BMP9对动脉性肺动脉高压肺血管内皮细胞影响的研究进展
Research Progress on the Effect of BMP9 on Pulmonary Vascular Endothelial Cells in Pulmonary Arterial Hypertension
摘要: 动脉性肺动脉高压(Pulmonary Arterial Hypertension, PAH),即第1大类肺动脉高压,是一种以高发病率和死亡率为特点的血管疾病,其主要表现是肺血管重塑和肺血管阻力增加,最终导致右心室衰竭甚至死亡。骨形态发生蛋白9 (Bone Morphogenetic Protein 9, BMP9)属于转化生长因子β (Transforming Growth Factor-β, TGF-β)家族,主要由肝脏星状细胞产生,随血液循环到肺血管内皮细胞上与受体结合,在PAH中发挥相应的生物学效应,但是部分研究结果是相互矛盾的。本文对PAH中BMP9的信号通路及BMP9对肺血管内皮细胞作用的研究和进展进行综述。
Abstract: Arterial pulmonary hypertension (PAH), also known as the group 1 pulmonary hypertension, is a vascular disease characterized by high morbidity and mortality, and its main manifestations are pulmonary vascular remodeling and increased pulmonary vascular resistance, which eventually leads to right ventricular failure and even death. Bone Morphogenetic Protein 9 (BMP9) belongs to the Transforming Growth Factor-β (TGF-β) family, which is mainly produced by hepatic stellate cells, which circulates to pulmonary vascular endothelial cells with blood and bind to their receptors to exert corresponding biological effects in PAH, but some research results are contradictory. This article briefly reviews the BMP9 signaling pathway in PAH and the research and progress of BMP9 on pulmonary vascular endothelial cells.
文章引用:高婷, 王丽红. BMP9对动脉性肺动脉高压肺血管内皮细胞影响的研究进展[J]. 临床医学进展, 2024, 14(8): 1195-1200. https://doi.org/10.12677/acm.2024.1482340

1. 引言

动脉性肺动脉高压(Pulmonary Arterial Hypertension, PAH)以进行性肺动脉压力和肺血管阻力升高为特点,属于第1大类的肺动脉高压(Pulmonary Hypertension, PH),包括特发性PAH、遗传性PAH、药物和毒物相关PAH、疾病相关PAH (结缔组织疾病、人类免疫缺陷病毒感染、门脉高压、先天性心脏病和血吸虫病)、长期对钙通道阻滞剂有效的PAH、具有明显肺静脉和(或)肺毛细血管受累的PAH [1]。PAH在临床上的具体定义为平均肺动脉压(mean pulmonary arterial pressure, mPAP) > 20 mm Hg (1 mm Hg = 0.1333 kPa),左房压正常,肺血管阻力 ≥ 3 Wood单位[2]。据统计PAH患病率约为25/100万,每年每100万人口发病约为5例,尽管目前在治疗PAH上取得了进步,但是PAH的1年生存率仅为86.3%,5年生存率仅为61.2% [2]-[4]。因此,研究肺动脉高压的发病机制,寻找新的干预靶点,对于治疗肺动脉高压,提高生存率至关重要。越来越多的证据表明骨形态发生蛋白(Bone Morphogenetic Proteins, BMPs)在个体的胚胎发育、组织稳态、软骨及骨形成、癌症等过程中均发挥作用[5],骨形态发生蛋白9 (Bone Morphogenetic Protein 9, BMP9)是BMPs的成员之一,被认为是一种造血、造肝、成骨和成软骨因子,葡萄糖代谢的调节因子,以及中枢神经系统中胆碱能神经元的分化因子[6],近期,有研究发现BMP9与PAH中肺血管内皮细胞的病理改变密切相关,但其中的一些观点是相互矛盾的,本文就BMP9在PAH发病机制中对肺血管内皮细胞的影响进行综述,为PAH的治疗提供潜在靶点。

