[1]
|
Zhang, P. and Zhang, M. (2020) Epigenetic Alterations and Advancement of Treatment in Peripheral T-Cell Lymphoma. Clinical Epigenetics, 12, Article No. 169. https://doi.org/10.1186/s13148-020-00962-x
|
[2]
|
Swerdlow, S.H., Campo, E., Pileri, S.A., Harris, N.L., Stein, H., Siebert, R., et al. (2016) The 2016 Revision of the World Health Organization Classification of Lymphoid Neoplasms. Blood, 127, 2375-2390. https://doi.org/10.1182/blood-2016-01-643569
|
[3]
|
Luminari, S. and Skrypets, T. (2021) What’s New in Peripheral T‐cell Lymphomas. Hematological Oncology, 39, 52-60. https://doi.org/10.1002/hon.2846
|
[4]
|
Zain, J.M. (2019) Aggressive T‐cell Lymphomas: 2019 Updates on Diagnosis, Risk Stratification, and Management. American Journal of Hematology, 94, 929-946. https://doi.org/10.1002/ajh.25513
|
[5]
|
Sibon, D. (2022) Peripheral T-Cell Lymphomas: Therapeutic Approaches. Cancers, 14, Article 2332. https://doi.org/10.3390/cancers14092332
|
[6]
|
Heavican, T.B., Bouska, A., Yu, J., et al. (2019) Genetic Drivers of Oncogenic Pathways in molecular Subgroups of Peripheral T-Cell Lymphoma. Blood, 133, 1664-1676. https://doi.org/10.1182/blood-2018-09-872549
|
[7]
|
Xie, C., Li, X., Zeng, H. and Qian, W. (2020) Molecular Insights into Pathogenesis and Targeted Therapy of Peripheral T Cell Lymphoma. Experimental Hematology & Oncology, 9, Article No. 30. https://doi.org/10.1186/s40164-020-00188-w
|
[8]
|
Lemonnier, F., Gaulard, P. and de Leval, L. (2018) New Insights in the Pathogenesis of T-Cell Lymphomas. Current Opinion in Oncology, 30, 277-284. https://doi.org/10.1097/cco.0000000000000474
|
[9]
|
Willemsen, M. and Schouten, H.C. (2017) Inappropriate Costimulation and Aberrant DNA Methylation as Therapeutic Targets in Angioimmunoblastic T-Cell Lymphoma. Biomarker Research, 5, Article No. 6. https://doi.org/10.1186/s40364-017-0085-8
|
[10]
|
Epstein-Peterson, Z.D. and Horwitz, S.M. (2021) Molecularly Targeted Therapies for Relapsed and Refractory Peripheral T-Cell Lymphomas. Seminars in Hematology, 58, 78-84. https://doi.org/10.1053/j.seminhematol.2021.02.004
|
[11]
|
Liu, M.K., Sun, X.J., Gao, X.D., et al. (2021) Methylation Alterations and Advance of Treatment in Lymphoma. Frontiers in Bioscience, 26, 602-613. https://doi.org/10.52586/4970
|
[12]
|
Iqbal, J., Amador, C., McKeithan, T.W. and Chan, W.C. (2018) Molecular and Genomic Landscape of Peripheral T-Cell Lymphoma. Cancer Treatment and Research, 176, 31-68. https://doi.org/10.1007/978-3-319-99716-2_2
|
[13]
|
Palomero, T., Couronné, L., Khiabanian, H., Kim, M., Ambesi-Impiombato, A., Perez-Garcia, A., et al. (2014) Recurrent Mutations in Epigenetic Regulators, RHOA and FYN Kinase in Peripheral T Cell Lymphomas. Nature Genetics, 46, 166-170. https://doi.org/10.1038/ng.2873
|
[14]
|
Dan, J. and Chen, T. (2022) Genetic Studies on Mammalian DNA Methyltransferases. In: Jeltsch, A. and Jurkowska, R.Z., Eds., DNA Methyltransferases—Role and Function, Springer, 111-136. https://doi.org/10.1007/978-3-031-11454-0_5
|
[15]
|
Meng, W., Wang, Z., Zhang, Y., Hou, Y. and Xue, J. (2024) Epigenetic Marks or Not? The Discovery of Novel DNA Modifications in Eukaryotes. Journal of Biological Chemistry, 300, Article ID: 106791. https://doi.org/10.1016/j.jbc.2024.106791
|
[16]
|
Ma, H., O’Connor, O.A. and Marchi, E. (2019) New Directions in Treating Peripheral T-Cell Lymphomas (PTCL): Leveraging Epigenetic Modifiers Alone and in Combination. Expert Review of Hematology, 12, 137-146. https://doi.org/10.1080/17474086.2019.1583102
|
[17]
|
Ruan, J., Moskowitz, A., Mehta-Shah, N., et al. (2023) Multicenter Phase 2 Study of Oral Azacitidine (CC-486) plus CHOP as Initial Treatment for PTCL. Blood, 141, 2194-2205.
