[1]
|
陈庆荣, 周曦, 韩静, 安静(2012). 眼球追踪: 模式、技术和应用. 实验室研究与探索, 31(10), 10-15.
|
[2]
|
程建梅, 陈强, 章超, 欧居尚(2018). 城市道路不同驾驶环境下汽车驾驶员注意力分配定量研究. 科学技术与工程, 18(25), 286-295.
|
[3]
|
冯宇(2023). 基于视觉特征与对抗学习的大五人格评估. 硕士学位论文, 合肥: 安徽医科大学.
|
[4]
|
李瑞(2021). 情绪稳定性对飞行学员驾驶行为的影响分析. 硕士学位论文, 天津: 中国民航大学.
|
[5]
|
牛四芳(2014). 飞行员在飞行动作模拟练习下的眼动模式的分析. 硕士学位论文, 西安: 第四军医大学.
|
[6]
|
申天啸(2022). 基于深度学习的驾驶员眼动识别和分析研究. 硕士学位论文, 西安: 西安电子科技大学.
|
[7]
|
沈胤宏, 郑秀娟, 张昀, 苗丹民(2023). 基于眼动特征的辅助心理测量方法. 空军军医大学学报, 44(10), 942-947.
|
[8]
|
田建全(2006). ProjectA对我军士兵心理选拔研究的启示. 心理科学进展, (2), 164-168.
|
[9]
|
王碧梅(2022). 不同经验水平教师教学反思认知加工机制研究——基于眼动和访谈的证据. 教师教育研究, 34(4), 77-85.
|
[10]
|
王莉莉, 许凌鹏(2023). 基于眼动数据的管制员注意力特征评价. 中国安全科学学报, 33(2), 217-224.
|
[11]
|
王雪松, 邓涛, 房清霆, 赵顾灏(2020). 基于眼动识别的塔台飞行管制员注意力评估系统设计. 中国航班, (1), 48.
|
[12]
|
王燕青, 周士琦, 李瑞(2022). 不同时间压力条件下飞行学员的情绪稳定性对决策绩效的影响. 科学技术与工程, 22(13), 5513-5518.
|
[13]
|
吴林, 叶宗华, 刘小东(2020). 眼动数据分析在飞行培训中的应用研究. 价值工程, 39(25), 189-191.
|
[14]
|
薛志超, 巩渭华, 杨波, 等(2018). 常见驾驶行为下驾驶人注意力分配特征. 济南大学学报(自然科学版), 32(6), 469-475.
|
[15]
|
张益凡, 王宇超, 张琴喻, 葛贤亮, 徐杰(2022). 基于眼动指标的飞行员注意状态识别可行性研究. 航空科学技术, 33(4), 39-46.
|
[16]
|
张志龙, 刘飞虎, 卢宏亮, 等(2023). 认知能力评估工具的研究进展. 职业与健康, 39(5), 715-720.
|
[17]
|
Ban, S., Lee, Y. J., Kim, K. R., Kim, J., & Yeo, W. (2022). Advances in Materials, Sensors, and Integrated Systems for Monitoring Eye Movements. Biosensors, 12, Article 1039. https://doi.org/10.3390/bios12111039
|
[18]
|
Black, M. H., Chen, N. T. M., Iyer, K. K., Lipp, O. V., Bölte, S., Falkmer, M. et al. (2017). Mechanisms of Facial Emotion Recognition in Autism Spectrum Disorders: Insights from Eye Tracking and Electroencephalography. Neuroscience & Biobehavioral Reviews, 80, 488-515. https://doi.org/10.1016/j.neubiorev.2017.06.016
|
[19]
|
Carniglia, E., Caputi, M., Manfredi, V., Zambarbieri, D., & Pessa, E. (2012). The Influence of Emotional Picture Thematic Content on Exploratory Eye Movements. Journal of Eye Movement Research, 5, 1-9. https://doi.org/10.16910/jemr.5.4.4
|
[20]
|
Claudio, A., Sebastian, B., Vaclav, S. et al. (2015). Neural Networks for Emotion Recognition Based on Eye Tracking Data. In 2015 IEEE International Conference on Systems, Man, and Cybernetics (pp. 2632-2637). IEEE.
|
[21]
|
Hayes, T. R., & Henderson, J. M. (2017). Scan Patterns during Real-World Scene Viewing Predict Individual Differences in Cognitive Capacity. Journal of Vision, 17, Article 23. https://doi.org/10.1167/17.5.23
|
[22]
|
Hayes, T. R., Petrov, A. A., & Sederberg, P. B. (2015). Do We Really Become Smarter When Our Fluid-Intelligence Test Scores Improve? Intelligence, 48, 1-14. https://doi.org/10.1016/j.intell.2014.10.005
|
[23]
|
Lim, J. Z., Mountstephens, J., & Teo, J. (2021). Eye-Tracking Feature Extraction for Biometric Machine Learning. Frontiers in Neurorobotics, 15, Article 796895. https://doi.org/10.3389/fnbot.2021.796895
|
[24]
|
Motta, D. C., Carvalho, B. C., Castilho, P. et al. (2019). Assessment of Neurocognitive Function and Social Cognition with Computerized Batteries: Psychometric Properties of the Portuguese PennCNB in Healthy Controls. Current Psychology, 38, 1-12.
|
[25]
|
Rauthmann, J. F., Seubert, C. T., Sachse, P., & Furtner, M. R. (2012). Eyes as Windows to the Soul: Gazing Behavior Is Related to Personality. Journal of Research in Personality, 46, 147-156. https://doi.org/10.1016/j.jrp.2011.12.010
|
[26]
|
Sargezeh, B., Ayatollahi, A., & Daliri, M. R. (2019). Investigation of Eye Movement Pattern Parameters of Individuals with Different Fluid Intelligence. Experimental Brain Research, 237, 15-28. https://doi.org/10.1007/s00221-018-5392-2
|
[27]
|
van Meeuwen, L. W., Jarodzka, H., Brand-Gruwel, S., Kirschner, P. A., de Bock, J. J. P. R., & van Merriënboer, J. J. G. (2014). Identification of Effective Visual Problem Solving Strategies in a Complex Visual Domain. Learning and Instruction, 32, 10-21. https://doi.org/10.1016/j.learninstruc.2014.01.004
|
[28]
|
Wang, W., Kofler, L., Lindgren, C., Lobel, M., Murphy, A., Tong, Q. et al. (2023). AI for Psychometrics: Validating Machine Learning Models in Measuring Emotional Intelligence with Eye-Tracking Techniques. Journal of Intelligence, 11, 170. https://doi.org/10.3390/jintelligence11090170
|
[29]
|
Wu, Y., Kosinski, M., & Stillwell, D. (2015). Computer-Based Personality Judgments Are More Accurate than Those Made by Humans. Proceedings of the National Academy of Sciences of the United States of America, 112, 1036-1040. https://doi.org/10.1073/pnas.1418680112
|