2. BMP9的产生及信号通路

BMPs构成转化生长因子β (Transforming Growth Factor-β, TGF-β)超家族中的最大亚群[7],它最初是在骨提取物中发现的,在个体的胚胎发育、组织稳态、软骨及骨形成、癌症等许多病理生理过程中发挥作用,例如BMP能够作用于胚胎脱髓鞘形成以及GABAergic中间神经元的引导迁移,BMP与血管疾病遗传性出血性毛细血管扩张症相关,BMP也能够作为骨形成激活剂参与骨及软骨形成,靶向BMP通路可以增加细胞凋亡以及减少小鼠结直肠肿瘤的形成[5]。BMP9又名生长分化因子2 (Growth and Differentiation Factor 2, GDF2),是BMP家族中的重要成员,它主要由肝脏的非实质细胞(包括内皮细胞、Kupffer细胞及星状细胞)以自分泌和和旁分泌的方式产生,也可以由肝内胆道上皮细胞和造血干细胞产生[6] [8],并不断进入血液循环,与其受体结合,磷酸化其下游介质Smad 1/5/8 (Small mother against decapentaplegic 1/5/8)发挥相应的生物学作用,这些因子与Smad4结合并易位到细胞核中通过激活或抑制参与维持不同轴依赖性血管功能的各种靶基因的转录[9]-[11]。其中,BMP9受体主要分为I型受体和II型受体两类,而I型受体也可以分为激活素受体样激酶1 (the activin receptor-like kinase 1, ACVRL1 or ALK1)、ALK2 (ActR-1A)、ALK3 (BMPR-1A)和ALK6 (BMPR-1B) 4种,II型受体又可以分为骨形态发生蛋白II型受体(Bone Morphogenetic Protein type II Receptor, BMPRII)、ActR-IIA和ActR-IIB3种[12]。BMP9也可以激活非Smad信号如丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)、磷酸肌肽3-激酶(phosphoinositide 3-kinase, PI3K)和核因子-κB (nuclear factor kappa-B, NF-κB)发挥作用[13] [14]。BMP9的这些通路构成了复杂的信号网,调控着机体的许多过程,但是在肺疾病尤其是PAH中,对BMP9相关通路的机制和作用仍缺乏了解。

3. BMP9在PAH中的作用

BMP9属于BMPs家族,它能够在机体的多个器官中发挥作用,在肺脏中也发挥着重要作用。PH的定义是肺动脉内压力升高,当肺动脉压升高是由于肺毛细血管近端肺动脉阻力增加所致时,就会出现PAH [15]。PAH病情发展的两大病理生理是肺血管阻力增加和肺血管重塑[16]。PAH的特点是继发于内皮细胞、平滑肌细胞和成纤维细胞增殖和凋亡抵抗的毛细血管前肺动脉狭窄和闭塞,肺血管阻力增加导致肺动脉压升高,进而右心室肥厚,最终右心衰竭甚至死亡[17]。目前,针对前列环素、内皮素-1或一氧化氮途径的治疗可减缓PAH疾病进展[18],尽管人们对PAH的诊断和治疗进行了广泛的研究,但其预后并不理想。

3.1. BMP9抑制肺血管内皮细胞增殖

临床上,晚期PAH的肺部病理学特征是肺小动脉异常肌肉化、内膜增厚和纤维化,以及丛状病变,这些被认为是由内皮细胞生长失调引起的,抑制内皮细胞死亡可能是治疗严重肺动脉高压的一种新方法[19]。有研究人员通过对331例特发性PAH病例和10,508例对照病例进行了基因测序,发现BMP9突变导致肺动脉内皮细胞抗凋亡能力受损,增加PAH患病风险,且BMP9基因的重要性仅次于BMPRII [20]。研究表明内皮细胞是PAH的关键起始细胞类型,内皮细胞中BMPRII信号传导的缺失是肺动脉高压的起始因素,BMP9是防止肺动脉内皮细胞凋亡和增强单层完整性的首选配体,给予BMP9可以逆转BMPRII突变引起的PAH [21]。研究者提出重组BMP9的治疗性给药能够增强PAH中内皮细胞BMP信号传导的机制,即增强BMPRII基因表达,进一步增强BMPRII信号传导,这项研究证明重组BMP9选择性地靶向内皮细胞,而不是肺动脉的平滑肌细胞,阻断细胞凋亡,逆转遗传和非遗传啮齿动物疾病模型中已确定的肺动脉高压[22]。有研究发现,与其他BMPs家族中的BMP2、BMP4、BMP6相比,BMP9能够选择性刺激肺血管内皮细胞中的典型BMP信号传导,其浓度不会诱导PASMC中的信号传导,也不会促进骨化,与其他BMP不同,BMP9在血清中以可测量的浓度循环,充当血管静止因子,在体内和体外阻断细胞凋亡和增强血管稳定性,而这两种途径在PAH中严重失调[21]。除此之外,BMP9还能诱导关键内皮转录因子ERG的磷酸化使其发挥调节血管稳态的作用[23]

