RTX在第1天和第14天以1克剂量给药。一些专家倾向于每周用375 mg/m2的RTX,共用四剂。对于抗PLA2R阳性的患者,应每3-6个月监测一次PLA2R滴度和CD20+B细胞计数,对于CD20+B细胞计数 > 1细胞/μL且抗PLA2R抗体滴度未显示持续下降或抗体滴度增加的患者,应重复治疗。随访期间测量的PLA2R滴度应使用基于ELISA的方法进行定量[17] [18]

4.1.3. 目前研究新发现的新药

① 较新的抗B细胞疗法:奥比妥珠单抗是一种针对CD20分子的新型II型人源化单克隆抗体,已被糖基化改造,通过直接细胞死亡,抗体依赖性吞噬作用和抗体依赖性细胞毒性等机制增强其B细胞耗竭效率[19]。此外,与RTX相比,它也被证明在淋巴器官和全血样本中引起严重的B细胞耗竭,RTX已在其他血液疾病如慢性淋巴细胞白血病和滤泡性淋巴瘤中得到证实[20] [21]。奥比妥珠单抗在诱导难治性MN患者临床和免疫缓解方面的疗效已在两个病例系列中得到证实[22] [23]。在对RTX产生超敏反应的患者中,与RTX相比,奥比妥珠单抗具有人源化性质和较低的免疫原性,因此可以考虑使用该药物;② 奥法木单抗是一种抗CD20的I型单克隆抗体,与RTX [24]相比,已被证明具有增强的补体介导的细胞毒性。尽管使用RTX,复发性MN患者在病例报告中与免疫和临床缓解相关[25];③ 贝利尤单抗是一种IgGλ单克隆抗体,可与可溶性B淋巴细胞刺激因子(BLyS)蛋白结合,这是B细胞分化为浆细胞和存活所必需的因子[26];④ 浆细胞疗法(人源化IgG1-k),嵌合IgG1-k和人源化IgG1-lambda是靶向浆细胞中表达的CD38的单克隆抗体,并通过补体介导的细胞毒性,抗体介导的吞噬作用和细胞毒性引起浆细胞耗竭[27];⑤ 蛋白酶体抑制剂:硼替佐米是一种蛋白酶体抑制剂,通过积累参与细胞生长和分化的错误折叠蛋白而导致浆细胞耗竭。一些病例报告报道了硼替佐米在难治性MN中的应用,导致免疫和临床缓解[28]-[30];⑥ 补体抑制剂:1) ptacopan是一种选择性B因子抑制剂,可抑制替代补体途径;2) Narsoplimab是一种人源化IgG4λ单克隆抗体,是一种MASP-2抑制剂,可引起凝集素途径的下游抑制。

4.2. 继发性膜性肾病

继发性MN约占MN的25%,包括由感染、恶性肿瘤、自身免疫性疾病和药物引起的疾病[31]。识别继发形式是至关重要的,因为这些形式的治疗依赖于基础疾病的治疗,而且,免疫抑制治疗恶性肿瘤中或感染性继发疾病存在一定的风险。PLA2R抗体可能提示但并不能排除原发性MN,而THSD7A或NELL1 [32]可能确保恶性肿瘤相关形式([33], p. 1);IgG亚类在肾小球沉积物中的分布也可能有帮助,因为IgG4高度提示原发,而IgG1和IgG2在恶性肿瘤相关疾病中发现[34]。PLA2R和IgG4的联合使用可大大增强区分原发和继发的能力[35]。继发性MN最常见的恶性肿瘤是肺部、胃肠道和前列腺,较少的恶性肿瘤是皮肤、乳腺和膀胱切除或治疗肿瘤可能导致NS消失[36]。在过去,有几种药物引起MN,包括抗风湿药物、非甾体抗炎药(NSAIDs)、青霉胺和卡托普利。最近,病例报告描述了由酪氨酸激酶抑制剂吉非替尼引起的MN ([37], p. 1),而不是由同一类药物厄洛替尼引起的MN。通常,停止此类治疗会导致蛋白尿和NS的显著改善,通常在六个月或一年后([37], p. 2);有几例关于免疫检查点抑制剂的病例报道[38]。特别是对于RTX给药,在NS缓解后可恢复给药。少见病例中,由于使用西达药物(含汞)与MN的发生有关。在这种情况下,尤其是在NELL1阳性患者中,通过停止此类药物治疗取得了显著改善[39]。另一个病例报告描述了一名患者因重组粒细胞-巨噬细胞集落刺激因子沙格司亭而出现MN,该因子在停药后完全恢复[40]。