|
[18]
|
Baylin, S.B. and Jones, P.A. (2011) A Decade of Exploring the Cancer Epigenome—Biological and Translational Implications. Nature Reviews Cancer, 11, 726-734. https://doi.org/10.1038/nrc3130
|
[19]
|
Kulis, M. and Esteller, M. (2010) DNA Methylation and Cancer. Advances in Genetics, 70, 27-56. https://doi.org/10.1016/b978-0-12-380866-0.60002-2
|
[20]
|
Ko, M., An, J., Pastor, W.A., Koralov, S.B., Rajewsky, K. and Rao, A. (2014) TET Proteins and 5‐methylcytosine Oxidation in Hematological Cancers. Immunological Reviews, 263, 6-21. https://doi.org/10.1111/imr.12239
|
[21]
|
Kim, H., Jung, I., Lee, C.H., An, J. and Ko, M. (2023) Development of Novel Epigenetic Anti-Cancer Therapy Targeting TET Proteins. International Journal of Molecular Sciences, 24, Article ID: 16375. https://doi.org/10.3390/ijms242216375
|
[22]
|
Weissmann, S., Alpermann, T., Grossmann, V., Kowarsch, A., Nadarajah, N., Eder, C., et al. (2011) Landscape of TET2 Mutations in Acute Myeloid Leukemia. Leukemia, 26, 934-942. https://doi.org/10.1038/leu.2011.326
|
[23]
|
Chiba, S. (2016) Dysregulation of TET2 in Hematologic Malignancies. International Journal of Hematology, 105, 17-22. https://doi.org/10.1007/s12185-016-2122-z
|
[24]
|
Scourzic, L., Couronné, L., Pedersen, M.T., Della Valle, V., Diop, M., Mylonas, E., et al. (2016) DNMT3AR882H Mutant and Tet2 Inactivation Cooperate in the Deregulation of DNA Methylation Control to Induce Lymphoid Malignancies in Mice. Leukemia, 30, 1388-1398. https://doi.org/10.1038/leu.2016.29
|
[25]
|
Yao, W., Wu, F., Zhang, W., Chuang, S., Thompson, J.S., Chen, Z., et al. (2020) Angioimmunoblastic T‐Cell Lymphoma Contains Multiple Clonal T‐Cell Populations Derived from a Common TET2 Mutant Progenitor Cell. The Journal of Pathology, 250, 346-357. https://doi.org/10.1002/path.5376
|
[26]
|
de Pádua Covas Lage, L.A., Barreto, G.C., Culler, H.F., Cavalcante, J.B., de Oliveira Alves, L.B., Nardinelli, L., et al. (2022) TET-2 Mutations Predict Poor Outcomes and Are Associated with Unfavorable Clinical-Biological Features in PTCL, Not Otherwise Specified and Angioimmunoblastic T-Cell Lymphoma in Brazilian Patients. Cancer Biomarkers, 35, 179-191. https://doi.org/10.3233/cbm-220013
|
[27]
|
Lemonnier, F., Couronné, L., Parrens, M., Jaïs, J., Travert, M., Lamant, L., et al. (2012) Recurrent TET2 Mutations in Peripheral T-Cell Lymphomas Correlate with TFH-Like Features and Adverse Clinical Parameters. Blood, 120, 1466-1469. https://doi.org/10.1182/blood-2012-02-408542
|
[28]
|
Muto, H., Sakata-Yanagimoto, M., Nagae, G., Shiozawa, Y., Miyake, Y., Yoshida, K., et al. (2014) Reduced TET2 Function Leads to T-Cell Lymphoma with Follicular Helper T-Cell-Like Features in Mice. Blood Cancer Journal, 4, e264. https://doi.org/10.1038/bcj.2014.83
|
[29]
|