3.2. BMP9减轻PAH炎症

BMP9保护内皮细胞免受炎症的有害影响,特别是通过减少某些白细胞趋化因子来保护内皮细胞,如C-C基序趋化因子配体2 (C-C Motif Chemokine Ligand 2, CCL2) [24]。CCL2促进单核细胞/巨噬细胞募集和增加内皮通透性,BMP9被发现能够抑制人肺动脉内皮细胞CCL2的表达和释放,也能通过诱导内皮细胞中白细胞介素-6 (Interleukin-6, IL-6)、白细胞介素-8 (Interleukin-8, IL-8)和E-选择素(E-selectin)的表达影响它们与单核细胞和中性粒细胞的相互作用[25]。BMP9还具有其他功能,例如能够通过促进血管收缩来维持肺血管张力、降低血管通透性、减弱肺内皮细胞的凋亡[24] [26]

3.3. BMP9与内皮间充质转化的关系

内皮间充质转化过程(Endothelial-to-Mesenchymal Transition, EndMT)是一个重要的发育过程,通过该过程,成熟的内皮细胞失去其特异性蛋白表达、形态和极性以获得间充质特征,并作为PAH中高度增殖的平滑肌样间充质细胞的可能来源[27]。有研究证明通过抗IL-6抗体来靶向诱导BMP9的EndMT过程,从而使PAH肺中的自分泌IL-6水平正常化,防止内皮细胞向间充质细胞转化,说明PAH肺血管内皮细胞的EndMT诱导及伴随的内皮功能丧失为IL-6所介导并依赖于IL6介导的持续促炎、促缺氧和促凋亡信号,同时BMP9异常导致的PAH可通过抑制IL-6的保持正常肺内皮细胞表型[28]

3.4. BMP9信号通路在PAH中的机制

研究发现BMPRII与ALK1形成信号复合物,并在微血管内皮细胞中特异性响应BMP9和BMP10发出的信号,其中BMP10在缺氧诱导的小鼠心脏重塑中发挥作用[19]。虽然BMPRII在全身的各种组织中表达,但是多项研究表明肺血管内皮细胞是受PAH中BMPRII缺失影响最严重的细胞类型,具有BMPRII突变的PAH患者的内皮细胞表现出增殖增强、葡萄糖代谢改变及对细胞凋亡的易感性增加[22]。目前,在PAH患者中发现的除BMPRII以外的7个突变基因中,已经有6个与内皮ALK1/BMPRII通路有关。研究报道在内皮细胞中BMPRII的条件性缺失能够在一定比例的小鼠中诱导PAH,并且挽救内皮细胞中BMPRII的表达可以逆转实验性肺动脉高压[29] [30]。Upton等人发现BMP9可以诱导BMPRII和内皮糖蛋白(endoglin)的蛋白表达,并且ALK1表达降低会抑制BMP9介导的endoglin和BMPR-II转录,得出BMP9可以维持肺血管系统中BMPRII和endoglin表达的结论[31]。对组成型活性ALK1受体的研究表明,该受体通过抑制内皮细胞增殖和迁移介导血管生成的成熟阶段,BMP9也可以通过激活ALK1抑制内皮细胞迁移和增殖[19] [32]。BMP9在内皮细胞中通过ALK1诱导E-selectin表达是一个途径,选择素是介导细胞间接触和白细胞募集的内皮粘附分子,根据细胞环境,能够促进或抑制血管生成[19]

然而,目前获得的结果尚未有可能确定BMP9/BMPRII/ALK1/endogline导致PAH的确切机制,并且一些数据是自相矛盾的。尽管有研究表明对肺动脉高压值确定的小鼠或大鼠施用重组BMP9可以减轻诱发实验性PAH疾病的严重程度[21],但其他研究发现,BMP9基因的缺失或抑制具有部分有益作用[33] [34]。在细胞水平上,已经有学者发现肺血管内皮细胞表面BMPRII的丰度起到分子开关的作用,至少可以部分解释BMP9的抗增殖或促增殖作用。在存在低水平膜BMPRII的情况下,BMP9不再能够抑制肺血管内皮细胞的增殖,甚至会导致肺血管内皮细胞增殖增加[22]。一项研究使用BMP9敲除小鼠、BMP9中和抗体和ALK1-Fc配体陷阱证明在许多相同的啮齿动物PAH模型中抑制内源性BMP9可以减轻疾病严重程度[33]。这些研究表明BMP9在PAH发病机制或治疗中发挥作用,也影响PAH肺血管内皮细胞增殖,但是这些作用存在一些矛盾,对内皮细胞的影响也存在不确定性。有研究者将这些争议解释为BMP9在PAH的不同阶段发挥不同的作用,在初始阶段发挥有益作用,在疾病的晚期发挥更复杂的作用[35]