继发性MN也可能与自身免疫性肝病有关,如原发性硬化性胆管炎、原发性胆汁性肝硬化或自身免疫性肝炎。这些形式的治疗存在争议,因为肝移植导致一些患者的蛋白尿显著改善,而其他患者则需要MN的特异性治疗,因为没有改善[41]。在RA的情况下,继发性MN可能是由于最常见的疾病修饰抗风湿药物(DMARDs)的肾毒性作用,或者在没有此类治疗的情况下,它可能与疾病活动本身有关。在第一种情况下,虽然有可变的时间,MN可能会改善与中断有关的药物;在第二个更为罕见的病例中,一个病例报告显示了类固醇、甲氨蝶呤和他克莫司联合治疗风湿病的有效性。在继发于强直性脊柱炎的病例中,使用肿瘤坏死因子(TNF)-α拮抗剂阿达木单抗(40 mg/2周)显著改善蛋白尿[42]。甲巯咪唑成功地治疗了Graves病相关的MN,而其他人报告在放射性碘甲状腺消融术后有所改善,但在药物治疗后没有改善[43]-[45]。然而,对于重症肌无力和MN患者,治疗方案包括类固醇、ACTH (已证明可部分缓解)、RTX,最后是胸腺切除术[46]。如Pestana等人所述,如果乳糜泻是根本原因,则无麸质饮食加上支持性治疗的试验可能导致蛋白尿缓解[47]。一些继发于结核药物的MN病例,如结核分枝杆菌和更为罕见的Mycobacterium shimoidei,已被描述为没有明显的肾结核。此外,在这种情况下,针对这些分枝杆菌的病原体特异性抗生素治疗,即克拉霉素、利福平和乙胺丁醇,可以显著改善蛋白尿和肾脏状态[48]。在肝炎相关MN中,免疫抑制治疗可增加病毒复制。对感染的特殊治疗,包括使用恩替卡韦,加上血浆置换和类固醇,已被证明可以改善病毒载量和NS [49]。然而,继发性MN的罕见原因可能是梅毒。检测梅毒MN很重要,因为使用类固醇治疗可能会加重症状并导致基础疾病阶段的进展,而使用针对病原体梅毒螺旋体的特异性治疗可能会使NS迅速改善,并避免使用类固醇治疗。肌肉注射苄星青霉素每周一次,连续三周,已被证明是有效的[50] [51];膜性狼疮性肾炎约占狼疮性肾炎(LN)的15%。它与进展为ESKD的低风险相关,但相反,具有增加血栓栓塞并发症的风险,并且通常伴有肾病范围蛋白尿及其临床表现。霉酚酸酯推荐作为初始治疗,但其他研究已证明他克莫司的疗效。替代疗法包括环孢素和环磷酰胺,而单独使用糖皮质激素不能诱导缓解[52]。然而,当狼疮性肾炎合并增殖性疾病时,治疗方法可能会发生显著改变([33], p. 2)。最后,MN是结节病最常见的肾小球肾炎。虽然结节病患者发生肾损伤的机制尚不清楚,但有充分证据表明,与原发性MN患者不同,这些患者仅对类固醇有反应[53]

5. 结论

目前,临床上对于膜性肾病的诊断及治疗取得了突破性的进展,但仍有少数患者使用多种免疫抑制方案后病情仍未好转,甚至还可能迅速发展为终末期肾衰,对于这类患者,新的治疗方案的研究迫在眉睫。其次,虽然部分患者通过支持疗法和免疫疗法病情能自发缓解,但是仍然表现为肾病综合征,严重威胁其生活质量以及生命健康,因此研究一种不良反应较小的免疫抑制方案,对患者进行早期干预治疗,有效缓解肾病综合征是我们现阶段非常渴望的。该种免疫治疗方案的出现以及新型靶抗原的鉴定可能为未来膜性肾病的治疗铺平道路。

参考文献

[1] Beck, L.H., Bonegio, R.G.B., Lambeau, G., Beck, D.M., Powell, D.W., Cummins, T.D., et al. (2009) M-Type Phospholipase A2 Receptor as Target Antigen in Idiopathic Membranous Nephropathy. New England Journal of Medicine, 361, 11-21.
