甘草查尔酮A的药理学作用
Pharmacological Effect of Licochalcone A
DOI: 10.12677/acm.2024.1482326, PDF, HTML, XML,   
作者: 田怡然, 栾军杰*:青岛大学附属医院眼科,山东 青岛;任晓琛:山东大学齐鲁医院妇产科,山东 济南;宋晓钰:吉林大学第一临床医学院,吉林 长春
关键词: 甘草查尔酮A药理学作用治疗分子机制Licochalcone A Pharmacological Effect Treatment Molecular Mechanism
摘要: 甘草查尔酮A (Licochalcone A, Lico A)是甘草中提取出的天然活性化合物,因具备强大的药理学作用而引起众多国内外研究者的关注,并被广泛用于治疗炎症相关性疾病。此外,还可以作为抗菌剂应用于医学领域。我们综述了现有研究成果及最新研究进展,总结了甘草查尔酮A在治疗领域的应用及其相关的分子机制,旨在为研究者们更深入地研究甘草查尔酮A提供参考。
Abstract: Licochalcone A (Lico A) is a naturally occurring active compound derived from licorice, which has garnered significant attention from researchers both domestically and internationally due to its potent pharmacological effects. It has been extensively utilized in the treatment of inflammation-related diseases, and also exhibits antibacterial properties in the medical field. In this review, we have examined existing research findings and recent advancements, summarized the application of Licochalcone A in therapeutic settings along with its associated molecular mechanisms. The aim is to provide researchers with a reference for further investigation into Licochalcone A.
文章引用:田怡然, 任晓琛, 宋晓钰, 栾军杰. 甘草查尔酮A的药理学作用[J]. 临床医学进展, 2024, 14(8): 1099-1106. https://doi.org/10.12677/acm.2024.1482326

1. 引言

甘草查尔酮A,分子式C21H22O4,相对分子质量338.4,是一种由甘草根中提取分离得到的反式查尔酮类化合物,被应用于食品着色剂和烟草行业等领域。其物理外观为黄色针状结晶,化学特征为α,β-不饱和联苯酮[1]。在Lico A中,查尔酮骨架被两个酚羟基,一个甲氧基和一个类异戊二烯侧链取代,其中酚羟基可以作为自由基清除剂[2]。目前研究发现,Lico A具有抗炎[3]-[7]、抗菌[8]-[11]、抗氧化[12]、抗寄生虫[13] [14]、抗病毒[15] [16]、抗增殖和抗肿瘤[17] [18]、骨保护[19] [20]、神经保护[21]、皮肤保护[22]以及血糖血脂调节[23] [24]等多种药理学作用。

2. 抗炎作用

2.1. Lico A对急性炎症的影响

急性炎症的特征是损伤部位周围免疫细胞的快速聚集,具有持续时间短、局部水肿和白细胞迁移等特点[25]。Lico A在多种小鼠急性炎症模型中抑制NF-κB信号,如LPS诱导的急性肺损伤[26] [27]、LPS诱导的急性肾损伤[28]和DSS诱导的结肠炎[29]。在LPS诱导的急性肺损伤中,Lico A抑制了NF-κB和p38/ERK MAPK信号通路,从而降低了炎症细胞数量、肺湿/干重比、蛋白渗漏和髓过氧化物酶活性[26] [27];在LPS诱导的急性肾损伤中,Lico A通过抑制LPS诱导的NF-κB活化,减少了促炎因子TNF-α、IL-6和IL-1β的产生,降低血清BUN和肌酐水平[28];而且Lico A还通过抑制NF-κB和激活Nrf2信号通路,下调促炎因子和氧化应激,有效缓解DSS诱导的结肠炎[29]。此外,Lico A通过抑制H2O2、NO、IFN-γ、TNF-α和IL-17的产生,以及调节Th1和Th17细胞的免疫应答改善了髓鞘少突胶质细胞糖蛋白肽诱导的小鼠脑脊髓炎的临床症状[30]。在较高剂量下,Lico A还通过抑制TLR4-MAPK-NF-κB和Txnip-NLRP3信号通路[7],减少促炎因子TNF-α、IL-6和IL-1β产生,进而减轻LPS诱导的小鼠急性肝损伤。体外研究发现,Lico A在5~20 μM剂量范围内抑制LPS诱导的RAW 264.7巨噬细胞NO、TNF-α、IL-1β、IL-6和PGE2的产生[27] [31]。此外,Lico A通过阻断MAPK和AKT/NF-κB信号,增加ZO-1、occludin和claudin-3的蛋白水平,对LPS诱导的小鼠乳腺上皮细胞发挥抗炎作用[4],并且通过抑制NF-κB信号和PGE2分泌在TNF-α诱导急性肺损伤模型中抑制炎症反应[32]

