[1]
|
Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M. and Mazur, M. (2006) Free Radicals, Metals and Antioxidants in Oxidative Stress-Induced Cancer. Chemico-Biological Interactions, 160, 1-40. https://doi.org/10.1016/j.cbi.2005.12.009
|
[2]
|
Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T.D., Mazur, M. and Telser, J. (2007) Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. The International Journal of Biochemistry & Cell Biology, 39, 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
|
[3]
|
Straface, E., Marchesi, A., Gambardella, L., Metere, A., Tarissi de Jacobis, I., Viora, M., et al. (2012) Does Oxidative Stress Play a Critical Role in Cardiovascular Complications of Kawasaki Disease? Antioxidants & Redox Signaling, 17, 1441-1446. https://doi.org/10.1089/ars.2012.4660
|
[4]
|
Yoshimura, K., Tatsumi, K., Iharada, A., Tsuji, S., Tateiwa, A., Teraguchi, M., et al. (2008) Increased Nitric Oxide Production by Neutrophils in Early Stage of Kawasaki Disease. European Journal of Pediatrics, 168, 1037-1041. https://doi.org/10.1007/s00431-008-0872-1
|
[5]
|
Cai, H. and Harrison, D.G. (2000) Endothelial Dysfunction in Cardiovascular Diseases: The Role of Oxidant Stress. Circulation Research, 87, 840-844. https://doi.org/10.1161/01.res.87.10.840
|
[6]
|
Rauf, A., Khalil, A.A., Awadallah, S., Khan, S.A., Abu‐Izneid, T., Kamran, M., et al. (2023) Reactive Oxygen Species in Biological Systems: Pathways, Associated Diseases, and Potential Inhibitors—A Review. Food Science & Nutrition, 12, 675-693. https://doi.org/10.1002/fsn3.3784
|
[7]
|
Cadenas, E. (1989) Biochemistry Of Oxygen Toxicity. Annual Review of Biochemistry, 58, 79-110. https://doi.org/10.1146/annurev.bi.58.070189.000455
|
[8]
|
Kukreja, R.C. and Hess, M.L. (1992) The Oxygen Free Radical System: From Equations through Membrane-Protein Interactions to Cardiovascular Injury and Protection. Cardiovascular Research, 26, 641-655. https://doi.org/10.1093/cvr/26.7.641
|
[9]
|
Halliwell, B. and Gutteridge, J.M.C. (2015). Free Radicals in Biology and Medicine. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
|
[10]
|
Forrester, S.J., Kikuchi, D.S., Hernandes, M.S., Xu, Q. and Griendling, K.K. (2018) Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circulation Research, 122, 877-902. https://doi.org/10.1161/circresaha.117.311401
|
[11]
|
Tejero, J., Shiva, S. and Gladwin, M.T. (2019) Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiological Reviews, 99, 311-379. https://doi.org/10.1152/physrev.00036.2017
|
[12]
|
Förstermann, U., Closs, E.I., Pollock, J.S., Nakane, M., Schwarz, P., Gath, I., et al. (1994) Nitric Oxide Synthase Isozymes. Characterization, Purification, Molecular Cloning, and Functions. Hypertension, 23, 1121-1131. https://doi.org/10.1161/01.hyp.23.6.1121
|
[13]
|
Infante, T., Costa, D. and Napoli, C. (2021) Novel Insights Regarding Nitric Oxide and Cardiovascular Diseases. Angiology, 72, 411-425. https://doi.org/10.1177/0003319720979243
|
[14]
|
Pautz, A., Art, J., Hahn, S., Nowag, S., Voss, C. and Kleinert, H. (2010) Regulation of the Expression of Inducible Nitric Oxide Synthase. Nitric Oxide, 23, 75-93. https://doi.org/10.1016/j.niox.2010.04.007
|
[15]
|
Xia, Y. and Zweier, J.L. (1997) Superoxide and Peroxynitrite Generation from Inducible Nitric Oxide Synthase in Macrophages. Proceedings of the National Academy of Sciences of the United States of America, 94, 6954-6958. https://doi.org/10.1073/pnas.94.13.6954
|
[16]
|
Buttery, L.D., Springall, D.R., Chester, A.H., et al. (1996) Inducible Nitric Oxide Synthase Is Present within Human Atherosclerotic Lesions and Promotes the Formation and Activity of Peroxynitrite. Laboratory Investigation, 75, 77-85.