Baron, B.W., Anastasi, J., Montag, A., Huo, D., Baron, R.M., Karrison, T., et al. (2004) The Human BCL6 Transgene Promotes the Development of Lymphomas in the Mouse. Proceedings of the National Academy of Sciences of the United States of America, 101, 14198-14203. https://doi.org/10.1073/pnas.0406138101
|
[30]
|
López-Moyado, I.F., Tsagaratou, A., Yuita, H., Seo, H., Delatte, B., Heinz, S., et al. (2019) Paradoxical Association of TET Loss of Function with Genome-Wide DNA Hypomethylation. Proceedings of the National Academy of Sciences of the United States of America, 116, 16933-16942. https://doi.org/10.1073/pnas.1903059116
|
[31]
|
Sakata-Yanagimoto, M. (2015) Multistep Tumorigenesis in Peripheral T Cell Lymphoma. International Journal of Hematology, 102, 523-527. https://doi.org/10.1007/s12185-015-1738-8
|
[32]
|
Odejide, O., Weigert, O., Lane, A.A., Toscano, D., Lunning, M.A., Kopp, N., et al. (2014) A Targeted Mutational Landscape of Angioimmunoblastic T-Cell Lymphoma. Blood, 123, 1293-1296. https://doi.org/10.1182/blood-2013-10-531509
|
[33]
|
Yang, L., Rau, R. and Goodell, M.A. (2015) DNMT3A in Haematological Malignancies. Nature Reviews Cancer, 15, 152-165. https://doi.org/10.1038/nrc3895
|
[34]
|
Robertson, K.D. (2001) DNA Methylation, Methyltransferases, and Cancer. Oncogene, 20, 3139-3155. https://doi.org/10.1038/sj.onc.1204341
|
[35]
|
Peters, S.L., Hlady, R.A., Opavska, J., Klinkebiel, D., Novakova, S., Smith, L.M., et al. (2013) Essential Role for Dnmt1 in the Prevention and Maintenance of MYC-Induced T-Cell Lymphomas. Molecular and Cellular Biology, 33, 4321-4333. https://doi.org/10.1128/mcb.00776-13
|
[36]
|
Haney, S.L., Upchurch, G.M., Opavska, J., Klinkebiel, D., Hlady, R.A., Roy, S., et al. (2016) Dnmt3a Is a Haploinsufficient Tumor Suppressor in CD8+ Peripheral T Cell Lymphoma. PLOS Genetics, 12, e1006334. https://doi.org/10.1371/journal.pgen.1006334
|
[37]
|
Haney, S.L., Upchurch, G.M., Opavska, J., Klinkebiel, D., Appiah, A.K., Smith, L.M., et al. (2016) Loss of Dnmt3a Induces CLL and PTCL with Distinct Methylomes and Transcriptomes in Mice. Scientific Reports, 6, Article No. 34222. https://doi.org/10.1038/srep34222
|
[38]
|
Tian, W., Zhang, W., Wang, Y., Jin, R., Wang, Y., Guo, H., et al. (2022) Recent Advances of IDH1 Mutant Inhibitor in Cancer Therapy. Frontiers in Pharmacology, 13, Article 982424. https://doi.org/10.3389/fphar.2022.982424
|
[39]
|
Dang, L., White, D.W., Gross, S., Bennett, B.D., Bittinger, M.A., Driggers, E.M., et al. (2009) Cancer-Associated IDH1 Mutations Produce 2-Hydroxyglutarate. Nature, 462, 739-744. https://doi.org/10.1038/nature08617
|
[40]
|
Pirozzi, C.J. and Yan, H. (2021) The Implications of IDH Mutations for Cancer Development and Therapy. Nature Reviews Clinical Oncology, 18, 645-661. https://doi.org/10.1038/s41571-021-00521-0
|
[41]
|
Chowdhury, R., Yeoh, K.K., Tian, Y., Hillringhaus, L., Bagg, E.A., Rose, N.R., et al. (2011) The Oncometabolite 2‐Hydroxyglutarate Inhibits Histone Lysine Demethylases. EMBO Reports, 12, 463-469. https://doi.org/10.1038/embor.2011.43