https://doi.org/10.1056/nejmoa0810457
[2] Debiec, H., Guigonis, V., Mougenot, B., Decobert, F., Haymann, J., et al. (2002) Antenatal Membranous Glomerulonephritis Due to Anti-Neutral Endopeptidase Antibodies. New England Journal of Medicine, 346, 2053-2060.
https://doi.org/10.1056/nejmoa012895
[3] Pan, Y., Wan, J., Liu, Y., Yang, Q., Liang, W., Singhal, P.C., et al. (2014) Spla2 IB Induces Human Podocyte Apoptosis via the M-Type Phospholipase A2 Receptor. Scientific Reports, 4, Article No. 6660.
https://doi.org/10.1038/srep06660
[4] Pozdzik, A., Brochériou, I., David, C., Touzani, F., Goujon, J.M. and Wissing, K.M. (2018) Membranous Nephropathy and Anti-Podocytes Antibodies: Implications for the Diagnostic Workup and Disease Management. BioMed Research International, 2018, 1-19.
https://doi.org/10.1155/2018/6281054
[5] Sethi, S., Debiec, H., Madden, B., Charlesworth, M.C., Morelle, J., Gross, L., et al. (2020) Neural Epidermal Growth Factor-Like 1 Protein (NELL-1) Associated Membranous Nephropathy. Kidney International, 97, 163-174.
https://doi.org/10.1016/j.kint.2019.09.014
[6] Sethi, S., Beck, L.H., Richard, J., et al. Mayo Clinic Consensus Report on Membranous Nephropathy: Proposal for a Novel Classification. Mayo Clinic Proceedings, 98, 1671-1684.
https://doi.org/10.1016/j.mayocp.2023.08.006
[7] Jentzer, J.C., DeWald, T.A. and Hernandez, A.F. (2010) Combination of Loop Diuretics with Thiazide-Type Diuretics in Heart Failure. Journal of the American College of Cardiology, 56, 1527-1534.
[8] Duffy, M., Jain, S., Harrell, N., Kothari, N. and Reddi, A.S. (2015) Albumin and Furosemide Combination for Management of Edema in Nephrotic Syndrome: A Review of Clinical Studies. Cells, 4, 622-630.
https://doi.org/10.3390/cells4040622
[9] Rovin, B.H., Adler, S.G., Barratt, J., Bridoux, F., Burdge, K.A., et al. (2021) Executive Summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases. Kidney International, 100, 753-779.
https://doi.org/10.1016/j.kint.2021.05.015
[10] Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group (2021) KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney International, 100, S1-S276.
[11] Dhaybi, O.A. and Bakris, G. (2017) Mineralocorticoid Antagonists in Chronic Kidney Disease. Current Opinion in Nephrology and Hypertension, 26, 50-55.
https://doi.org/10.1097/mnh.0000000000000290
[12] Parving, H., Brenner, B.M., McMurray, J.J.V., de Zeeuw, D., Haffner, S.M., Solomon, S.D., et al. (2012) Cardiorenal End Points in a Trial of Aliskiren for Type 2 Diabetes. New England Journal of Medicine, 367, 2204-2213.
https://doi.org/10.1056/nejmoa1208799
[13] Agrawal, S., Zaritsky, J.J., Fornoni, A. and Smoyer, W.E. (2017) Dyslipidaemia in Nephrotic Syndrome: Mechanisms and Treatment. Nature Reviews Nephrology, 14, 57-70.
https://doi.org/10.1038/nrneph.2017.155
[14] Heerspink, H.J.L., Stefánsson, B.V., Correa-Rotter, R., Chertow, G.M., Greene, T., Hou, F., et al. (2020) Dapagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 383, 1436-1446.
https://doi.org/10.1056/nejmoa2024816
[15] The EMPA-KIDNEY Collaborative Group (2023) Empagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 388, 117-127.