|
[17]
|
Förstermann, U. and Münzel, T. (2006) Endothelial Nitric Oxide Synthase in Vascular Disease: From Marvel to Menace. Circulation, 113, 1708-1714. https://doi.org/10.1161/circulationaha.105.602532
|
[18]
|
Chen, K., Lin, W. and Kuo, H. (2021) Chemical and Biochemical Aspects of Molecular Hydrogen in Treating Kawasaki Disease and Covid-19. Chemical Research in Toxicology, 34, 952-958. https://doi.org/10.1021/acs.chemrestox.0c00456
|
[19]
|
Iizuka, T., Oishi, K., Sasaki, M., Hatanaka, Y., Minatogawa, Y., Uemura, S., et al. (1997) Nitric Oxide and Aneurysm Formation in Kawasaki Disease. Acta Paediatrica, 86, 470-473. https://doi.org/10.1111/j.1651-2227.1997.tb08915.x
|
[20]
|
Li, Q., Wang, Y., Chen, K., Zhou, Q., Wei, W., Wang, Y., et al. (2010) The Role of Oxidized Low-Density Lipoprotein in Breaking Peripheral Th17/Treg Balance in Patients with Acute Coronary Syndrome. Biochemical and Biophysical Research Communications, 394, 836-842. https://doi.org/10.1016/j.bbrc.2010.03.090
|
[21]
|
Yahata, T., Suzuki, C., Hamaoka, A., Fujii, M. and Hamaoka, K. (2011) Dynamics of Reactive Oxygen Metabolites and Biological Antioxidant Potential in the Acute Stage of Kawasaki Disease. Circulation Journal, 75, 2453-2459. https://doi.org/10.1253/circj.cj-10-0605
|
[22]
|
Shen, C.T. and Wang, N.K. (2001) Antioxidants May Mitigate the Deterioration of Coronary Arteritis in Patients with Kawasaki Disease Unresponsive to High-Dose Intravenous γ-Globulin. Pediatric Cardiology, 22, 419-422. https://doi.org/10.1007/s002460010268
|
[23]
|
解玉. 川崎病冠状动脉病变与内皮功能障碍 [J]. 中国当代儿科杂志, 2003(2): 177-9+83.
|
[24]
|
Steven, S., Frenis, K., Oelze, M., Kalinovic, S., Kuntic, M., Bayo Jimenez, M.T., et al. (2019) Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 7092151. https://doi.org/10.1155/2019/7092151
|
[25]
|
Takahashi, K., Oharaseki, T., Naoe, S., Wakayama, M. and Yokouchi, Y. (2005) Neutrophilic Involvement in the Damage to Coronary Arteries in Acute Stage of Kawasaki Disease. Pediatrics International, 47, 305-310. https://doi.org/10.1111/j.1442-200x.2005.02049.x
|
[26]
|
Seki, M. and Minami, T. (2022) Kawasaki Disease: Pathology, Risks, and Management. Vascular Health and Risk Management, 18, 407-416. https://doi.org/10.2147/vhrm.s291762
|
[27]
|
Iemura, M. (2000) Long Term Consequences of Regressed Coronary Aneurysms after Kawasaki Disease: Vascular Wall Morphology and Function. Heart, 83, 307-311. https://doi.org/10.1136/heart.83.3.307
|
[28]
|
Ingold, K.U., Bowry, V.W., Stocker, R. and Walling, C. (1993) Autoxidation of Lipids and Antioxidation by Alpha-Tocopherol and Ubiquinol in Homogeneous Solution and in Aqueous Dispersions of Lipids: Unrecognized Consequences of Lipid Particle Size as Exemplified by Oxidation of Human Low Density Lipoprotein. Proceedings of the National Academy of Sciences of the United States of America, 90, 45-49. https://doi.org/10.1073/pnas.90.1.45
|
[29]
|
Gęgotek, A. and Skrzydlewska, E. (2023) Ascorbic Acid as Antioxidant. Vitamins and Hormones, 121, 247-270. https://doi.org/10.1016/bs.vh.2022.10.008
|
[30]
|
Frei, B. (1994) Reactive Oxygen Species and Antioxidant Vitamins: Mechanisms of Action. The American Journal of Medicine, 97, S5-S13. https://doi.org/10.1016/0002-9343(94)90292-5
