[1]
|
Ji, Y.T., Liu, S.W., Zhang, Y.M., et al. (2024) Comparison of the Latest Cancer Statistics, Cancer Epidemic Trends and Determinants between China and the United States. Chinese Journal of Oncology, 46, 1-11.
|
[2]
|
Liang, X., Yang, J., Gao, T., et al. (2023) Analysis on the Trends of Incidence and Age Change for Global Female Breast Cancer. Chinese Journal of Oncology, 45, 313-321.
|
[3]
|
Gamboa, A.C., Gronchi, A. and Cardona, K. (2020) Soft-Tissue Sarcoma in Adults: An Update on the Current State of Histiotype-Specific Management in an Era of Personalized Medicine. CA: A Cancer Journal for Clinicians, 70, 200-229. https://doi.org/10.3322/caac.21605
|
[4]
|
Yue, X.P., Shi, J.F., Mao, A.Y., et al. (2017) Natural History of Breast Cancer: A Systematic Review of Worldwide Randomized Controlled Trials of Mammography Screening. Chinese Journal of Oncology, 39, 154-160.
|
[5]
|
黎星, 伍尧泮, 汪湍, 等. 钼靶x线检查在以钙化为唯一征象的乳腺癌诊断中的价值[J]. 新疆医科大学学报, 2007, 30(2): 165-167.
|
[6]
|
Li, Y., Ye, Z.X., Wu, T., et al. (2013) Comparison of Full-Field Digital Mammography and Digital Breast Tomosynthesis on Assessment of the Lesions in Dense Breast: A Preliminary Study. Chinese Journal of Oncology, 35, 33-37.
|
[7]
|
Shen, S.J., Sun, Q., Xu, Y.L., et al. (2012) Comparative Analysis of Early Diagnostic Tools for Breast Cancer. Chinese Journal of Oncology, 34, 877-880.
|
[8]
|
Sun, X.F., Xing, W., Yu, S.N., et al. (2020) Clinical Value of Suspicious Calcification in the Diagnosis and Surgical Treatment of Breast Lesions Using Contrast-Enhanced Spectral Mammography. Chinese Journal of Oncology, 100, 42-46.
|
[9]
|
李杰. 钼靶x线钙化征象对良恶性乳腺肿块的诊断价值研究[J]. 宁夏医科大学学报, 2013, 35(5): 589-591.
|
[10]
|
Yang, L., Li, J. and Zhou, C.W. (2017) Value of Digital Breast Tomosynthesis (DBT) in the Diagnosis of Breast Lesions. Chinese Journal of Oncology, 39, 33-38.
|
[11]
|
Helal, M., Khaled, R., Alfarghaly, O., Mokhtar, O., Elkorany, A., Fahmy, A., et al. (2024) Validation of Artificial Intelligence Contrast Mammography in Diagnosis of Breast Cancer: Relationship to Histopathological Results. European Journal of Radiology, 173, Article 111392. https://doi.org/10.1016/j.ejrad.2024.111392
|
[12]
|
段婧, 赵成茂, 汪学昌, 等. 乳腺癌微钙化超声征象及预后因素分析[J]. 中国医药, 2019, 14(7): 1015-1018.
|
[13]
|
Macedo, M., Bassaganyas, C., Ganau, S., Sanfeliu, E., Ubeda, B. and Bargallo, X. (2020) Ultrasound Findings of Breast Adenomas. Journal of Ultrasound in Medicine, 39, 2173-2180. https://doi.org/10.1002/jum.15328
|
[14]
|
Chen, S., Shao, G., Shao, F., et al. (2018) Diffusion-Weighted Imaging Texture Features in Differentiation of Malignant from Benign Nonpalpable Breast Lesions for Patients with Microcalcifications-Only in Mammography. Journal of Zhejiang University Medical Sciences, 47, 400-404.
|
[15]
|
方秀珍, 李德春, 王安震, 等. 数字化乳腺x线征象微钙化对乳腺良恶性疾病的诊断价值[J]. 影像研究与医学应用, 2021, 5(16): 29-32.