https://doi.org/10.1056/nejmoa2204233
[16] Ponticelli, C. and Podestà, M.A. (2020) Calcineurin Inhibitors in Lupus Nephritis. Journal of Nephrology, 34, 399-402.
https://doi.org/10.1007/s40620-020-00757-6
[17] De Vriese, A.S., Glassock, R.J., Nath, K.A., et al. (2017) A Proposal for Aserology-Based Approach to Membranous Nephropathy. Journal of the American Society of Nephrology, 28, 421-430.
https://doi.org/10.1681/asn.2016070776
[18] Reddy, V., Dahal, L.N., Cragg, M.S. and Leandro, M. (2016) Optimising B-Cell Depletion in Autoimmune Disease: Is Obinutuzumab the Answer? Drug Discovery Today, 21, 1330-1338.
https://doi.org/10.1016/j.drudis.2016.06.009
[19] Goede, V., Klein, C. and Stilgenbauer, S. (2015) Obinutuzumab (GA101) for the Treatment of Chronic Lymphocytic Leukemia and Other B-Cell Non-Hodgkin's Lymphomas: A Glycoengineered Type II CD20 Antibody. Oncology Research and Treatment, 38, 185-192.
https://doi.org/10.1159/000381524
[20] Reddy, V., Klein, C., Isenberg, D.A., Glennie, M.J., Cambridge, G., Cragg, M.S., et al. (2017) Obinutuzumab Induces Superior B-Cell Cytotoxicity to Rituximab in Rheumatoid Arthritis and Systemic Lupus Erythematosus Patient Samples. Rheumatology, 56, 1227-1237.
https://doi.org/10.1093/rheumatology/kex067
[21] Sethi, S., Kumar, S., Lim, K. and Jordan, S.C. (2020) Obinutuzumab Is Effective for the Treatment of Refractory Membranous Nephropathy. Kidney International Reports, 5, 1515-1518.
https://doi.org/10.1016/j.ekir.2020.06.030
[22] Klomjit, N., Fervenza, F.C. and Zand, L. (2020) Successful Treatment of Patients with Refractory Pla2r-Associated Membranous Nephropathy with Obinutuzumab: A Report of 3 Cases. American Journal of Kidney Diseases, 76, 883-888.
https://doi.org/10.1053/j.ajkd.2020.02.444
[23] Pawluczkowycz, A.W., Beurskens, F.J., Beum, P.V., Lindorfer, M.A., van de Winkel, J.G.J., Parren, P.W.H.I., et al. (2009) Binding of Submaximal C1q Promotes Complement-Dependent Cytotoxicity (CDC) of B Cells Opsonized with Anti-CD20 Mabs Ofatumumab (OFA) or Rituximab (RTX): Considerably Higher Levels of CDC Are Induced by OFA than by RTX. The Journal of Immunology, 183, 749-758.
https://doi.org/10.4049/jimmunol.0900632
[24] Podestà, M.A., Ruggiero, B., Remuzzi, G. and Ruggenenti, P. (2020) Ofatumumab for Multirelapsing Membranous Nephropathy Complicated by Rituximab-Induced Serum-sickness. BMJ Case Reports, 13, e232896.
https://doi.org/10.1136/bcr-2019-232896
[25] Jordan, N. and D’Cruz, D.P. (2014) Belimumab for the Treatment of Systemic Lupus Erythematosus. Expert Review of Clinical Immunology, 11, 195-204.
https://doi.org/10.1586/1744666x.2015.996550
[26] Gozzetti, A., Ciofini, S., Simoncelli, M., Santoni, A., Pacelli, P., Raspadori, D., et al. (2022) Anti CD38 Monoclonal Antibodies for Multiple Myeloma Treatment. Human Vaccines & Immunotherapeutics, 18, Article ID: 2052658.
https://doi.org/10.1080/21645515.2022.2052658
[27] Hartono, C., Chung, M., Kuo, S.F., Seshan, S.V. and Muthukumar, T. (2014) Bortezomib Therapy for Nephrotic Syndrome Due to Idiopathic Membranous Nephropathy. Journal of Nephrology, 27, 103-106.
https://doi.org/10.1007/s40620-013-0028-x
[28] Geara, A.S., Bhoj, V. and Hogan, J.J. (2021) Bortezomib Treatment for Refractory Pla2r-Positive Membranous Nephropathy. Glomerular Diseases, 1, 40-43.
