DNA甲基化在外周T细胞淋巴瘤中的研究进展
Advances in DNA Methylation in Peripheral T Cell Lymphoma
DOI: 10.12677/acm.2024.1482338, PDF, HTML, XML,   
作者: 张向慧:天水市第一人民医院血液病科,甘肃 天水
关键词: 外周T细胞淋巴瘤DNA甲基化发病机制DNMTTETIDHPeripheral T-Cell Lymphoma DNA Methylation Mechanism DNMT TET IDH
摘要: 外周T细胞淋巴瘤是一组罕见的强侵袭性的非霍奇金淋巴瘤,绝大部分目前治疗效果欠佳。近些年的证据表明表观遗传失调对于PTCL的发生发展起着驱动作用,特别是DNA甲基化。已发现在PTCL中存在DNA甲基化异常以及DNA甲基化修饰酶DNMT、TET、IDH的频繁突变,且与患者不良预后相关。随着对PTCL基因组学认识的深入,DNA甲基化作为表观遗传学的一个重要组成部分,有望为治疗PTCL提供新方向。
Abstract: Peripheral T-cell lymphoma (PTCL) is a group of rare, aggressive non-Hodgkin’s lymphomas, and most of them have poor treatment outcomes. Recent evidence suggests that epigenetic dysregulation plays a driving role in the occurrence and development of PTCL, especially DNA methylation. Abnormal DNA methylation and frequent mutations of DNA methylation modification enzyme DNMT, TET, and IDH have been found in PTCL, which are associated with poor prognosis of patients. With the deepening understanding of the genomics of PTCL, DNA methylation, as an important component of epigenetics, is expected to provide new directions for the treatment of PTCL.
文章引用:张向慧. DNA甲基化在外周T细胞淋巴瘤中的研究进展[J]. 临床医学进展, 2024, 14(8): 1181-1187. https://doi.org/10.12677/acm.2024.1482338

1. 引言

外周T细胞淋巴瘤(PTCL)是一类起源于胸腺后T细胞或成熟自然杀伤(NK)细胞的恶性增殖性疾病,具有高度异质性,是非霍奇金淋巴瘤的类型之一[1]。PTCL的发病率在不同地域有所差异,西方国家中约占所有非霍奇金淋巴瘤(NHL)的10%~15%,而在亚洲,这一比例则上升到20%~30% [1]。根据世界卫生组织(WHO)的淋巴瘤分类,目前已有约30种不同类型的PTCL亚型被描述,包括外周T细胞淋巴瘤–非特指型(PTCL-NOS)、血管免疫母细胞T细胞淋巴瘤(AITL)、间变大细胞淋巴瘤、NK/T细胞淋巴瘤[2]。这些亚型在病理学特性、临床表现、治疗反应以及预后方面均存在显著的差异[3]。大部分PTCL亚型侵袭性强,且患者病情进展通常较为迅速,对一线化疗方案反应不佳,预后较差,复发率高[4] [5]。关于PTCL的发病机制,目前的研究尚未完全阐明。已知的因素包括T细胞受体(TCR)通路的失调、病毒和慢性炎症的驱动作用,以及染色体异常(如易位、插入、缺失)和基因突变等[6] [7]。近年来,经过广泛而深入的研究,已证实DNA异常甲基化在PTCL的发生与进展也起着至关重要的作用[8]-[11]。启动子CpG岛(哺乳动物基因组中的一些含未甲基化CG碱基对的小片段)异常甲基化通常造成肿瘤相关抑制基因的沉默,对淋巴瘤的发生有促进作用[8]-[11]。多项研究指出,在PTCL中DNA甲基化相关修饰酶,如DNA甲基转移酶家族(DNMTs)、十–十一转位酶家族(TETs)和异柠檬酸脱氢酶(IDHs)等频繁突变导致PTCL相关DNA异常甲基化[10] [12] [13]。这些发现不仅为PTCL的发病机制提供了新的见解,同时也为未来的诊断和治疗靶点的开发提供了新思路。文章就DNA甲基化在PTCL发病机制中的研究进展进行综述。