|
[16]
|
杨亚芳, 段克举, 刘真真, 等. 乳腺数字化摄影中微钙化的临床分析[J]. 临床外科杂志, 2019, 27(3): 223-226.
|
[17]
|
Scimeca, M., Giannini, E., Antonacci, C., Pistolese, C.A., Spagnoli, L.G. and Bonanno, E. (2014) Microcalcifications in Breast Cancer: An Active Phenomenon Mediated by Epithelial Cells with Mesenchymal Characteristics. BMC Cancer, 14, Article No. 286. https://doi.org/10.1186/1471-2407-14-286
|
[18]
|
Wang, L., Yang, W., Xie, X., Liu, W., Wang, H., Shen, J., et al. (2020) Application of Digital Mammography-Based Radiomics in the Differentiation of Benign and Malignant Round-Like Breast Tumors and the Prediction of Molecular Subtypes. Gland Surgery, 9, 2005-2016. https://doi.org/10.21037/gs-20-473
|
[19]
|
Ebrahim, L., Dissanayake, D., Metcalf, C. and Wylie, E. (2016) Screen-Detected Breast Carcinoma with Macroscopic Dystrophic Calcification: A Pictorial Essay with Radiolological Pathological Correlation. Journal of Medical Imaging and Radiation Oncology, 60, 216-223. https://doi.org/10.1111/1754-9485.12426
|
[20]
|
Choi, Y.J., Ko, E.Y. and Kook, S. (2008) Diagnosis of Pseudoangiomatous Stromal Hyperplasia of the Breast: Ultrasonography Findings and Different Biopsy Methods. Yonsei Medical Journal, 49, 757-764. https://doi.org/10.3349/ymj.2008.49.5.757
|
[21]
|
李易, 丁宁, 蔡丰, 等. 常规全视野数字化乳腺x线摄影(ffdm)与常规ffdm+点压放大诊断乳腺良、恶性微钙化[J]. 中国医学影像技术, 2022, 38(9): 1342-1345.
|
[22]
|
Liu, J., Wu, J.P., Wang, N., et al. (2021) Value of Elastography Strain Ratio Combined with Breast Ultrasound Imaging Reporting and Data System in the Diagnosis of Breast Nodules. Acta Academiae Medicinae Sinicae, 43, 63-68.
|
[23]
|
Mercado, C.L. (2014) BI-RADS Update. Radiologic Clinics of North America, 52, 481-487. https://doi.org/10.1016/j.rcl.2014.02.008
|
[24]
|
龙蓉, 曹崑, 罗瑶, 等. 对比增强乳腺x线摄影灰度值定量测量鉴别诊断乳腺钙化良性与恶性的研究[J]. 中华放射学杂志, 2023, 57(1): 54-59.
|
[25]
|
Ghosh, K., Vierkant, R.A., Frank, R.D., Winham, S., Visscher, D.W., Pankratz, V.S., et al. (2017) Association between Mammographic Breast Density and Histologic Features of Benign Breast Disease. Breast Cancer Research, 19, Article No. 134. https://doi.org/10.1186/s13058-017-0922-6
|
[26]
|
卢简言, 倪晨曦, 吴东. 乳腺良恶性钙化的评分和临床应用[J]. 中国医学影像学杂志, 2008, 16(5): 385-387.
|
[27]
|
Wang, W.Y., Wang, X., Gao, J.D., et al. (2017) Analysis of the Clinicopathological Characteristics and Prognosis in 674 Cases of Breast Intraductal Papillary Tumor. Chinese Journal of Oncology, 39, 429-433.
|
[28]
|
Zhang, M.L., Wang, X., Xing, Z.Y., et al. (2022) Young Mammary Paget’s Disease Patients with Underlying Breast Invasive Ductal Carcinoma: Clinicopathological Features and Prognosis. Chinese Journal of Oncology, 44, 425-429.
