川崎病与氧化应激的研究进展
Research Progress of Kawasaki Disease and Oxidative Stress
摘要: 氧化应激是川崎病发病机制之一,活性氧的过量产生将导致氧化应激,控制活性氧的产生将有助于减轻氧化应激的程度,有可能改善川崎病患儿预后,因此抗氧化剂可以作为川崎病急性期的辅助疗法,特别是针对特定细胞器的靶向抗氧化剂有望成为川崎病的新型治疗措施。本文将对活性氧的产生和在川崎病中产生的病理作用,以及抗氧化剂目前的研究进展进行讨论。
Abstract: Oxidative stress is one of the pathogenesis of Kawasaki disease. Excessive production of reactive oxygen species will lead to oxidative stress. Controlling the production of reactive oxygen species will help to reduce the degree of oxidative stress and may improve the prognosis of children with Kawasaki disease. Therefore, antioxidants can be used as an adjuvant therapy for the acute phase of Kawasaki disease, especially for specific organelles. Targeted antioxidants are expected to become a new treatment for Kawasaki disease. This article will discuss the production of reactive oxygen species and the pathological effects in Kawasaki disease, as well as the current research progress of antioxidants.
文章引用:蒋颖, 刘丰贤, 陈春余, 张维涛, 何健峰. 川崎病与氧化应激的研究进展[J]. 临床医学进展, 2024, 14(8): 1244-1254. https://doi.org/10.12677/acm.2024.1482346

1. 简介

活性氧(reactive oxygen species, ROS)是含氧的化学活性物质,可在人体细胞正常代谢活动中产生,在低–中浓度下发挥重要作用,包括免疫防御、信号传递、调控细胞增殖以及维持氧化还原系统平衡[1]。过量的ROS产生或机体抗氧化能力减少将导致氧化应激(oxidative stress, OS),这一过程中的产物将损伤细胞的重要结构和功能。氧化应激与许多疾病以及衰老过程有关[2]。在川崎病急性期,活化的炎症细胞对致病因子发生强烈的反应,其中包括ROS的产生[3] [4]。控制与炎症密切相关的氧化应激,可能有助于减轻或避免川崎病冠状动脉损害。故本文就抗氧化疗法目前在川崎病中的应用进展进行综述。

2. 氧化应激的损伤机制

体内ROS是由线粒体、葡萄糖的自氧化和各种氧化酶产生的,线粒体是ROS的主要来源[5] [6]。此外,ROS还可在紫外线、X射线等放射线照射时产生[7]。ROS包括含氧自由基以及非自由基物质,如超氧阴离子自由基( O 2 •)、羟基自由基(OH•)、单线态氧、脂质自由基、过氧自由基(ROO•)、过氧化氢(H2O2)等[8]

过量的ROS可损伤重要有机成分,包括核酸、脂质和蛋白质[1]。例如羟基自由基可与DNA分子的所有成分发生反应,破坏碱基以及脱氧核糖主链,同时可协同增强超氧化物对DNA的损伤,羟基自由基还可攻击蛋白质的谷氨酸以及脯氨酸残基,使肽键断裂[9]。虽然机体存在抗氧化系统消除过量的ROS,但氧化应激造成的组织损伤仍可逐渐积累,导致癌症、神经退行性病变、动脉硬化等疾病[10]

3. 一氧化氮(nitric oxide, NO)与氧化应激

NO的形成与氧化应激是相互关联的。生理情况下NO的产生维持体内ROS低水平,NO可清除细胞代谢过程中形成的超氧阴离子自由基( O 2 •),NO和 O 2 •之间的平衡是发生氧化应激的关键因素之一[11]

NO在所有类型的细胞中均可合成,在氧含量充足的情况下L-精氨酸(L-arginine)和氧分子通过NO合成酶(NOS)合成NO。一氧化氮合成酶(NOS)有三种不同的亚型:神经元型NOS (NOS1、bNOS或nNOS)、诱导型NOS (NOS2、iNOS)和内皮型NOS (NOS3、eNOS)。

低浓度的NO调节多种生理功能,包括血管以及神经系统信号传导,发挥免疫防御作用,同时也参与多种疾病的发病过程。生理条件下NO的产生主要来源于内皮型NOS的合成,可扩张所有类型的血管,并且抑制血小板粘附聚集和炎症细胞粘附分子的表达,对血液流动和血管舒张的调节至关重要[12]。生理性NO合成减少的丧失会导致内皮功能障碍,其特征是内皮依赖性血管舒张受损、内皮细胞凋亡、内皮屏障破坏、动脉僵硬、血管壁增厚以及血栓前和炎症状态[13]