|
[42]
|
Figueroa, M.E., Abdel-Wahab, O., Lu, C., Ward, P.S., Patel, J., Shih, A., et al. (2010) Leukemic IDH1 and IDH2 Mutations Result in a Hypermethylation Phenotype, Disrupt TET2 Function, and Impair Hematopoietic Differentiation. Cancer Cell, 18, 553-567. https://doi.org/10.1016/j.ccr.2010.11.015
|
[43]
|
Lu, C., Ward, P.S., Kapoor, G.S., Rohle, D., Turcan, S., Abdel-Wahab, O., et al. (2012) IDH Mutation Impairs Histone Demethylation and Results in a Block to Cell Differentiation. Nature, 483, 474-478. https://doi.org/10.1038/nature10860
|
[44]
|
Cairns, R.A., Iqbal, J., Lemonnier, F., Kucuk, C., de Leval, L., Jais, J., et al. (2012) IDH2 Mutations Are Frequent in Angioimmunoblastic T-Cell Lymphoma. Blood, 119, 1901-1903. https://doi.org/10.1182/blood-2011-11-391748
|
[45]
|
Wang, C., McKeithan, T.W., Gong, Q., Zhang, W., Bouska, A., Rosenwald, A., et al. (2015) IDH2 R172 Mutations Define a Unique Subgroup of Patients with Angioimmunoblastic T-Cell Lymphoma. Blood, 126, 1741-1752. https://doi.org/10.1182/blood-2015-05-644591
|
[46]
|
Lemonnier, F., Cairns, R.A., Inoue, S., Li, W.Y., Dupuy, A., Broutin, S., et al. (2016) The IDH2 R172K Mutation Associated with Angioimmunoblastic T-Cell Lymphoma Produces 2HG in T Cells and Impacts Lymphoid Development. Proceedings of the National Academy of Sciences of the United States of America, 113, 15084-15089. https://doi.org/10.1073/pnas.1617929114
|
[47]
|
Cai, M., Cheng, S., Wang, X., Hu, J., Song, Y., Huang, Y., et al. (2020) CEOP/IVE/GDP Alternating Regimen Compared with CEOP as the First-Line Therapy for Newly Diagnosed Patients with Peripheral T Cell Lymphoma: Results from a Phase 2, Multicenter, Randomized, Controlled Clinical Trial. Genome Medicine, 12, Article No. 41. https://doi.org/10.1186/s13073-020-00739-0
|
[48]
|
Cogle, C.R., Scott, B.L., Boyd, T. and Garcia-Manero, G. (2015) Oral Azacitidine (CC-486) for the Treatment of Myelodysplastic Syndromes and Acute Myeloid Leukemia. The Oncologist, 20, 1404-1412. https://doi.org/10.1634/theoncologist.2015-0165
|
[49]
|
Lee, S., Urman, A. and Desai, P. (2019) Emerging Drug Profile: Krebs Cycle and Cancer: IDH Mutations and Therapeutic Implications. Leukemia & Lymphoma, 60, 2635-2645. https://doi.org/10.1080/10428194.2019.1602260
|
[50]
|
Liu, Y., Wang, C., Li, X., Dong, L., Yang, Q., Chen, M., et al. (2021) Improved Clinical Outcome in a Randomized Phase II Study of Anti-Pd-1 Camrelizumab Plus Decitabine in Relapsed/refractory Hodgkin Lymphoma. Journal for ImmunoTherapy of Cancer, 9, e002347. https://doi.org/10.1136/jitc-2021-002347
|
[51]
|
Wong, J., Gruber, E., Maher, B., Waltham, M., Sabouri-Thompson, Z., Jong, I., et al. (2022) Integrated Clinical and Genomic Evaluation of Guadecitabine (SGI-110) in Peripheral T-Cell Lymphoma. Leukemia, 36, 1654-1665. https://doi.org/10.1038/s41375-022-01571-8
|