2.2. Lico A对慢性炎症的影响

慢性炎症是一个缓慢的、长期的过程,而急性炎症往往由于炎症持续存在或损伤修复不良而发展为慢性炎症。Lico A在IL-1β诱导的小鼠软骨细胞关节炎模型中发挥抗炎活性,其机制主要是抑制NF-κB和IκBαn的磷酸化,减少PGE2和NO的产生;并通过阻断NF-κB和Wnt/β-catenin信号通路下调iNOS、COX-2、ADAMTS、MMP1、MMP3和MMP13的表达[33]。在胶原抗体诱导的小鼠关节炎中,Lico A通过激活Keap1-Nrf2信号通路抑制促炎因子和抗氧化酶的上调,从而减轻炎症反应[12]。此外,Lico A还改变了小鼠类风湿性关节炎滑膜成纤维细胞膜的形态、超微结构和硬度。

杨等人研究发现,Lico A能通过抑制IκBα磷酸化和降解以及p65核转位和磷酸化,降低抗原诱导的小鼠足爪肿胀[34]。先前研究表明,在聚肌苷酸–聚胞苷酸诱导的BEAS-2B细胞和原代支气管上皮细胞中,Lico A通过抑制KK/NF-κB/TSLP信号传导抑制了胸腺基质淋巴细胞生成素和其他促炎症介质(如MCP-1,RANTES和IL-8)的表达,进而改善哮喘症状,减缓气道炎症的进展[35]。此外,Lico A通过阻断VEGFR2和ERK1/2信号传导并下调caveolin-1的表达来抑制VEGF诱导的小鼠气道平滑肌细胞增殖[36]。楚和黄等人研究发现,Lico A能够抑制Ym-2,AMCase,Muc5ac,E-选择素,CCL11,CCR3和辅助性T细胞2型细胞因子的表达,同时动态调节丙二醛,IgE,IgG和谷胱甘肽的水平,从而逆转OVA诱导的过敏性哮喘小鼠气道炎症的进展[6] [37]

3. 抗氧化作用

氧化应激是多种疾病的基础,抑制氧化应激可能是防止疾病发病或阻碍疾病的进展的有效策略。Nrf2作为抗氧化传感器,是缓解氧化应激和炎症相关疾病所必需的关键转录因子[38]。在正常生理条件下,Nrf2局限于细胞质,与Keap1结合。然而,当面临氧化应激时,胞质Nrf2会易位到细胞核中,与靶基因启动子区域中的抗氧化反应元件(ARE)结合,并导致抗氧化酶如血红素加氧酶-1(HO-1)、NAD(P)H醌脱氢酶1 (NQO1)和谷氨酸–半胱氨酸连接酶(GCL)的表达。这些酶在中和ROS和维持细胞氧化还原稳态方面发挥着至关重要的作用[39]。Lico A在L-02细胞中显示出抗氧化特性,研究报道其能够在暴露于氧化应激的RAW 264.7细胞中激活Nrf2介导的抗氧化反应信号[40]。SIRT1是与氧化应激相关的生理功能调节剂,并能够通过直接去乙酰化Nrf2,增强其转录活性[41]。在大鼠原代皮质神经元中,Lico A通过增强SIRT1的活性有效减轻了氧–葡萄糖剥夺/复氧诱导的Nrf2信号通路的抑制[42]。Chen等人的研究证明[40],Lico A可以通过增加SOD、CAT和GPx等抗氧化酶的活性,剂量依赖性地降低L-02细胞中的细胞氧化应激。除此以外,Lico A还通过有效清除自由基(包括超氧阴离子、羟基自由基和过氧化氢)表现出直接的抗氧化活性[43];过渡金属(如铁和铜)是公认的产生高活性ROS的催化剂,Lico A还具有螯合过渡金属的能力,而这种螯合作用有助于防止破坏性氧化物质的形成[44]。最近Hasan等人发现Lico A 也对脂质过氧化具有抑制作用,而脂质过氧化是阻止细胞膜内氧化损伤的重要机制[45]

4. 抗微生物作用

4.1. 抗细菌作用

天然化合物Lico A对广泛的革兰氏阳性细菌具有良好抗菌活性。已有研究发现,Lico A能非常有效地控制耐甲氧西林金黄色葡萄球菌菌株,抑制其α毒素、肠毒素A和B的分泌,其最小抑菌浓度(MIC)范围为18.4~47.0 μM [26] [46] [47]。在刘等人的一项研究中,Lico A显著降低了急性肺损伤小鼠肺组织中的金黄色葡萄球菌负荷[26]。沈等人的转录组学分析显示,Lico A显著影响金黄色葡萄球菌中编码自溶相关蛋白、细胞壁蛋白、致病因子、蛋白质合成和参与荚膜合成的酶的基因水平[48]。据报道,Lico A能有效抑制猪链球菌的生长、生物被膜形成和溶血素分泌,研究者采用基因芯片技术发现Lico A可能通过氨基酸代谢控制复制起始和细胞分裂抑制猪链球菌的生长[49]。Feldman M等人发现,Lico A和A型蔓越莓原花青素的组合能在低浓度下抑制牙龈卟啉单胞菌生长、生物膜形成和胶原酶活性[50]