|
[31]
|
Retsky, K.L., Freeman, M.W. and Frei, B. (1993) Ascorbic Acid Oxidation Product(s) Protect Human Low Density Lipoprotein against Atherogenic Modification. Anti-Rather than Prooxidant Activity of Vitamin C in the Presence of Transition Metal Ions. Journal of Biological Chemistry, 268, 1304-1309. https://doi.org/10.1016/s0021-9258(18)54075-8
|
[32]
|
Philip, S., Lee, W., Cherian, K.M., Wu, M. and Lue, H. (2017) Role of Antioxidants in Horse Serum-Mediated Vasculitis in Swine: Potential Relevance to Early Treatment in Mitigation of Coronary Arteritis in Kawasaki Disease. Pediatrics & Neonatology, 58, 328-337. https://doi.org/10.1016/j.pedneo.2016.07.007
|
[33]
|
Deng, Y., Xiang, H., Chang, Q. and Li, C. (2002) Evaluation by High-Resolution Ultrasonography of Endothelial Function in Brachial Artery after Kawasaki Disease and the Effects of Intravenous Administration of Vitamin C. Circulation Journal, 66, 908-912. https://doi.org/10.1253/circj.66.908
|
[34]
|
Sabri, M.R., Tavana, E.N., Ahmadi, A., et al. (2015) Does Vitamin C Improve Endothelial Function in Patients with Kawa-Saki Disease? Journal of Research in Medical Sciences, 20, 32-36.
|
[35]
|
Bilheimer, D.W., Grundy, S.M., Brown, M.S. and Goldstein, J.L. (1983) Mevinolin and Colestipol Stimulate Receptor-Mediated Clearance of Low Density Lipoprotein from Plasma in Familial Hypercholesterolemia Heterozygotes. Proceedings of the National Academy of Sciences of the United States of America, 80, 4124-4128. https://doi.org/10.1073/pnas.80.13.4124
|
[36]
|
Lv, S., Liu, Y., Zou, Z., et al. (2015) The Impact of Statins Therapy on Disease Activity and Inflammatory Factor in Patients with Rheumatoid Arthritis: A Meta-Analysis. Clinical and Experimental Rheumatology, 33, 69-76.
|
[37]
|
Inanc, M.T., Kalay, N., Heyit, T., Ozdogru, I., Kaya, M.G., Dogan, A., et al. (2010) Effects of Atorvastatin and Lisinopril on Endothelial Dysfunction in Patients with Behçet’s Disease. Echocardiography, 27, 997-1003. https://doi.org/10.1111/j.1540-8175.2010.01180.x
|
[38]
|
Ray, J.G., Mamdani, M., Tsuyuki, R.T., Anderson, D.R., Yeo, E.L. and Laupacis, A. (2001) Use of Statins and the Subsequent Development of Deep Vein Thrombosis. Archives of Internal Medicine, 161, 1405-1410. https://doi.org/10.1001/archinte.161.11.1405
|
[39]
|
Delbosc, S., Morena, M., Djouad, F., Ledoucen, C., Descomps, B. and Cristol, J. (2002) Statins, 3-Hydroxy-3-Methylglutaryl Coenzyme a Reductase Inhibitors, Are Able to Reduce Superoxide Anion Production by NADPH Oxidase in Thp-1-Derived Monocytes. Journal of Cardiovascular Pharmacology, 40, 611-617. https://doi.org/10.1097/00005344-200210000-00015
|
[40]
|
Hoffman, R., Brook, G.J. and Aviram, M. (1992) Hypolipidemic Drugs Reduce Lipoprotein Susceptibility to Undergo Lipid Peroxidation: In Vitro and Ex Vivo Studies. Atherosclerosis, 93, 105-113. https://doi.org/10.1016/0021-9150(92)90204-t
|
[41]
|
Kosmidou, I., Moore, J.P., Weber, M. and Searles, C.D. (2007) Statin Treatment and 3’ Polyadenylation of eNOS mRNA. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 2642-2649. https://doi.org/10.1161/atvbaha.107.154492