2. DNA甲基化

DNA甲基化是指DNA序列上特定的碱基通过共价键结合的形式获得一个甲基基团的过程[14]。这种甲基化修饰能够在不改变DNA序列的前提下,改变DNA片段的活性,从而改变遗传表现,进而在细胞发育、分化以及疾病发生等多个生物过程中发挥着至关重要的作用,是最为常见的表观遗传修饰方式之一[14]。这一修饰过程主要由DNMTs催化完成,并受到包括TETs和IDHs在内的多种酶类的严格调控[14] [15]。DNMTs是催化DNA甲基化的主要酶类,它们通过识别特定的DNA序列并将甲基基团转移到特定的碱基上,从而实现DNA的甲基化修饰[14]。DNMTs家族包括DNMT1、DNMT3A和DNMT3B等多个成员,它们在细胞中的分布和功能有所不同,但共同维持着基因组的甲基化状态[14]。同时,DNA甲基化的动态平衡还受到多种酶类的调控,其中TETs和IDHs尤为关键[15]。TETs能够催化5-甲基胞嘧啶(5mC)氧化为5-羟甲基胞嘧啶(5hmC)、5-甲酰胞嘧啶(5fC)和5-羧基胞嘧啶(5caC),从而参与DNA去甲基化过程[15]。而IDHs则通过一系列的催化反应,为TETs提供必要的辅因子,从而间接参与DNA甲基化的调控[15]

在近年来的研究已经发现恶性肿瘤的发展与DNA甲基化的调节紊乱密切相关[15]。通过全基因组测序等方法,已经证实这些肿瘤细胞中存在DNA甲基化异常现象,其DNA甲基化修饰酶基因频繁突变,且与不良预后密切相关。此外,多项研究及临床实践证明使用DNA甲基化调节剂具有明显的抗肿瘤作用[10] [11] [16] [17]。大量研究证实DNA异常甲基化引起癌变至少有两条途径:第一,CPG岛的高甲基化导致肿瘤抑制基因的沉默;第二,全基因组的低甲基化导致基因组不稳定[18]。因此,正确调节DNA的甲基化与去甲基化是至关重要的,错误的DNA甲基化修饰可能导致基因表达异常,若异常的基因恰巧为原癌基因或抑癌基因时,这可能就为肿瘤的发生创造了条件[19]

3. PTCL与DNA甲基化

3.1. PTCL中的DNA甲基化异常过程

3.1.1. TET突变

TET家族包含三个成员,分别是TET1、TET2和TET3,是目前发现的调节淋巴瘤DNA去甲基化过程中最重要的酶[20] [21]。TET家族基因在多种人类癌症中显示出频繁的突变或功能性失活现象,这些突变通常与DNA的异常甲基化状态紧密相关[21]。在恶性血液肿瘤中,TET家族基因的特定成员,尤其是TET2基因,经常被发现存在高频突变[22] [23]。TET2在PTCL中的突变频率显著,特别是在AITL和PTCL-NOS中表现尤为突出[10]-[13] [24] [25]。de Pádua Covas Lage, L.A等发现TET2的突变频率在PTCL患者中可高达50.8%,且与患者客观缓解率(ORR)低、无进展生存期(PFS)短以及不良临床生物学特征显著相关[26]。还有研究发现TET2突变患者比野生型TET2患者分期更晚,结外受累率更高,出现B症状的可能性更高,国际预后指数(IPI)评分也更高,这提示TET2在PTCL中的突变具有潜在的预后价值[27]。有研究在TET2基因敲除的小鼠模型中观察到具有滤泡辅助性T细胞(Tfh)样特征的T细胞淋巴瘤的发展[28]。通过对淋巴瘤细胞的DNA甲基化和羟甲基化分析,研究人员发现某些选定基因的表观遗传状态发生了显著变化[28]。具体来说,这些基因的转录起始区域(CpG岛)出现了甲基化水平增高而羟甲基化水平降低的现象[28]。进一步的分析意外地发现,Bcl6基因的一个内含子沉默区段(Bcl6 int1-S)的甲基化水平也显著上升。这一发现支持了Bcl6 int1-S甲基化胞嘧啶密度的增加可能正调节T细胞中Bcl6转录的观点[28],而先前的研究已经证实,在淋巴细胞中组成性表达Bcl6蛋白的转基因小鼠模型会发展出B细胞和T细胞淋巴瘤[29]。此外,研究表明,在TET缺陷型的T细胞淋巴瘤中,常染色质区域呈现出异常的高甲基化状态,而异染色质区域则显示低甲基化[30]。进一步的探究发现,TET基因(尤其是TET2)的缺失会导致DNA损伤水平显著上升[30]。这些发现与多项报道相一致,表明TET2突变导致的DNA异常甲基化可能是通过沉默肿瘤抑制基因而参与PTCL的发生和发展过程。然而,关于TET2突变导致的表观遗传失调的具体机制,目前学仍存在争议[30] [31]。一些研究报告指出,具有TET2突变的样本表现出高甲基化特征,而其他研究则报告了相反的结果,即低甲基化[30] [31]