4.2. 抗真菌作用

查尔酮是潜在的抗真菌剂,作用于真菌细胞中的多个靶标,如细胞壁、细胞膜[51]。Lico A靶向对真菌存活和感染的重要代谢途径。例如在红色毛癣菌共培养物中加入Lico A时,麦角甾醇合成相关的ERG1、ERG6和ERG11基因被抑制;此外,Lico A抑制参与细胞壁合成的基因(DW681613, DW687269),并通过抑制编码苹果酸合酶、柠檬酸合酶,尤其是乙醛酸循环的关键酶ICL1的基因来干扰乙醛酸循环[52]。有研究显示,Lico A能与制霉菌素协同对白色念珠菌菌丝形成产生抑制作用[53];进一步研究发现,Lico A具有抑制白色念珠菌生物膜形成的能力和阻止白色念珠菌酵母向菌丝转化的能力,并且Lico A还能够显著降低白色念珠菌分泌的蛋白酶和磷脂酶的蛋白水解酶活性[53] [54]。口腔念珠菌病是影响口腔最常见的真菌感染之一[55]。体内实验显示Lico A的口腔局部治疗显著降低了小鼠口腔念珠菌病模型的真菌负荷[54]

4.3. 抗病毒作用

A71型肠道病毒(EV-A71)是手足口病的主要病原体之一,可引起严重的神经系统并发症。曹等人的实验结果表明Lico A在体内和体外均具有较强的抗EV-A71活性,其抗病毒作用主要是通过干扰病毒复制的早期步骤实现的[15]。最近的一项研究发现,Lico A通过调控IRES的翻译抑制D68型肠道病毒(EV-D68)的复制,同时还抑制柯萨奇病毒B3,但不显著抑制登革病毒2或人冠状病毒229E的复制[56]。此外,已有研究报道Lico A能够抑制丙型肝炎病毒,其与埃博拉病毒核蛋白的结合降低了蛋白质的热稳定性[16] [57]

5. 抗肿瘤作用

Lico A是一种有效的抗癌化合物,参与细胞凋亡和内质网应激。已有研究显示,Lico A通过增加凋亡蛋白的表达、降低抗凋亡蛋白的表达,诱导A549肺癌细胞凋亡[58]。此外,Lico A诱导HepG2细胞内质网应激,通过激活VEGFR2和c-Met受体PLCγ1,并促进细胞内Ca2+从内质网释放,从而诱导细胞凋亡[59]。抑制增殖是Lico A抗癌作用的一个重要方面。大量研究表明,Lico A在不同剂量下阻滞G2/M转换细胞周期,例如Lico A通过增加Weel、P21、Cyclin D1和JNK1的表达并降低Survivin、Cyclin B1和CDK1的表达来阻滞HepG2细胞的细胞周期[60]。Lico A还通过与信号通路的相互作用直接抑制癌细胞的增殖。陈等人发现Lico A可通过直接抑制HepG2细胞中p38/JNK/ERK信号通路,抑制增殖并诱导细胞凋亡[40]。另外,癌细胞具有侵入和迁移到邻近组织并扩散到其他器官的能力。已有报道称Lico A通过抑制MKK4/JNK和NF-κB信号通路下调uPA在肝细胞癌中的表达,并抑制肝癌细胞的侵袭和迁移。

6. 在眼科疾病中的治疗作用

眼部疾病最常见的体征之一是眼部炎症,局部应用抗炎药物皮质类固醇可有效治疗眼表和眼前节炎症,但可能引起眼压升高和白内障形成[61]。在Galindo-Camacho等人的研究中,通过将PLGA NPs递送的Lico A的高抗炎活性与B6和Tet-1结合起来,在眼部使用原位形成凝胶,实现了眼部位点的特异性靶向[62],对于使用Lico A治疗眼部炎症具有重要的临床意义,并为CPPs功能化的纳米颗粒提供了一种新的药物形式。脉络膜新生血管(CNV)是湿性年龄相关性黄斑变性(AMD)的标志,而AMD是世界范围内老年人不可逆性失明的主要原因[63]。CNV起源于脉络膜,突破Bruch膜进入视网膜下或视网膜色素上皮下间隙,导致渗出、出血、视网膜水肿、色素上皮脱离和纤维瘢痕形成,严重损害中心视力[64]。目前,治疗CNV的首选方法是反复玻璃体腔注射抗血管内皮生长因子(VEGF)制剂。然而,抗VEGF治疗存在耐药、易复发等局限性[65]。最近研究发现,Lico A对激光诱导的大鼠CNV有抑制作用,其机制可能与通过PI3K/AKT信号途径抑制内皮–间质转化相关[66]