|
[42]
|
Balakumar, P., Kathuria, S., Taneja, G., Kalra, S. and Mahadevan, N. (2012) Is Targeting eNOS a Key Mechanistic Insight of Cardiovascular Defensive Potentials of Statins? Journal of Molecular and Cellular Cardiology, 52, 83-92. https://doi.org/10.1016/j.yjmcc.2011.09.014
|
[43]
|
Motoji, Y., Fukazawa, R., Matsui, R., Abe, Y., Uehara, I., Watanabe, M., et al. (2022) Statins Show Anti-Atherosclerotic Effects by Improving Endothelial Cell Function in a Kawasaki Disease-Like Vasculitis Mouse Model. International Journal of Molecular Sciences, 23, Article 16108. https://doi.org/10.3390/ijms232416108
|
[44]
|
Lim, S. and Barter, P. (2014) Antioxidant Effects of Statins in the Management of Cardiometabolic Disorders. Journal of Atherosclerosis and Thrombosis, 21, 997-1010. https://doi.org/10.5551/jat.24398
|
[45]
|
Franco, A., Shimizu, C., Tremoulet, A.H. and Burns, J.C. (2010) Memory T-Cells and Characterization of Peripheral T-Cell Clones in Acute Kawasaki Disease. Autoimmunity, 43, 317-324. https://doi.org/10.3109/08916930903405891
|
[46]
|
Duan, C., Du, Z., Wang, Y. and Jia, L. (2014) Effect of Pravastatin on Endothelial Dysfunction in Children with Medium to Giant Coronary Aneurysms Due to Kawasaki Disease. World Journal of Pediatrics, 10, 232-237. https://doi.org/10.1007/s12519-014-0498-5
|
[47]
|
Hamaoka, A., Hamaoka, K., Yahata, T., Fujii, M., Ozawa, S., Toiyama, K., et al. (2010) Effects of HMG-CoA Reductase Inhibitors on Continuous Post-Inflammatory Vascular Remodeling Late after Kawasaki Disease. Journal of Cardiology, 56, 245-253. https://doi.org/10.1016/j.jjcc.2010.06.006
|
[48]
|
Canas, J.A., Ross, J.L., Taboada, M.V., Sikes, K.M., Damaso, L.C., Hossain, J., et al. (2014) A Randomized, Double Blind, Placebo-Controlled Pilot Trial of the Safety and Efficacy of Atorvastatin in Children with Elevated Low-Density Lipoprotein Cholesterol (LDL-C) and Type 1 Diabetes. Pediatric Diabetes, 16, 79-89. https://doi.org/10.1111/pedi.12245
|
[49]
|
Tremoulet, A.H., Jain, S., Jone, P., Best, B.M., Duxbury, E.H., Franco, A., et al. (2019) Phase I/IIa Trial of Atorvastatin in Patients with Acute Kawasaki Disease with Coronary Artery Aneurysm. The Journal of Pediatrics, 215, 107-117.E12. https://doi.org/10.1016/j.jpeds.2019.07.064
|
[50]
|
Simsek, B., Selte, A., Egeli, B.H. and Çakatay, U. (2021) Effects of Vitamin Supplements on Clinical Cardiovascular Outcomes: Time to Move On!—A Comprehensive Review. Clinical Nutrition ESPEN, 42, 1-14. https://doi.org/10.1016/j.clnesp.2021.02.014
|
[51]
|
Gutteridge, J.M.C. and Halliwell, B. (2010) Antioxidants: Molecules, Medicines, and Myths. Biochemical and Biophysical Research Communications, 393, 561-564. https://doi.org/10.1016/j.bbrc.2010.02.071
|
[52]
|
Vivekananthan, D.P., Penn, M.S., Sapp, S.K., Hsu, A. and Topol, E.J. (2003) Use of Antioxidant Vitamins for the Prevention of Cardiovascular Disease: Meta-Analysis of Randomised Trials. The Lancet, 361, 2017-2023. https://doi.org/10.1016/s0140-6736(03)13637-9
|
[53]
|
Cochemé, H.M. and Murphy, M.P. (2010) Can Antioxidants Be Effective Therapeutics? Current Opinion in Investigational Drugs, 11, 426-431.