3.1.2. DNMT突变

DNMT是PTCL中常见的突变基因[12] [13] [24] [32] [33]。DNMT1主要维持细胞中预先存在的DNA甲基化,而DNMT3A和DNMT3B则催化DNA的从头甲基化[34]。Peters SL等通过对PTCL小鼠模型中的DNMT1进行了基因失活发现,DNMT1的缺失会通过抑制正常造血和损害肿瘤细胞增殖来延迟淋巴瘤的发生[35]。Haney SL等则在Dnmt3a缺陷小鼠模型中观察到了发展为PTCL的趋势。为了深入研究其潜在的分子机制,研究团队对Dnmt3a缺陷的PTCL细胞进行了全基因组甲基化测序。测序结果显示,启动子区域的DNA甲基化水平普遍下降。进一步分析发现,在呈现低甲基化状态的基因中,有特定基因的表达在肿瘤组织中显著上调。这些发现表明,Dnmt3a突变可能通过干扰DNA甲基化过程,激活某些原癌基因,进而参与并促进PTCL的发生与发展[36] [37]。不过,目前对于Dnmt3a突变导致的表观遗传失调像TET一样仍存在争议[31]。尽管如此,对于Dnmt3a突变引起DNA甲基化异常使得基因表达异常从而参与PTCL的发生发展的观点却是一致的[24]

3.1.3. IDH突变

IDH在三羧酸循环中发挥着核心酶的作用[38]。IDH1和IDH2的功能是将异柠檬酸转化为α-酮戊二酸(α-KG)的过程中,同时生成还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)和二氧化碳(CO2) [39]。在这一转化过程中,产生的α-KG同时也是TET和JmjC-类赖氨酸去甲基化酶的重要辅酶因子,通常被称为2OG (2-氧代戊二酸) [39]。然而,IDH基因的致癌性突变会产生异常的蛋白,这些突变型IDH具有新的酶活性,即它们会将α-KG进一步转化为R-2-羟基戊二酸(R-2HG) [40]。这一异常的转化过程不仅消耗了原本应作为TET酶和JmjC去甲基化酶辅酶因子的α-KG,同时还产生了一种被认为与癌症相关的代谢物R-2HG。R-2HG可以作为一种竞争性抑制剂,抑制一系列依赖于铁和2OG的双加氧酶[41]。已有多项研究证实,R-2HG可以抑制TET酶和Jumonji家族组蛋白去甲基化酶的活性,这种抑制会导致DNA和组蛋白的表观遗传修饰发生改变,从而可能促进肿瘤的发生和发展[42] [43]

据报道,在AITL中,IDH2突变表现出显著的高频率,尤其是IDH2的R172位点突变[44] [45]。这种IDH2R172突变会导致细胞内累积大量的异常代谢产物R-2HG。高水平的R-2HG会进一步干扰细胞内正常的代谢过程,特别是抑制TET酶家族的功能。如前所述,当TET酶的活性受到抑制,DNA甲基化状态异常增高。这种DNA高甲基化状态与肿瘤的发生发展密切相关,被认为是IDH突变导致AITL等PTCL发生发展的一种潜在机制[39] [46]。IDH2突变患者对CEOP (环磷酰胺、表柔比星、长春新碱、强的松)/IVE (异环磷酰胺、表柔比星、依托泊苷)/GDP (吉西他滨、顺铂、地塞米松)方案的反应较差,ORR为0%。此外,IDH2突变也表明预后较差,其PFS和总生存期(OS)低于未发生IDH2突变的患者[47]