7. 展望

随着医疗界对天然药物需求的持续上升,国内外越来越多的研究者正将焦点转向对药用植物生物活性的探索。作为一种在自然界广泛分布的类黄酮化合物,Lico A在抗炎、抗菌、抗氧化以及抗癌等多个领域展现出广阔的应用前景。目前对Lico A的研究主要集中在分子水平上的信号通路,探索Lico A靶向疾病相关的DNA和RNA片段是未来研究的重要方向。开展Lico A与其他药物或生物活性分子结合的临床研究很有价值。通过对Lico A结构进行适当改造以产生新的衍生物,或者将Lico A与E3 (泛素连接酶)的连接子和配体精确连接以组装靶向嵌合体的蛋白水解物,可以发现具有优异治疗性能的Lico A衍生物。尽管Lico A的药效活性研究颇为丰富,大量研究成果仍停留在基础实验阶段。未来的研究工作需要突破传统应用的界限,开发出更为优化的药物制剂,这一过程需要更深入的科研探究和跨领域的协同合作。

NOTES

*通讯作者。

参考文献

[1] de Freitas, K.S., Squarisi, I.S., Acésio, N.O., Nicolella, H.D., Ozelin, S.D., Reis Santos de Melo, M., et al. (2020) Licochalcone A, a Licorice Flavonoid: Antioxidant, Cytotoxic, Genotoxic, and Chemopreventive Potential. Journal of Toxicology and Environmental Health, Part A, 83, 673-686.
https://doi.org/10.1080/15287394.2020.1813228
[2] Chen, M., Christensen, S.B., Blom, J., Lemmich, E., Nadelmann, L., Fich, K., et al. (1993) Licochalcone A, a Novel Antiparasitic Agent with Potent Activity against Human Pathogenic Protozoan Species of Leishmania. Antimicrobial Agents and Chemotherapy, 37, 2550-2556.
https://doi.org/10.1128/aac.37.12.2550
[3] Dunlap, T.L., Wang, S., Simmler, C., Chen, S., Pauli, G.F., Dietz, B.M., et al. (2015) Differential Effects of glycyrrhiza Species on Genotoxic Estrogen Metabolism: Licochalcone a Downregulates P450 1B1, Whereas Isoliquiritigenin Stimulates It. Chemical Research in Toxicology, 28, 1584-1594.
https://doi.org/10.1021/acs.chemrestox.5b00157
[4] Guo, W., Liu, B., Yin, Y., Kan, X., Gong, Q., Li, Y., et al. (2019) Licochalcone a Protects the Blood-Milk Barrier Integrity and Relieves the Inflammatory Response in LPS-Induced Mastitis. Frontiers in Immunology, 10, Article 287.
https://doi.org/10.3389/fimmu.2019.00287
[5] Jia, T., Qiao, J., Guan, D. and Chen, T. (2017) Anti-inflammatory Effects of Licochalcone a on Il-1β-Stimulated Human Osteoarthritis Chondrocytes. Inflammation, 40, 1894-1902.
https://doi.org/10.1007/s10753-017-0630-5
[6] Huang, W., Liu, C., Shen, S., Chen, L., Yeh, K., Liu, S., et al. (2019) Protective Effects of Licochalcone a Improve Airway Hyper-Responsiveness and Oxidative Stress in a Mouse Model of Asthma. Cells, 8, Article 617.
https://doi.org/10.3390/cells8060617
[7] Lv, H., Yang, H., Wang, Z., Feng, H., Deng, X., Cheng, G., et al. (2019) Nrf2 Signaling and Autophagy Are Complementary in Protecting Lipopolysaccharide/d-Galactosamine-Induced Acute Liver Injury by Licochalcone A. Cell Death & Disease, 10, Article No. 313.
https://doi.org/10.1038/s41419-019-1543-z
[8] Bode, A.M. and Dong, Z. (2015) Chemopreventive Effects of Licorice and Its Components. Current Pharmacology Reports, 1, 60-71.
https://doi.org/10.1007/s40495-014-0015-5
[9] Hosseinzadeh, S., Saei, H.D., Ahmadi, M. and Salehi, T.Z. (2018) Antimicrobial Effect of Licochalcone A and Epigal-Locatechin-3-Gallate against Salmonella Typhimurium Isolated from Poultry Flocks. Iranian Journal of Microbiology, 10, 51-58.
[10] Si, H., Xu, C., Zhang, J., Zhang, X., Li, B., Zhou, X., et al. (2018) Licochalcone A: An Effective and Low-Toxicity Compound against Toxoplasma Gondii in Vitro and in Vivo. International Journal for Parasitology: Drugs and Drug Resistance, 8, 238-245.
https://doi.org/10.1016/j.ijpddr.2018.02.006
[11] Zhao, H., Jiang, J.T. and Zheng, Q.S. (2013) [Advance in Studies on Pharmacological Effects of Licochalcone A]. China Journal of Chinese Materia Medica, 38, 3814-3818.
[12] Su, X., Li, T., Liu, Z., Huang, Q., Liao, K., Ren, R., et al. (2018) Licochalcone a Activates Keap1-Nrf2 Signaling to Suppress Arthritis via Phosphorylation of P62 at Serine 349. Free Radical Biology and Medicine, 115, 471-483.
https://doi.org/10.1016/j.freeradbiomed.2017.12.004