|
[54]
|
Ross, M.F., Kelso, G.F., Blaikie, F.H., James, A.M., Cochemé, H.M., Filipovska, A., et al. (2005) Lipophilic Triphenylphosphonium Cations as Tools in Mitochondrial Bioenergetics and Free Radical Biology. Biochemistry (Moscow), 70, 222-230. https://doi.org/10.1007/s10541-005-0104-5
|
[55]
|
Smith, R.A.J., Porteous, C.M., Coulter, C.V. and Murphy, M.P. (1999) Selective Targeting of an Antioxidant to Mitochondria. European Journal of Biochemistry, 263, 709-716. https://doi.org/10.1046/j.1432-1327.1999.00543.x
|
[56]
|
Kelso, G.F., Porteous, C.M., Coulter, C.V., Hughes, G., Porteous, W.K., Ledgerwood, E.C., et al. (2001) Selective Targeting of a Redox-Active Ubiquinone to Mitochondria within Cells: Antioxidant and Antiapoptotic Properties. Journal of Biological Chemistry, 276, 4588-4596. https://doi.org/10.1074/jbc.m009093200
|
[57]
|
Filipovska, A., Kelso, G.F., Brown, S.E., Beer, S.M., Smith, R.A.J. and Murphy, M.P. (2005) Synthesis and Characterization of a Triphenylphosphonium-Conjugated Peroxidase Mimetic. Insights into the Interaction of Ebselen with Mitochondria. Journal of Biological Chemistry, 280, 24113-24126. https://doi.org/10.1074/jbc.m501148200
|
[58]
|
Smith, R.A.J., Hartley, R.C. and Murphy, M.P. (2011) Mitochondria-Targeted Small Molecule Therapeutics and Probes. Antioxidants & Redox Signaling, 15, 3021-3038. https://doi.org/10.1089/ars.2011.3969
|
[59]
|
Rodriguez-Cuenca, S., Cochemé, H.M., Logan, A., Abakumova, I., Prime, T.A., Rose, C., et al. (2010) Consequences of Long-Term Oral Administration of the Mitochondria-Targeted Antioxidant MitoQ to Wild-Type Mice. Free Radical Biology and Medicine, 48, 161-172. https://doi.org/10.1016/j.freeradbiomed.2009.10.039
|
[60]
|
Snow, B.J., Rolfe, F.L., Lockhart, M.M., Frampton, C.M., O’Sullivan, J.D., Fung, V., et al. (2010) A Double‐blind, Placebo‐controlled Study to Assess the Mitochondria‐Targeted Antioxidant MitoQ as a Disease‐Modifying Therapy in Parkinson’s Disease. Movement Disorders, 25, 1670-1674. https://doi.org/10.1002/mds.23148
|
[61]
|
Gane, E.J., Weilert, F., Orr, D.W., Keogh, G.F., Gibson, M., Lockhart, M.M., et al. (2010) The Mitochondria-Targeted Anti-Oxidant Mitoquinone Decreases Liver Damage in a Phase II Study of Hepatitis C Patients. Liver International, 30, 1019-1026. https://doi.org/10.1111/j.1478-3231.2010.02250.x
|
[62]
|
Horton, K.L., Stewart, K.M., Fonseca, S.B., Guo, Q. and Kelley, S.O. (2008) Mitochondria-Penetrating Peptides. Chemistry & Biology, 15, 375-382. https://doi.org/10.1016/j.chembiol.2008.03.015
|
[63]
|
Zhao, K., Zhao, G., Wu, D., Soong, Y., Birk, A.V., Schiller, P.W., et al. (2004) Cell-Permeable Peptide Antioxidants Targeted to Inner Mitochondrial Membrane Inhibit Mitochondrial Swelling, Oxidative Cell Death, and Reperfusion Injury. Journal of Biological Chemistry, 279, 34682-34690. https://doi.org/10.1074/jbc.m402999200
|
[64]
|
Ren, M., Phoon, C.K.L. and Schlame, M. (2014) Metabolism and Function of Mitochondrial Cardiolipin. Progress in Lipid Research, 55, 1-16. https://doi.org/10.1016/j.plipres.2014.04.001
|
[65]
|