|
[29]
|
Lü, X.J., Liu, N., Li, Q., et al. (2019) Diagnostic Value of Digital Breast Tomosynthesis for Mass Lesions in Dense Breast. Chinese Journal of Preventive Medicine, 99, 3110-3113.
|
[30]
|
Bohan, S., Ramli Hamid, M.T., Chan, W.Y., Vijayananthan, A., Ramli, N., Kaur, S., et al. (2021) Diagnostic Accuracy of Tomosynthesis-Guided Vacuum Assisted Breast Biopsy of Ultrasound Occult Lesions. Scientific Reports, 11, Article No. 129. https://doi.org/10.1038/s41598-020-80124-4
|
[31]
|
张超, 王静, 陈宏伟. 乳腺良恶性病变中微钙化钼靶x线征象分析[J]. 蚌埠医学院学报, 2018, 43(5): 633-636.
|
[32]
|
Ren, Y., Zhang, J., Zhang, J. and Xu, J. (2022) Efficacy of Digital Breast Tomosynthesis Combined with Magnetic Resonance Imaging in the Diagnosis of Early Breast Cancer. World Journal of Clinical Cases, 10, 10042-10052. https://doi.org/10.12998/wjcc.v10.i28.10042
|
[33]
|
Wang, X., Wang, W., Wang, J., et al. (2015) Clinical Application of MRI-Guided Puncture of Breast Microlesions. Chinese Journal of Oncology, 37, 682-685.
|
[34]
|
Wu, J., Kong, R., Tian, S., Li, H., Liu, J., Xu, Z., et al. (2021) Advances in Ultrasound-Guided Vacuum-Assisted Biopsy of Breast Microcalcifications. Ultrasound in Medicine & Biology, 47, 1172-1181. https://doi.org/10.1016/j.ultrasmedbio.2021.01.008
|
[35]
|
Pride, R.M., Jimenez, R.E., Hoskin, T.L., Degnim, A.C. and Hieken, T.J. (2021) Upgrade at Excisional Biopsy after a Core Needle Biopsy Diagnosis of Classic Lobular Carcinoma in Situ. Surgery, 169, 644-648. https://doi.org/10.1016/j.surg.2020.07.025
|
[36]
|
Zhang, H.W., Li, J.T., Lü, M.H., et al. (2017) The Breast Cancer Diagnosis Accuracy of the Digital Breast Tomosynthesis Technique. Chinese Medical Journal, 97, 1387-1390.
|
[37]
|
Xu, A.Q., Weng, X.B., Zheng, J., et al. (2019) Comparison of the Diagnostic Values of Dynamic Enhanced Magnetic Resonance Imaging, Digital Breast Tomosynthesis, and Digital Mammography for Early Breast Cancer. Acta Academiae Medicinae Sinicae, 41, 667-672.
|
[38]
|
Rehman, K.u., Li, J., Pei, Y., Yasin, A., Ali, S. and Mahmood, T. (2021) Computer Vision-Based Microcalcification Detection in Digital Mammograms Using Fully Connected Depthwise Separable Convolutional Neural Network. Sensors, 21, Article 4854. https://doi.org/10.3390/s21144854
|
[39]
|
Ge, J., Hadjiiski, L.M., Sahiner, B., Wei, J., Helvie, M.A., Zhou, C., et al. (2007) Computer-Aided Detection System for Clustered Microcalcifications: Comparison of Performance on Full-Field Digital Mammograms and Digitized Screen-Film Mammograms. Physics in Medicine and Biology, 52, 981-1000. https://doi.org/10.1088/0031-9155/52/4/008
|
[40]
|
Niu, S., Huang, J., Li, J., Liu, X., Wang, D., Wang, Y., et al. (2021) Differential Diagnosis between Small Breast Phyllodes Tumors and Fibroadenomas Using Artificial Intelligence and Ultrasound Data. Quantitative Imaging in Medicine and Surgery, 11, 2052-2061. https://doi.org/10.21037/qims-20-919
|