[13] Liu, H., Wang, J., Zhou, W., Wang, Y. and Yang, L. (2013) Systems Approaches and Polypharmacology for Drug Discovery from Herbal Medicines: An Example Using Licorice. Journal of Ethnopharmacology, 146, 773-793.
https://doi.org/10.1016/j.jep.2013.02.004
[14] Souza, R.L., Gonçalves, U.O., Badoco, F.R., de Souza Galvão, L., Santos, R.A.D., de Carvalho, P.H.D., et al. (2017) Licochalcone a Induces Morphological and Biochemical Alterations in Schistosoma Mansoni Adult Worms. Biomedicine & Pharmacotherapy, 96, 64-71.
https://doi.org/10.1016/j.biopha.2017.09.128
[15] Cao, Y., Lei, E., Wang, X., Qi, X., Li, L., Ren, J., et al. (2021) Licochalcone A inhibits enterovirus A71 replication in vitro and in vivo. Antiviral Research, 195, Article ID: 105091.
https://doi.org/10.1016/j.antiviral.2021.105091
[16] Fu, X., Wang, Z., Li, L., Dong, S., Li, Z., Jiang, Z., et al. (2016) Novel Chemical Ligands to Ebola Virus and Marburg Virus Nucleoproteins Identified by Combining Affinity Mass Spectrometry and Metabolomics Approaches. Scientific Reports, 6, Article No. 29680.
https://doi.org/10.1038/srep29680
[17] Hu, C., Zuo, Y., Liu, J., Xu, H., Liao, W., Dang, Y., et al. (2020) Licochalcone a Suppresses the Proliferation of Sarcoma HT-1080 Cells, as a Selective R132C Mutant IDH1 Inhibitor. Bioorganic & Medicinal Chemistry Letters, 30, Article ID: 126825.
https://doi.org/10.1016/j.bmcl.2019.126825
[18] Hong, S.H., Cha, H., Hwang-Bo, H., Kim, M.Y., Kim, S.Y., Ji, S.Y., et al. (2019) Anti-Proliferative and Pro-Apoptotic Effects of Licochalcone a through Ros-Mediated Cell Cycle Arrest and Apoptosis in Human Bladder Cancer Cells. International Journal of Molecular Sciences, 20, Article 3820.
https://doi.org/10.3390/ijms20153820
[19] Kim, S.N., Bae, S.J., Kwak, H.B., Min, Y.K., Jung, S., Kim, C., et al. (2011) In Vitro and in Vivo Osteogenic Activity of Licochalcone A. Amino Acids, 42, 1455-1465.
https://doi.org/10.1007/s00726-011-0901-7
[20] Ming, L., Jin, F., Huang, P., Luo, H., Liu, W., Zhang, L., et al. (2014) Licochalcone a Up-Regulates of FasL in Mesenchymal Stem Cells to Strengthen Bone Formation and Increase Bone Mass. Scientific Reports, 4, Article No. 7209.
https://doi.org/10.1038/srep07209
[21] Lee, S., Chiu, Y., Yang, S., Chen, C., Huang, C., Lee‐Chen, G., et al. (2018) Novel Synthetic Chalcone‐Coumarin Hybrid for Aβ Aggregation Reduction, Antioxidation, and Neuroprotection. CNS Neuroscience & Therapeutics, 24, 1286-1298.
https://doi.org/10.1111/cns.13058
[22] Angelova-Fischer, I., Rippke, F., Richter, D., Filbry, A., Arrowitz, C., Weber, T., et al. (2018) Stand-alone Emollient Treatment Reduces Flares after Discontinuation of Topical Steroid Treatment in Atopic Dermatitis: A Double-Blind, Randomized, Vehicle-Controlled, Left-Right Comparison Study. Acta Dermato Venereologica, 98, 517-523.
https://doi.org/10.2340/00015555-2882
[23] Lee, H.E., Yang, G., Han, S., Lee, J., An, T., Jang, J., et al. (2018) Anti-Obesity Potential of Glycyrrhiza Uralensis and Licochalcone a through Induction of Adipocyte Browning. Biochemical and Biophysical Research Communications, 503, 2117-2123.
https://doi.org/10.1016/j.bbrc.2018.07.168
[24] Quan, H.Y., Kim, S.J., Kim, D.Y., Jo, H.K., Kim, G.W. and Chung, S.H. (2013) Licochalcone a Regulates Hepatic Lipid Metabolism through Activation of Amp-Activated Protein Kinase. Fitoterapia, 86, 208-216.
https://doi.org/10.1016/j.fitote.2013.03.005
[25] Medzhitov, R. (2008) Origin and Physiological Roles of Inflammation. Nature, 454, 428-435.
https://doi.org/10.1038/nature07201
[26] Liu, Y., Hong, Z., Qian, J., Wang, Y. and Wang, S. (2019) Protective Effect of Jie-Geng-Tang against Staphylococcus Aureus Induced Acute Lung Injury in Mice and Discovery of Its Effective Constituents. Journal of Ethnopharmacology, 243, Article ID: 112076.