https://doi.org/10.1159/000515087
[29] Salhi, S., Ribes, D., Colombat, M., Fortenfant, F. and Faguer, S. (2021) Bortezomib Plus Dexamethasone for Rituximab-Resistant PLA2R+ Membranous Nephropathy. Kidney International, 100, 708-709.
https://doi.org/10.1016/j.kint.2021.04.011
[30] Arghiani, M., Zamani, B.H., Nazemian, F., Samadi, S., Afsharian, M.S., Habibzadeh, M., et al. (2021) A Cohort Study of Membranous Nephropathy, Primary or Secondary. BMC Nephrology, 22, Article No. 138.
https://doi.org/10.1186/s12882-021-02338-6
[31] Caza, T.N., Hassen, S.I., Dvanajscak, Z., Kuperman, M., Edmondson, R., Herzog, C., et al. (2021) NELL1 Is a Target Antigen in Malignancy-Associated Membranous Nephropathy. Kidney International, 99, 967-976.
https://doi.org/10.1016/j.kint.2020.07.039
[32] Ohtani, H., Wakui, H., Komatsuda, A., Okuyama, S., Masai, R., Maki, N., et al. (2004) Distribution of Glomerular Igg Subclass Deposits in Malignancy-Associated Membranous Nephropathy. Nephrology Dialysis Transplantation, 19, 574-579.
https://doi.org/10.1093/ndt/gfg616
[33] Yeo, M., Kim, Y.H., Choi, D.E., Choi, S., Kim, K. and Suh, K. (2018) The Usefulness of Phospholipase A2 Receptor and Igg4 Detection in Differentiation Primary Membranous Nephropathy from Secondary Membranous Nephropathy in Renal Biopsy. Applied Immunohistochemistry & Molecular Morphology, 26, 591-598.
https://doi.org/10.1097/pai.0000000000000460
[34] Moroni, G. and Ponticelli, C. (2020) Secondary Membranous Nephropathy. A Narrative Review. Frontiers in Medicine, 7, Article 611317.
https://doi.org/10.3389/fmed.2020.611317
[35] Morimoto, N., Nagahama, K., Tsuura, Y., Terai, A., Tanabe, M., Otani, M., et al. (2021) Membranous Nephropathy in a Patient with Pulmonary Tuberculosis Infection and Lung Adenocarcinoma: A Case Report. CEN Case Reports, 11, 126-133.
https://doi.org/10.1007/s13730-021-00641-7
[36] Kaneko, T., Shimizu, A., Aoki, M. and Tsuruoka, S. (2014) A Case of Gefitinib-Associated Membranous Nephropathy in Treatment for Pulmonary Adenocarcinoma. CEN Case Reports, 4, 31-37.
https://doi.org/10.1007/s13730-014-0135-0
[37] Ratanasrimetha, P., Reddy, V.D., Kala, J., Tchakarov, A., Glass, W.F., Msaouel, P., et al. (2022) Case Report: Successful Treatment of Late-Onset Immune Checkpoint Inhibitor-Associated Membranous Nephropathy in a Patient with Advanced Renal Cell Carcinoma. Frontiers in Immunology, 13, Article 898811.
https://doi.org/10.3389/fimmu.2022.898811
[38] Pathak, N., Gunasekaran, I., Ambriose, M. and Nanda, S. (2022) Nell1 as Target Antigen for Mercury Related Membranous Nephropathy: A Case Report. Indian Journal of Nephrology, 32, 502-505.
[39] Sewaralthahab, K., Rennke, H., Sewaralthahab, S., Madias, N.E. and Jaber, B.L. (2014) Potential Association between Membranous Nephropathy and Sargramostim Therapy for Pulmonary Alveolar Proteinosis. Clinical NephrologyCase Studies, 3, 31-36.
https://doi.org/10.5414/cncs108420
[40] Dauvergne, M., Moktefi, A., Rabant, M., Vigneau, C., Kofman, T., Burtey, S., et al. (2015) Membranous Nephropathy Associated with Immunological Disorder-Related Liver Disease. Medicine, 94, e1243.