Liu, S., Soong, Y., Seshan, S.V. and Szeto, H.H. (2014) Novel Cardiolipin Therapeutic Protects Endothelial Mitochondria during Renal Ischemia and Mitigates Microvascular Rarefaction, Inflammation, and Fibrosis. American Journal of Physiology-Renal Physiology, 306, F970-F980. https://doi.org/10.1152/ajprenal.00697.2013
|
[66]
|
Yousif, L.F., Stewart, K.M., Horton, K.L. and Kelley, S.O. (2009) Mitochondria‐penetrating Peptides: Sequence Effects and Model Cargo Transport. ChemBioChem, 10, 2081-2088. https://doi.org/10.1002/cbic.200900017
|
[67]
|
Vestweber, D. and Schatz, G. (1988) Mitochondria Can Import Artificial Precursor Proteins Containing a Branched Polypeptide Chain or a Carboxy-Terminal Stilbene Disulfonate. The Journal of cell biology, 107, 2045-2049. https://doi.org/10.1083/jcb.107.6.2045
|
[68]
|
McLachlan, J., Beattie, E., Murphy, M.P., Koh-Tan, C.H.H., Olson, E., Beattie, W., et al. (2014) Combined Therapeutic Benefit of Mitochondria-Targeted Antioxidant, Mitoq10, and Angiotensin Receptor Blocker, Losartan, on Cardiovascular Function. Journal of Hypertension, 32, 555-564. https://doi.org/10.1097/hjh.0000000000000054
|
[69]
|
Hao, S., Ji, J., Zhao, H., Shang, L., Wu, J., Li, H., et al. (2015) Mitochondrion-Targeted Peptide SS-31 Inhibited Oxidized Low-Density Lipoproteins-Induced Foam Cell Formation through Both ROS Scavenging and Inhibition of Cholesterol Influx in RAW264.7 Cells. Molecules, 20, 21287-21297. https://doi.org/10.3390/molecules201219764
|
[70]
|
Dai, D., Hsieh, E.J., Chen, T., Menendez, L.G., Basisty, N.B., Tsai, L., et al. (2013) Global Proteomics and Pathway Analysis of Pressure-Overload-Induced Heart Failure and Its Attenuation by Mitochondrial-Targeted Peptides. Circulation: Heart Failure, 6, 1067-1076. https://doi.org/10.1161/circheartfailure.113.000406
|
[71]
|
Huang, P., Wei, S., Huang, W., Wu, P., Chen, S., Tao, A., et al. (2022) Corrigendum to “Hydrogen Gas Inhalation Enhances Alveolar Macrophage Phagocytosis in an Ovalbumin-Induced Asthma Model” [int. Immunopharmacol. 74 (2019) 105646]. International Immunopharmacology, 112, Article ID: 109124. https://doi.org/10.1016/j.intimp.2022.109124
|
[72]
|
Hayashida, K., Sano, M., Ohsawa, I., Shinmura, K., Tamaki, K., Kimura, K., et al. (2008) Inhalation of Hydrogen Gas Reduces Infarct Size in the Rat Model of Myocardial Ischemia-Reperfusion Injury. Biochemical and Biophysical Research Communications, 373, 30-35. https://doi.org/10.1016/j.bbrc.2008.05.165
|
[73]
|
Zeng, Y., Guan, W., Wang, K., Jie, Z., Zou, X., Tan, X., et al. (2023) Effect of Hydrogen/oxygen Therapy for Ordinary COVID-19 Patients: A Propensity-Score Matched Case-Control Study. BMC Infectious Diseases, 23, Article No. 440. https://doi.org/10.1186/s12879-023-08424-4
|
[74]
|
Katsumata, Y., Sano, F., Abe, T., Tamura, T., Fujisawa, T., Shiraishi, Y., et al. (2017) The Effects of Hydrogen Gas Inhalation on Adverse Left Ventricular Remodeling after Percutaneous Coronary Intervention for St-Elevated Myocardial Infarction—First Pilot Study in Humans. Circulation Journal, 81, 940-947. https://doi.org/10.1253/circj.cj-17-0105
|