3.2. 基于DNA甲基化的治疗靶点

近年来,各项研究已开始尝试利用DNA甲基化异常位点研究其靶向治疗PTCL的可能。DNMT抑制剂主要有地西他滨、阿扎胞苷等[48]。阿扎胞苷作为胞苷的类似物,可替代DNA和RNA中的核苷,与DNMT共价结合抑制DNA甲基化[48]。在PTCL的临床试验中,口服阿扎胞苷治疗AITL、阿扎胞苷联合CHOP治疗初治PTCL、阿扎胞苷联合voriostat治疗NK/T细胞淋巴瘤等方案显示出令人满意的疗效[11] [17]。有研究发现TET2突变的AITL患者经阿扎胞苷治疗后ORR达到75% [49]。地西他滨是一种脱氧核糖核苷,可并入DNA并占据DNMT作用位点诱导DNA低甲基化[50]。地西他滨类似物guadecitabine (SGI-110)治疗复发难治PTCL患者的临床试验也显示出良好的治疗效果,在20例复发难治PTCL患者中,ORR为40%,其中10%为完全缓解[51]。而地西他滨联合CHOP治疗初治PTCL、地西他滨联合信迪利单抗(sintilimab)治疗NK/T细胞淋巴瘤的研究也在进行中[11]

4. 总结与展望

结合前文所述,DNA甲基化的调节紊乱会参与众多肿瘤的发生发展,已在PTCL中发现DNA甲基化异常及修饰酶DNMT、TET、IDH基因的频繁突变且与不良预后相关,因此,通过进一步探索DNA甲基化异常在PTCL发生、发展中的作用机制,可以为开发新的治疗靶点和策略提供理论基础。