https://doi.org/10.1097/md.0000000000001243
[41] Chen, R., Li, F., Xie, Q., Xue, J., Lai, L., Liu, S., et al. (2017) Membranous Nephropathy in a Patient with Ankylosing Spondylitis. Medicine, 96, e8201.
https://doi.org/10.1097/md.0000000000008201
[42] Moniwa, N., Shioya, Y., Gocho, Y., Takahashi, S., Tanaka, M., Furuhashi, M., et al. (2022) A Case of Membranous Nephropathy Secondary to Asymptomatic Graves’ Disease. CEN Case Reports, 11, 309-313.
https://doi.org/10.1007/s13730-021-00672-0
[43] Neves, P.D.M.d.M., Muniz, M.P.R., Morgantetti, G.F., Cutrim, É.M.M., Macieira, C.d.A., Salgado-Filho, N., et al. (2022) Membranous Nephropathy Secondary to Graves’ Disease: A Case Report. Frontiers in Immunology, 13, Article 824124.
https://doi.org/10.3389/fimmu.2022.824124
[44] Shima, Y., Nakanishi, K., Togawa, H., Obana, M., Sako, M., Miyawaki, M., et al. (2009) Membranous Nephropathy Associated with Thyroid-Peroxidase Antigen. Pediatric Nephrology, 24, 605-608.
https://doi.org/10.1007/s00467-008-0973-0
[45] Hanna, R.M., Arman, F., Selamet, U., Wallace, W.D., Barsoum, M., Rastogi, A., et al. (2019) Secondary Membranous Nephropathy in a Patient with Myasthenia Gravis without Thymic Disease, and Partial Remission Induced by Adrenocorticotropic Hormone Therapy. SAGE Open Medical Case Reports, 7, 2050313X1986976.
https://doi.org/10.1177/2050313x19869764
[46] Pestana, N., Vida, C., Vieira, P., Durães, J. and Silva, G. (2021) Celiac Disease as a Rare Cause of Membranous Nephropathy: A Case Report. Cureus, 13, 13-15.
https://doi.org/10.7759/cureus.13312
[47] Matsunaga, T. (2013) Membranous Glomerulonephritis Associated with Mycobacterium Shimoidei Pulmonary Infection. American Journal of Case Reports, 14, 543-547.
https://doi.org/10.12659/ajcr.889684
[48] Balwani, M.R., Kute, V.B., Shah, P.R., Shah, M., Shinde, S.G., Shah, J. and Trivedi, H.L. (2016) Hepatitis B Viremia Manifesting as Polyarteritis Nodosa and Secondary Membranous Nephropathy. Journal of Nephropharmacology, 5, 119-121.
[49] Inayat, F., Almas, T., Bokhari, S.R.A., Muhammad, A. and Sharshir, M.A. (2020) Membranous Glomerulonephritis as an Uncommon Presentation of Secondary Syphilis: A Reminder on Therapeutic Decision-Making in Clinical Practice. Journal of Investigative Medicine High Impact Case Reports, 8, 1-9.
https://doi.org/10.1177/2324709620967212
[50] Zhang, Z., Hever, A., Bhasin, N. and Kujubu, D.A. (2018) Secondary Syphilis Associated with Membranous Nephropathy and Acute Hepatitis in a Patient with HIV: A Case Report. The Permanente Journal, 22, 17-062.
https://doi.org/10.7812/tpp/17-062
[51] Tang, K., Tseng, C., Hsieh, T. and Chen, D. (2018) Induction Therapy for Membranous Lupus Nephritis: A Systematic Review and Network Meta-Analysis. International Journal of Rheumatic Diseases, 21, 1163-1172.
https://doi.org/10.1111/1756-185x.13321
[52] Zilberman, T., Zahavi, T., Osadchy, A., Nacasch, N. and Korzets, Z. (2014) Membranous Nephropathy Associated with Sarcoidosis: A Primary or Secondary Glomerulopathy? The Israel Medical Association Journal, 16, 390-392.
[53] Radhakrishnan, Y., Zand, L., Sethi, S. and Fervenza, F.C. (2024) Membranous Nephropathy Treatment Standard. Nephrology Dialysis Transplantation, 39, 403-413.
https://doi.org/10.1093/ndt/gfad225