4. 小结

随着PAH患病率逐渐提高,BMP9在肺动脉高压领域中的研究还有待进一步深入,一部分研究证实了在PAH中BMP9是一种能够减轻炎症,抑制肺血管内皮细胞增殖,阻断内皮细胞凋亡,进而逆转PAH的血管稳定因子;另一部分研究表明,抑制BMP9能够抵抗内皮增殖,减轻PAH严重程度,起到保护作用。关于BMP9影响PAH肺血管内皮细胞的部分研究结果是相互矛盾的,所以,我们需要进一步研究,深入探索矛盾原因,找到以BMP9为基础的治疗PAH的研究方向,寻找针对PAH的有效干预手段,为PAH人群的健康做出贡献。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] 中华医学会呼吸病学分会肺栓塞与肺血管病学组, 中国医师协会呼吸医师分会肺栓塞与肺血管病工作委员会, 全国肺栓塞与肺血管病防治协作组, 等. 中国肺动脉高压诊断与治疗指南(2021版) [J]. 中华医学杂志, 2021, 101(1): 11-51.
[2] Galiè, N., Humbert, M., Vachiery, J., Gibbs, S., Lang, I., Torbicki, A., et al. (2015) 2015 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. European Heart Journal, 37, 67-119.
https://doi.org/10.1093/eurheartj/ehv317
[3] Maron, B.A., Abman, S.H., Elliott, C.G., Frantz, R.P., Hopper, R.K., Horn, E.M., et al. (2021) Pulmonary Arterial Hypertension: Diagnosis, Treatment, and Novel Advances. American Journal of Respiratory and Critical Care Medicine, 203, 1472-1487.
https://doi.org/10.1164/rccm.202012-4317so
[4] Farber, H.W., Miller, D.P., Poms, A.D., Badesch, D.B., Frost, A.E., Rouzic, E.M., et al. (2015) Five-Year Outcomes of Patients Enrolled in the REVEAL Registry. Chest, 148, 1043-1054.
https://doi.org/10.1378/chest.15-0300
[5] Hiepen, C., Yadin, D., Rikeit, P., Dörpholz, G. and Knaus, P. (2016) Actions from Head to Toe: An Update on Bone/Body Morphogenetic Proteins in Health and Disease. Cytokine & Growth Factor Reviews, 27, 1-11.
https://doi.org/10.1016/j.cytogfr.2015.12.006
[6] Bidart, M., Ricard, N., Levet, S., Samson, M., Mallet, C., David, L., et al. (2011) BMP9 Is Produced by Hepatocytes and Circulates Mainly in an Active Mature Form Complexed to Its Prodomain. Cellular and Molecular Life Sciences, 69, 313-324.
https://doi.org/10.1007/s00018-011-0751-1
[7] Bragdon, B., Moseychuk, O., Saldanha, S., King, D., Julian, J. and Nohe, A. (2011) Bone Morphogenetic Proteins: A Critical Review. Cellular Signalling, 23, 609-620.
https://doi.org/10.1016/j.cellsig.2010.10.003
[8] Breitkopf-Heinlein, K., Meyer, C., König, C., Gaitantzi, H., Addante, A., Thomas, M., et al. (2017) BMP-9 Interferes with Liver Regeneration and Promotes Liver Fibrosis. Gut, 66, 939-954.
https://doi.org/10.1136/gutjnl-2016-313314
[9] David, L., Mallet, C., Keramidas, M., Lamandé, N., Gasc, J., Dupuis-Girod, S., et al. (2008) Bone Morphogenetic Protein-9 Is a Circulating Vascular Quiescence Factor. Circulation Research, 102, 914-922.
https://doi.org/10.1161/circresaha.107.165530
[10] Fong, D., Bisson, M., Laberge, G., McManus, S., Grenier, G., Faucheux, N., et al. (2013) Bone Morphogenetic Protein-9 Activates Smad and ERK Pathways and Supports Human Osteoclast Function and Survival in Vitro. Cellular Signalling, 25, 717-728.
https://doi.org/10.1016/j.cellsig.2012.12.003
[11] Li, Q., Gu, X., Weng, H., Ghafoory, S., Liu, Y., Feng, T., et al. (2013) Bone Morphogenetic Protein‐9 Induces Epithelial to Mesenchymal Transition in Hepatocellular Carcinoma Cells. Cancer Science, 104, 398-408.
https://doi.org/10.1111/cas.12093