https://doi.org/10.1016/j.jep.2019.112076
[27] Chu, X., Ci, X., Wei, M., Yang, X., Cao, Q., Guan, M., et al. (2012) Licochalcone a Inhibits Lipopolysaccharide-Induced Inflammatory Response in Vitro and in Vivo. Journal of Agricultural and Food Chemistry, 60, 3947-3954.
https://doi.org/10.1021/jf2051587
[28] Hu, J. and Liu, J. (2015) Licochalcone a Attenuates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting NF-κB Activation. Inflammation, 39, 569-574.
https://doi.org/10.1007/s10753-015-0281-3
[29] Liu, D., Huo, X., Gao, L., Zhang, J., Ni, H. and Cao, L. (2018) NF-κB and Nrf2 Pathways Contribute to the Protective Effect of Licochalcone a on Dextran Sulphate Sodium-Induced Ulcerative Colitis in Mice. Biomedicine & Pharmacotherapy, 102, 922-929.
https://doi.org/10.1016/j.biopha.2018.03.130
[30] Fontes, L.B.A., dos Santos Dias, D., de Carvalho, L.S.A., Mesquita, H.L., da Silva Reis, L., Dias, A.T., et al. (2014) Immunomodulatory Effects of Licochalcone a on Experimental Autoimmune Encephalomyelitis. Journal of Pharmacy and Pharmacology, 66, 886-894.
https://doi.org/10.1111/jphp.12212
[31] Fu, Y., Chen, J., Li, Y., Zheng, Y. and Li, P. (2013) Antioxidant and Anti-Inflammatory Activities of Six Flavonoids Separated from Licorice. Food Chemistry, 141, 1063-1071.
https://doi.org/10.1016/j.foodchem.2013.03.089
[32] Sulzberger, M., Worthmann, A.C., Holtzmann, U., Buck, B., Jung, K.A., Schoelermann, A.M., et al. (2016) Effective Treatment for Sensitive Skin: 4‐t‐Butylcyclohexanol and Licochalcone A. Journal of the European Academy of Dermatology and Venereology, 30, 9-17.
https://doi.org/10.1111/jdv.13529
[33] Chen, W., Hu, Z., Jin, L. and Wu, L. (2017) Licochalcone a Inhibits MMPs and ADAMTSs via the NF-κB and Wnt/β-Catenin Signaling Pathways in Rat Chondrocytes. Cellular Physiology and Biochemistry, 43, 937-944.
https://doi.org/10.1159/000481645
[34] Yang, F., Su, X., Pi, J., Liao, K., Zhou, H., Sun, Y., et al. (2018) Atomic Force Microscopy Technique Used for Assessment of the Anti-Arthritic Effect of Licochalcone a via Suppressing NF-κB Activation. Biomedicine & Pharmacotherapy, 103, 1592-1601.
https://doi.org/10.1016/j.biopha.2018.04.142
[35] Kim, S., Yang, M., Xu, J., Yu, X. and Qian, X. (2014) Role of Licochalcone a on Thymic Stromal Lymphopoietin Expression: Implications for Asthma. Experimental Biology and Medicine, 240, 26-33.
https://doi.org/10.1177/1535370214545020
[36] Kim, S., Pei, Q., Jiang, P., Yang, M., Qian, X. and Liu, J. (2017) Role of Licochalcone a in VEGF-Induced Proliferation of Human Airway Smooth Muscle Cells: Implications for Asthma. Growth Factors, 35, 39-47.
https://doi.org/10.1080/08977194.2017.1338694
[37] Chu, X., Jiang, L., Wei, M., Yang, X., Guan, M., Xie, X., et al. (2013) Attenuation of Allergic Airway Inflammation in a Murine Model of Asthma by Licochalcone A. Immunopharmacology and Immunotoxicology, 35, 653-661.
https://doi.org/10.3109/08923973.2013.834929
[38] Dodson, M., de la Vega, M.R., Cholanians, A.B., Schmidlin, C.J., Chapman, E. and Zhang, D.D. (2019) Modulating NRF2 in Disease: Timing Is Everything. Annual Review of Pharmacology and Toxicology, 59, 555-575.
https://doi.org/10.1146/annurev-pharmtox-010818-021856
[39] Saha, S., Buttari, B., Panieri, E., Profumo, E. and Saso, L. (2020) An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules, 25, Article 5474.
https://doi.org/10.3390/molecules25225474
[40] Chen, X., Liu, Z., Meng, R., Shi, C. and Guo, N. (2017) Antioxidative and Anticancer Properties of Licochalcone a from Licorice. Journal of Ethnopharmacology, 198, 331-337.
https://doi.org/10.1016/j.jep.2017.01.028