参考文献

[1] Zhang, P. and Zhang, M. (2020) Epigenetic Alterations and Advancement of Treatment in Peripheral T-Cell Lymphoma. Clinical Epigenetics, 12, Article No. 169.
https://doi.org/10.1186/s13148-020-00962-x
[2] Swerdlow, S.H., Campo, E., Pileri, S.A., Harris, N.L., Stein, H., Siebert, R., et al. (2016) The 2016 Revision of the World Health Organization Classification of Lymphoid Neoplasms. Blood, 127, 2375-2390.
https://doi.org/10.1182/blood-2016-01-643569
[3] Luminari, S. and Skrypets, T. (2021) What’s New in Peripheral T‐cell Lymphomas. Hematological Oncology, 39, 52-60.
https://doi.org/10.1002/hon.2846
[4] Zain, J.M. (2019) Aggressive T‐cell Lymphomas: 2019 Updates on Diagnosis, Risk Stratification, and Management. American Journal of Hematology, 94, 929-946.
https://doi.org/10.1002/ajh.25513
[5] Sibon, D. (2022) Peripheral T-Cell Lymphomas: Therapeutic Approaches. Cancers, 14, Article 2332.
https://doi.org/10.3390/cancers14092332
[6] Heavican, T.B., Bouska, A., Yu, J., et al. (2019) Genetic Drivers of Oncogenic Pathways in molecular Subgroups of Peripheral T-Cell Lymphoma. Blood, 133, 1664-1676.
https://doi.org/10.1182/blood-2018-09-872549
[7] Xie, C., Li, X., Zeng, H. and Qian, W. (2020) Molecular Insights into Pathogenesis and Targeted Therapy of Peripheral T Cell Lymphoma. Experimental Hematology & Oncology, 9, Article No. 30.
https://doi.org/10.1186/s40164-020-00188-w
[8] Lemonnier, F., Gaulard, P. and de Leval, L. (2018) New Insights in the Pathogenesis of T-Cell Lymphomas. Current Opinion in Oncology, 30, 277-284.
https://doi.org/10.1097/cco.0000000000000474
[9] Willemsen, M. and Schouten, H.C. (2017) Inappropriate Costimulation and Aberrant DNA Methylation as Therapeutic Targets in Angioimmunoblastic T-Cell Lymphoma. Biomarker Research, 5, Article No. 6.
https://doi.org/10.1186/s40364-017-0085-8
[10] Epstein-Peterson, Z.D. and Horwitz, S.M. (2021) Molecularly Targeted Therapies for Relapsed and Refractory Peripheral T-Cell Lymphomas. Seminars in Hematology, 58, 78-84.
https://doi.org/10.1053/j.seminhematol.2021.02.004
[11] Liu, M.K., Sun, X.J., Gao, X.D., et al. (2021) Methylation Alterations and Advance of Treatment in Lymphoma. Frontiers in Bioscience, 26, 602-613.
https://doi.org/10.52586/4970
[12] Iqbal, J., Amador, C., McKeithan, T.W. and Chan, W.C. (2018) Molecular and Genomic Landscape of Peripheral T-Cell Lymphoma. Cancer Treatment and Research, 176, 31-68.
https://doi.org/10.1007/978-3-319-99716-2_2
[13] Palomero, T., Couronné, L., Khiabanian, H., Kim, M., Ambesi-Impiombato, A., Perez-Garcia, A., et al. (2014) Recurrent Mutations in Epigenetic Regulators, RHOA and FYN Kinase in Peripheral T Cell Lymphomas. Nature Genetics, 46, 166-170.
https://doi.org/10.1038/ng.2873
[14] Dan, J. and Chen, T. (2022) Genetic Studies on Mammalian DNA Methyltransferases. In: Jeltsch, A. and Jurkowska, R.Z., Eds., DNA MethyltransferasesRole and Function, Springer, 111-136.
https://doi.org/10.1007/978-3-031-11454-0_5
[15] Meng, W., Wang, Z., Zhang, Y., Hou, Y. and Xue, J. (2024) Epigenetic Marks or Not? The Discovery of Novel DNA Modifications in Eukaryotes. Journal of Biological Chemistry, 300, Article ID: 106791.
https://doi.org/10.1016/j.jbc.2024.106791
[16] Ma, H., O’Connor, O.A. and Marchi, E. (2019) New Directions in Treating Peripheral T-Cell Lymphomas (PTCL): Leveraging Epigenetic Modifiers Alone and in Combination. Expert Review of Hematology, 12, 137-146.
https://doi.org/10.1080/17474086.2019.1583102
[17] Ruan, J., Moskowitz, A., Mehta-Shah, N., et al. (2023) Multicenter Phase 2 Study of Oral Azacitidine (CC-486) plus CHOP as Initial Treatment for PTCL. Blood, 141, 2194-2205.
[18] Baylin, S.B. and Jones, P.A. (2011) A Decade of Exploring the Cancer Epigenome—Biological and Translational Implications. Nature Reviews Cancer, 11, 726-734.
https://doi.org/10.1038/nrc3130
[19] Kulis, M. and Esteller, M. (2010) DNA Methylation and Cancer. Advances in Genetics, 70, 27-56.
https://doi.org/10.1016/b978-0-12-380866-0.60002-2