[12] 马翠, 王华. BMP9与肝脏疾病的研究进展[J]. 中国药理学通报, 2020, 36(8): 1045-1048.
[13] Wang, J., Weng, Y., Zhang, M., Li, Y., Fan, M., Guo, Y., et al. (2016) BMP9 Inhibits the Growth and Migration of Lung Adenocarcinoma A549 Cells in a Bone Marrow Stromal Cell-Derived Microenvironment through the MAPK/ERK and NF-κB Pathways. Oncology Reports, 36, 410-418.
https://doi.org/10.3892/or.2016.4796
[14] Xu, D., Zhao, Y., Wang, J., He, J., Weng, Y. and Luo, J. (2012) Smads, p38 and ERK1/2 Are Involved in BMP9-Induced Osteogenic Differentiation of C3H10T1/2 Mesenchymal Stem Cells. BMB Reports, 45, 247-252.
https://doi.org/10.5483/bmbrep.2012.45.4.247
[15] Ruopp, N.F. and Cockrill, B.A. (2022) Diagnosis and Treatment of Pulmonary Arterial Hypertension: A Review. JAMA, 327, 1379-1391.
https://doi.org/10.1001/jama.2022.4402
[16] 吾拉尔∙阿德力, 迪丽努尔∙买买提依明, 麦尔哈巴∙雪热提. 动脉性肺动脉高压危险因素、危险分层工具[J]. 中文科技期刊数据库(全文版)医药卫生, 2023(2): 1-4.
[17] Shah, A.J., Vorla, M. and Kalra, D.K. (2022) Molecular Pathways in Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 23, Article 10001.
https://doi.org/10.3390/ijms231710001
[18] Humbert, M., McLaughlin, V., Gibbs, J.S.R., Gomberg-Maitland, M., Hoeper, M.M., Preston, I.R., et al. (2021) Sotatercept for the Treatment of Pulmonary Arterial Hypertension. New England Journal of Medicine, 384, 1204-1215.
https://doi.org/10.1056/nejmoa2024277
[19] David, L., Mallet, C., Mazerbourg, S., Feige, J. and Bailly, S. (2006) Identification of BMP9 and BMP10 as Functional Activators of the Orphan Activin Receptor-Like Kinase 1 (ALK1) in Endothelial Cells. Blood, 109, 1953-1961.
https://doi.org/10.1182/blood-2006-07-034124
[20] Wang, X., Lian, T., Jiang, X., Liu, S., Li, S., Jiang, R., et al. (2018) Germline BMP9 Mutation Causes Idiopathic Pulmonary Arterial Hypertension. European Respiratory Journal, 53, Article 1801609.
https://doi.org/10.1183/13993003.01609-2018
[21] Long, L., Ormiston, M.L., Yang, X., Southwood, M., Gräf, S., Machado, R.D., et al. (2015) Selective Enhancement of Endothelial BMPR-II with BMP9 Reverses Pulmonary Arterial Hypertension. Nature Medicine, 21, 777-785.
https://doi.org/10.1038/nm.3877
[22] Theilmann, A.L., Hawke, L.G., Hilton, L.R., Whitford, M.K.M., Cole, D.V., Mackeil, J.L., et al. (2020) Endothelial BMPR2 Loss Drives a Proliferative Response to BMP (Bone Morphogenetic Protein) 9 via Prolonged Canonical Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 2605-2618.
https://doi.org/10.1161/atvbaha.119.313357
[23] Al Tarrass, M., Belmudes, L., Koça, D., Azemard, V., Liu, H., Al Tabosh, T., et al. (2024) Large-Scale Phosphoproteomics Reveals Activation of the MAPK/GADD45β/P38 Axis and Cell Cycle Inhibition in Response to BMP9 and BMP10 Stimulation in Endothelial Cells. Cell Communication and Signaling, 22, Article No. 158.
https://doi.org/10.1186/s12964-024-01486-0
[24] Desroches‐Castan, A., Tillet, E., Bouvard, C. and Bailly, S. (2021) BMP9 and BMP10: Two Close Vascular Quiescence Partners That Stand Out. Developmental Dynamics, 251, 158-177.