[41] Kawai, Y., Garduño, L., Theodore, M., Yang, J. and Arinze, I.J. (2011) Acetylation-Deacetylation of the Transcription Factor Nrf2 (nuclear Factor Erythroid 2-Related Factor 2) Regulates Its Transcriptional Activity and Nucleocytoplasmic Localization. Journal of Biological Chemistry, 286, 7629-7640.
https://doi.org/10.1074/jbc.m110.208173
[42] Liu, X., Ma, Y., Wei, X. and Fan, T. (2017) Neuroprotective Effect of Licochalcone a against Oxygen‐glucose Deprivation/Reperfusion in Rat Primary Cortical Neurons by Attenuating Oxidative Stress Injury and Inflammatory Response via the SIRT1/Nrf2 Pathway. Journal of Cellular Biochemistry, 119, 3210-3219.
https://doi.org/10.1002/jcb.26477
[43] Haraguchi, H., Ishikawa, H., Mizutani, K., Tamura, Y. and Kinoshita, T. (1998) Antioxidative and Superoxide Scavenging Activities of Retrochalcones in Glycyrrhiza Inflata. Bioorganic & Medicinal Chemistry, 6, 339-347.
https://doi.org/10.1016/s0968-0896(97)10034-7
[44] Wang, X., Zhou, L., Tan, R., Liang, G., Fang, S., Li, W., et al. (2021) Design, Synthesis, and Evaluation of Chalcone Derivatives as Multifunctional Agents against Alzheimer’s Disease. Chemistry & Biodiversity, 18, e2100341.
https://doi.org/10.1002/cbdv.202100341
[45] Hasan, M.K., Ara, I., Mondal, M.S.A. and Kabir, Y. (2021) Phytochemistry, Pharmacological Activity, and Potential Health Benefits of Glycyrrhiza Glabra. Heliyon, 7, e07240.
https://doi.org/10.1016/j.heliyon.2021.e07240
[46] Song, M., Liu, Y., Li, T., Liu, X., Hao, Z., Ding, S., et al. (2021) Plant Natural Flavonoids against Multidrug Resistant Pathogens. Advanced Science, 8, e2100749.
https://doi.org/10.1002/advs.202100749
[47] Wu, S., Yang, Z., Liu, F., Peng, W., Qu, S., Li, Q., et al. (2019) Antibacterial Effect and Mode of Action of Flavonoids from Licorice against Methicillin-Resistant Staphylococcus Aureus. Frontiers in Microbiology, 10, Article 2489.
https://doi.org/10.3389/fmicb.2019.02489
[48] Shen, F., Tang, X., Wang, Y., Yang, Z., Shi, X., Wang, C., et al. (2014) Phenotype and Expression Profile Analysis of Staphylococcus Aureus Biofilms and Planktonic Cells in Response to Licochalcone A. Applied Microbiology and Biotechnology, 99, 359-373.
https://doi.org/10.1007/s00253-014-6076-x
[49] Hao, H., Hui, W., Liu, P., Lv, Q., Zeng, X., jiang, H., et al. (2013) Effect of Licochalcone a on Growth and Properties of Streptococcus Suis. PLOS ONE, 8, e67728.
https://doi.org/10.1371/journal.pone.0067728
[50] Feldman, M. and Grenier, D. (2012) Cranberry Proanthocyanidins Act in Synergy with Licochalcone a to Reduce Porphyromonas gingivalis Growth and Virulence Properties, and to Suppress Cytokine Secretion by Macrophages. Journal of Applied Microbiology, 113, 438-447.
https://doi.org/10.1111/j.1365-2672.2012.05329.x
[51] Bitencourt, T.A., Komoto, T.T., Massaroto, B.G., Miranda, C.E.S., Beleboni, R.O., Marins, M., et al. (2013) Trans-Chalcone and Quercetin Down-Regulate Fatty Acid Synthase Gene Expression and Reduce Ergosterol Content in the Human Pathogenic Dermatophyte Trichophyton rubrum. BMC Complementary and Alternative Medicine, 13, Article No. 229.
https://doi.org/10.1186/1472-6882-13-229
[52] Cantelli, B.A.M., Bitencourt, T.A., Komoto, T.T., Beleboni, R.O., Marins, M. and Fachin, A.L. (2017) Caffeic Acid and Licochalcone a Interfere with the Glyoxylate Cycle of Trichophyton Rubrum. Biomedicine & Pharmacotherapy, 96, 1389-1394.
https://doi.org/10.1016/j.biopha.2017.11.051
[53] Messier, C. and Grenier, D. (2011) Effect of Licorice Compounds Licochalcone A, Glabridin and Glycyrrhizic Acid on Growth and Virulence Properties of Candida Albicans: Effect of Licorice Compounds on Candida albicans. Mycoses, 54, e801-e806.