[20] Ko, M., An, J., Pastor, W.A., Koralov, S.B., Rajewsky, K. and Rao, A. (2014) TET Proteins and 5‐methylcytosine Oxidation in Hematological Cancers. Immunological Reviews, 263, 6-21.
https://doi.org/10.1111/imr.12239
[21] Kim, H., Jung, I., Lee, C.H., An, J. and Ko, M. (2023) Development of Novel Epigenetic Anti-Cancer Therapy Targeting TET Proteins. International Journal of Molecular Sciences, 24, Article ID: 16375.
https://doi.org/10.3390/ijms242216375
[22] Weissmann, S., Alpermann, T., Grossmann, V., Kowarsch, A., Nadarajah, N., Eder, C., et al. (2011) Landscape of TET2 Mutations in Acute Myeloid Leukemia. Leukemia, 26, 934-942.
https://doi.org/10.1038/leu.2011.326
[23] Chiba, S. (2016) Dysregulation of TET2 in Hematologic Malignancies. International Journal of Hematology, 105, 17-22.
https://doi.org/10.1007/s12185-016-2122-z
[24] Scourzic, L., Couronné, L., Pedersen, M.T., Della Valle, V., Diop, M., Mylonas, E., et al. (2016) DNMT3AR882H Mutant and Tet2 Inactivation Cooperate in the Deregulation of DNA Methylation Control to Induce Lymphoid Malignancies in Mice. Leukemia, 30, 1388-1398.
https://doi.org/10.1038/leu.2016.29
[25] Yao, W., Wu, F., Zhang, W., Chuang, S., Thompson, J.S., Chen, Z., et al. (2020) Angioimmunoblastic T‐Cell Lymphoma Contains Multiple Clonal T‐Cell Populations Derived from a Common TET2 Mutant Progenitor Cell. The Journal of Pathology, 250, 346-357.
https://doi.org/10.1002/path.5376
[26] de Pádua Covas Lage, L.A., Barreto, G.C., Culler, H.F., Cavalcante, J.B., de Oliveira Alves, L.B., Nardinelli, L., et al. (2022) TET-2 Mutations Predict Poor Outcomes and Are Associated with Unfavorable Clinical-Biological Features in PTCL, Not Otherwise Specified and Angioimmunoblastic T-Cell Lymphoma in Brazilian Patients. Cancer Biomarkers, 35, 179-191.
https://doi.org/10.3233/cbm-220013
[27] Lemonnier, F., Couronné, L., Parrens, M., Jaïs, J., Travert, M., Lamant, L., et al. (2012) Recurrent TET2 Mutations in Peripheral T-Cell Lymphomas Correlate with TFH-Like Features and Adverse Clinical Parameters. Blood, 120, 1466-1469.
https://doi.org/10.1182/blood-2012-02-408542
[28] Muto, H., Sakata-Yanagimoto, M., Nagae, G., Shiozawa, Y., Miyake, Y., Yoshida, K., et al. (2014) Reduced TET2 Function Leads to T-Cell Lymphoma with Follicular Helper T-Cell-Like Features in Mice. Blood Cancer Journal, 4, e264.
https://doi.org/10.1038/bcj.2014.83
[29] Baron, B.W., Anastasi, J., Montag, A., Huo, D., Baron, R.M., Karrison, T., et al. (2004) The Human BCL6 Transgene Promotes the Development of Lymphomas in the Mouse. Proceedings of the National Academy of Sciences of the United States of America, 101, 14198-14203.
https://doi.org/10.1073/pnas.0406138101
[30] López-Moyado, I.F., Tsagaratou, A., Yuita, H., Seo, H., Delatte, B., Heinz, S., et al. (2019) Paradoxical Association of TET Loss of Function with Genome-Wide DNA Hypomethylation. Proceedings of the National Academy of Sciences of the United States of America, 116, 16933-16942.
https://doi.org/10.1073/pnas.1903059116
[31] Sakata-Yanagimoto, M. (2015) Multistep Tumorigenesis in Peripheral T Cell Lymphoma. International Journal of Hematology, 102, 523-527.
https://doi.org/10.1007/s12185-015-1738-8
[32] Odejide, O., Weigert, O., Lane, A.A., Toscano, D., Lunning, M.A., Kopp, N., et al. (2014) A Targeted Mutational Landscape of Angioimmunoblastic T-Cell Lymphoma. Blood, 123, 1293-1296.
https://doi.org/10.1182/blood-2013-10-531509
[33] Yang, L., Rau, R. and Goodell, M.A. (2015) DNMT3A in Haematological Malignancies. Nature Reviews Cancer, 15, 152-165.
https://doi.org/10.1038/nrc3895
[34] Robertson, K.D. (2001) DNA Methylation, Methyltransferases, and Cancer. Oncogene, 20, 3139-3155.
https://doi.org/10.1038/sj.onc.1204341
[35] Peters, S.L., Hlady, R.A., Opavska, J., Klinkebiel, D., Novakova, S., Smith, L.M., et al. (2013) Essential Role for Dnmt1 in the Prevention and Maintenance of MYC-Induced T-Cell Lymphomas. Molecular and Cellular Biology, 33, 4321-4333.
https://doi.org/10.1128/mcb.00776-13
[36] Haney, S.L., Upchurch, G.M., Opavska, J., Klinkebiel, D., Hlady, R.A., Roy, S., et al. (2016) Dnmt3a Is a Haploinsufficient Tumor Suppressor in CD8+ Peripheral T Cell Lymphoma. PLOS Genetics, 12, e1006334.