https://doi.org/10.1002/dvdy.395
[25] Upton, P.D., Park, J.E.S., De Souza, P.M., Davies, R.J., Griffiths, M.J.D., Wort, S.J., et al. (2020) Endothelial Protective Factors BMP9 and BMP10 Inhibit CCL2 Release by Human Vascular Endothelial Cells. Journal of Cell Science, 133, jcs239715.
https://doi.org/10.1242/jcs.239715
[26] Ricard, N., Bailly, S., Guignabert, C. and Simons, M. (2021) The Quiescent Endothelium: Signalling Pathways Regulating Organ-Specific Endothelial Normalcy. Nature Reviews Cardiology, 18, 565-580.
https://doi.org/10.1038/s41569-021-00517-4
[27] Lamouille, S., Xu, J. and Derynck, R. (2014) Molecular Mechanisms of Epithelial-Mesenchymal Transition. Nature Reviews Molecular Cell Biology, 15, 178-196.
https://doi.org/10.1038/nrm3758
[28] Szulcek, R., Sanchez-Duffhues, G., Rol, N., Pan, X., Tsonaka, R., Dickhoff, C., et al. (2020) Exacerbated Inflammatory Signaling Underlies Aberrant Response to BMP9 in Pulmonary Arterial Hypertension Lung Endothelial Cells. Angiogenesis, 23, 699-714.
https://doi.org/10.1007/s10456-020-09741-x
[29] Reynolds, A.M., Holmes, M.D., Danilov, S.M. and Reynolds, P.N. (2011) Targeted Gene Delivery of BMPR2 Attenuates Pulmonary Hypertension. European Respiratory Journal, 39, 329-343.
https://doi.org/10.1183/09031936.00187310
[30] Spiekerkoetter, E., Tian, X., Cai, J., Hopper, R.K., Sudheendra, D., Li, C.G., et al. (2013) FK506 Activates BMPR2, Rescues Endothelial Dysfunction, and Reverses Pulmonary Hypertension. Journal of Clinical Investigation, 123, 3600-3613.
https://doi.org/10.1172/jci65592
[31] Upton, P.D., Davies, R.J., Trembath, R.C. and Morrell, N.W. (2009) Bone Morphogenetic Protein (BMP) and Activin Type II Receptors Balance BMP9 Signals Mediated by Activin Receptor-Like Kinase-1 in Human Pulmonary Artery Endothelial Cells. Journal of Biological Chemistry, 284, 15794-15804.
https://doi.org/10.1074/jbc.m109.002881
[32] Scharpfenecker, M., van Dinther, M., Liu, Z., van Bezooijen, R.L., Zhao, Q., Pukac, L., et al. (2007) BMP-9 Signals via ALK1 and Inhibits bFGF-Induced Endothelial Cell Proliferation and VEGF-Stimulated Angiogenesis. Journal of Cell Science, 120, 964-972.
https://doi.org/10.1242/jcs.002949
[33] Tu, L., Desroches-Castan, A., Mallet, C., Guyon, L., Cumont, A., Phan, C., et al. (2019) Selective BMP-9 Inhibition Partially Protects against Experimental Pulmonary Hypertension. Circulation Research, 124, 846-855.
https://doi.org/10.1161/circresaha.118.313356
[34] Bouvard, C., Tu, L., Rossi, M., Desroches-Castan, A., Berrebeh, N., Helfer, E., et al. (2021) Different Cardiovascular and Pulmonary Phenotypes for Single-and Double-Knock-Out Mice Deficient in BMP9 and BMP10. Cardiovascular Research, 118, 1805-1820.
https://doi.org/10.1093/cvr/cvab187
[35] Li, W. and Quigley, K. (2024) Bone Morphogenetic Protein Signalling in Pulmonary Arterial Hypertension: Revisiting the BMPRII Connection. Biochemical Society Transactions, 52, 1515-1528.
https://doi.org/10.1042/bst20231547