https://doi.org/10.1111/j.1439-0507.2011.02028.x
[54] Liu, X., Xiong, Y., Shi, Y., Deng, X., Deng, Q., Liu, Y., et al. (2022) In Vitro Activities of Licochalcone a against Planktonic Cells and Biofilm of Enterococcus Faecalis. Frontiers in Microbiology, 13, Article 970901.
https://doi.org/10.3389/fmicb.2022.970901
[55] Das, I., Nightingale, P., Patel, M. and Jumaa, P. (2011) Epidemiology, Clinical Characteristics, and Outcome of Candidemia: Experience in a Tertiary Referral Center in the UK. International Journal of Infectious Diseases, 15, e759-e763.
https://doi.org/10.1016/j.ijid.2011.06.006
[56] Chuang, Y., Lin, Y. and Lin, J. (2024) Licochalcone a Regulates Viral IRES Activity to Inhibit Enterovirus Replication. Antiviral Research, 221, Article ID: 105755.
https://doi.org/10.1016/j.antiviral.2023.105755
[57] Adianti, M., Aoki, C., Komoto, M., Deng, L., Shoji, I., Wahyuni, T.S., et al. (2014) Anti‐Hepatitis C Virus Compounds Obtained from Glycyrrhiza uralensis and Other Glycyrrhiza Species. Microbiology and Immunology, 58, 180-187.
https://doi.org/10.1111/1348-0421.12127
[58] Lin, Y., Liang, W., Chen, C., Tsang, H., Chiou, J., Liu, X., et al. (2019) Network Analysis and Mechanisms of Action of Chinese Herb-Related Natural Compounds in Lung Cancer Cells. Phytomedicine, 58, Article ID: 152893.
https://doi.org/10.1016/j.phymed.2019.152893
[59] Choi, A.Y., Choi, J.H., Hwang, K., Jeong, Y.J., Choe, W., Yoon, K., et al. (2021) Retraction Note To: Licochalcone a Induces Apoptosis through Endoplasmic Reticulum Stress via a Phospholipase Cγ1-, Ca2+-, and Reactive Oxygen Species-Dependent Pathway in HepG2 Human Hepatocellular Carcinoma Cells. Apoptosis, 27, 161-161.
https://doi.org/10.1007/s10495-021-01698-6
[60] Wang, J., Zhang, Y., Thakur, K., Hussain, S.S., Zhang, J., Xiao, G., et al. (2018) Licochalcone a from Licorice Root, an Inhibitor of Human Hepatoma Cell Growth via Induction of Cell Apoptosis and Cell Cycle Arrest. Food and Chemical Toxicology, 120, 407-417.
https://doi.org/10.1016/j.fct.2018.07.044
[61] Comstock, T.L. and DeCory, H.H. (2012) Advances in Corticosteroid Therapy for Ocular Inflammation: Loteprednol Etabonate. International Journal of Inflammation, 2012, Article ID: 789623.
https://doi.org/10.1155/2012/789623
[62] Galindo-Camacho, R.M., Haro, I., Gómara, M.J., Espina, M., Fonseca, J., Martins-Gomes, C., et al. (2023) Cell Penetrating Peptides-Functionalized Licochalcone-A-Loaded PLGA Nanoparticles for Ocular Inflammatory Diseases: Evaluation of in Vitro Anti-Proliferative Effects, Stabilization by Freeze-Drying and Characterization of an In-Situ Forming Gel. International Journal of Pharmaceutics, 639, Article ID: 122982.
https://doi.org/10.1016/j.ijpharm.2023.122982
[63] Thomas, C.J., Mirza, R.G. and Gill, M.K. (2021) Age-Related Macular Degeneration. Medical Clinics of North America, 105, 473-491.
https://doi.org/10.1016/j.mcna.2021.01.003
[64] Green, W.R. and Enger, C. (1993) Age-related Macular Degeneration Histopathologic Studies. Ophthalmology, 100, 1519-1535.
https://doi.org/10.1016/s0161-6420(93)31466-1
[65] Kokame, G.T., deCarlo, T.E., Kaneko, K.N., Omizo, J.N. and Lian, R. (2019) Anti-Vascular Endothelial Growth Factor Resistance in Exudative Macular Degeneration and Polypoidal Choroidal Vasculopathy. Ophthalmology Retina, 3, 744-752.
https://doi.org/10.1016/j.oret.2019.04.018
[66] Zhang, Y., Zhou, S., Xie, M., jiang, Q., Yang, N., Wu, R., et al. (2023) Licochalcone a Alleviates Laser-Induced Choroidal Neovascularization by Inhibiting the Endothelial-Mesenchymal Transition via PI3K/AKT Signaling Pathway. Experimental Eye Research, 226, Article ID: 109335.
https://doi.org/10.1016/j.exer.2022.109335