https://doi.org/10.1371/journal.pgen.1006334
[37] Haney, S.L., Upchurch, G.M., Opavska, J., Klinkebiel, D., Appiah, A.K., Smith, L.M., et al. (2016) Loss of Dnmt3a Induces CLL and PTCL with Distinct Methylomes and Transcriptomes in Mice. Scientific Reports, 6, Article No. 34222.
https://doi.org/10.1038/srep34222
[38] Tian, W., Zhang, W., Wang, Y., Jin, R., Wang, Y., Guo, H., et al. (2022) Recent Advances of IDH1 Mutant Inhibitor in Cancer Therapy. Frontiers in Pharmacology, 13, Article 982424.
https://doi.org/10.3389/fphar.2022.982424
[39] Dang, L., White, D.W., Gross, S., Bennett, B.D., Bittinger, M.A., Driggers, E.M., et al. (2009) Cancer-Associated IDH1 Mutations Produce 2-Hydroxyglutarate. Nature, 462, 739-744.
https://doi.org/10.1038/nature08617
[40] Pirozzi, C.J. and Yan, H. (2021) The Implications of IDH Mutations for Cancer Development and Therapy. Nature Reviews Clinical Oncology, 18, 645-661.
https://doi.org/10.1038/s41571-021-00521-0
[41] Chowdhury, R., Yeoh, K.K., Tian, Y., Hillringhaus, L., Bagg, E.A., Rose, N.R., et al. (2011) The Oncometabolite 2‐Hydroxyglutarate Inhibits Histone Lysine Demethylases. EMBO Reports, 12, 463-469.
https://doi.org/10.1038/embor.2011.43
[42] Figueroa, M.E., Abdel-Wahab, O., Lu, C., Ward, P.S., Patel, J., Shih, A., et al. (2010) Leukemic IDH1 and IDH2 Mutations Result in a Hypermethylation Phenotype, Disrupt TET2 Function, and Impair Hematopoietic Differentiation. Cancer Cell, 18, 553-567.
https://doi.org/10.1016/j.ccr.2010.11.015
[43] Lu, C., Ward, P.S., Kapoor, G.S., Rohle, D., Turcan, S., Abdel-Wahab, O., et al. (2012) IDH Mutation Impairs Histone Demethylation and Results in a Block to Cell Differentiation. Nature, 483, 474-478.
https://doi.org/10.1038/nature10860
[44] Cairns, R.A., Iqbal, J., Lemonnier, F., Kucuk, C., de Leval, L., Jais, J., et al. (2012) IDH2 Mutations Are Frequent in Angioimmunoblastic T-Cell Lymphoma. Blood, 119, 1901-1903.
https://doi.org/10.1182/blood-2011-11-391748
[45] Wang, C., McKeithan, T.W., Gong, Q., Zhang, W., Bouska, A., Rosenwald, A., et al. (2015) IDH2 R172 Mutations Define a Unique Subgroup of Patients with Angioimmunoblastic T-Cell Lymphoma. Blood, 126, 1741-1752.
https://doi.org/10.1182/blood-2015-05-644591
[46] Lemonnier, F., Cairns, R.A., Inoue, S., Li, W.Y., Dupuy, A., Broutin, S., et al. (2016) The IDH2 R172K Mutation Associated with Angioimmunoblastic T-Cell Lymphoma Produces 2HG in T Cells and Impacts Lymphoid Development. Proceedings of the National Academy of Sciences of the United States of America, 113, 15084-15089.
https://doi.org/10.1073/pnas.1617929114
[47] Cai, M., Cheng, S., Wang, X., Hu, J., Song, Y., Huang, Y., et al. (2020) CEOP/IVE/GDP Alternating Regimen Compared with CEOP as the First-Line Therapy for Newly Diagnosed Patients with Peripheral T Cell Lymphoma: Results from a Phase 2, Multicenter, Randomized, Controlled Clinical Trial. Genome Medicine, 12, Article No. 41.
https://doi.org/10.1186/s13073-020-00739-0
[48] Cogle, C.R., Scott, B.L., Boyd, T. and Garcia-Manero, G. (2015) Oral Azacitidine (CC-486) for the Treatment of Myelodysplastic Syndromes and Acute Myeloid Leukemia. The Oncologist, 20, 1404-1412.
https://doi.org/10.1634/theoncologist.2015-0165
[49] Lee, S., Urman, A. and Desai, P. (2019) Emerging Drug Profile: Krebs Cycle and Cancer: IDH Mutations and Therapeutic Implications. Leukemia & Lymphoma, 60, 2635-2645.
https://doi.org/10.1080/10428194.2019.1602260
[50] Liu, Y., Wang, C., Li, X., Dong, L., Yang, Q., Chen, M., et al. (2021) Improved Clinical Outcome in a Randomized Phase II Study of Anti-Pd-1 Camrelizumab Plus Decitabine in Relapsed/refractory Hodgkin Lymphoma. Journal for ImmunoTherapy of Cancer, 9, e002347.
https://doi.org/10.1136/jitc-2021-002347
[51] Wong, J., Gruber, E., Maher, B., Waltham, M., Sabouri-Thompson, Z., Jong, I., et al. (2022) Integrated Clinical and Genomic Evaluation of Guadecitabine (SGI-110) in Peripheral T-Cell Lymphoma. Leukemia, 36, 1654-1665.
https://doi.org/10.1038/s41375-022-01571-8