诱导型NOS在促炎细胞因子和微生物相关产物等刺激下可加剧NO的合成[14]。高浓度的NO对病原微生物和肿瘤细胞有细胞毒作用,在免疫防御中十分关键,也是导致感染性休克患者低血压的主要物质。过量NO可导致氧化应激,能与超氧化物反应生成过氧亚硝酸盐[15],该物质具有十分强大的氧化性,杀死细菌的同时也能导致正常细胞死亡,破坏血管内皮[16]。过氧亚硝酸盐同时影响内皮型NOS合成NO过程中必需的辅因子BH4,BH4水平降低导致内皮型NOS最终合成超氧化物 O 2 •,而非NO,进一步加重氧化应激[17]。研究表明有冠状动脉受累的KD患者体内NO明显高于无冠状动脉受累的患者[18] [19]

4. 川崎病中的氧化应激

4.1. 川崎病炎症与氧化应激

川崎病(Kawasaki disease, KD)是累及全身中、小动脉的急性、自限性血管炎,易损伤冠状动脉,严重者可并发冠状动脉瘤、冠脉血栓形成,甚至导致缺血性心脏病、猝死。川崎病的发病机制多认为是具有遗传易感性的个体在感染等诱因下出现的自身免疫调节紊乱,多种炎症细胞因子产生联级放大效应,导致全身血管炎症。炎症细胞、血管内皮细胞和平滑肌细胞都能释放ROS导致氧化应激,而氧化应激产物又可刺激炎症趋化因子的表达,进一步加重炎症反应[10]。有研究发现KD急性期,血液中的氧化LDL显著增高,氧化LDL以剂量和时间依赖性的方式导致Th17细胞的显著升高和调节性T细胞的减少,促进免疫紊乱和血管炎症的发生[20]

Straface等[3]在恒定的氧分压下,向年龄相当的健康儿童和KD患儿全血中加入可以被超氧阴离子、过氧亚硝酸盐等氧化剂快速氧化的荧光探针1-羟基-3-羧基-吡咯烷(CPH),分别测量CPH被氧化生成的产物水平,结果证明了KD患儿体内存在显著升高的ROS以及NO衍生的氧化性物质。Yoshimura等[4]使用新型流式细胞术分析了急性KD患儿中性粒细胞产生的NO和ROS水平,研究对象包括急性KD患儿、非KD发热性疾病患儿和健康儿童。结果显示ROS水平在KD患儿、非KD发热性疾病患儿中显著升高。KD患儿中性粒细胞产生NO和ROS量相当,NO在IVIG治疗后减少,而ROS没有显著变化。其中唯一有冠状动脉病变的KD患儿体内NO量为组内最高。其他研究也证明KD患儿体内氧化应激水平长期升高[21] [22]

4.2. 川崎病冠脉损害与氧化应激

正常血管内皮细胞可抗血栓形成、抗白细胞黏附,同时具有分泌血管活性物质的功能[23]。血管内皮功能障碍可导致白细胞活化浸润、血小板黏附增加、血管收缩、血管平滑肌细胞增殖,导致炎症损伤、血栓形成、管腔变窄等不良后果。

多种心血管疾病的发生过程与氧化应激有关[8]。氧化应激导致的血管内皮功能障碍可在全身各类型血管中存在,并随着年龄增长而增加[24]。在KD急性期,主要是中性粒细胞和单核/巨噬细胞浸润冠状动脉,产生大量ROS [25]。在氧化应激过程中产生的脂质过氧化物,不仅可以增加促炎因子的产生,使免疫细胞聚集到动脉壁,加重炎症,并且可以促进血栓形成[10] [20]。KD冠脉病变的患者中小动脉壁可观察到存在氧化性损伤,由于血管壁内皮损伤,KD患者后期有发生动脉粥样硬化的风险[26]。处于恢复期的KD患者冠状动脉仍存在内皮细胞功能障碍[27]

5. 川崎病的抗氧化治疗

目前,川崎病急性期一线治疗是以抗炎为主,抗氧化疗法在临床上很少使用。但是从理论上讲,控制与血管炎密切相关的氧化应激,有助于减轻冠脉损伤。有学者认为川崎病延迟使用IVIG的疗效较差的原因也是由于过度的氧化应激的存在[22]。故抗氧化疗法可以作为川崎病急性期的辅助治疗手段广泛应用,尤其是IVIG耐药型患儿,以改善患儿预后。

5.1. 维生素类抗氧化剂(维生素E、C)

5.1.1. 维生素类抗氧化剂的分类

1) 维生素E

又称生育酚,是人体必需的脂溶性维生素。天然存在的生育酚主要有四种衍生物,按甲基位置分为α、β、γ和δ,其中α-生育酚(α-Tocopherol, alpha-TOH)含量最高,生理活性也最高。维生素E主要存在于细胞膜和脂蛋白中,是低密度脂蛋白中含量最丰富的脂溶性抗氧化剂,每个LDL中约含有6到8个维生素E分子[28]

2) 维生素C

又称抗坏血酸(ascorbate),是人体必需的水溶性维生素,主要存在于血浆中,具有多种生物学活性,能有效保护低密度脂蛋白(LDL)免受氧化[29]

5.1.2. 维生素类抗氧化剂的抗氧化机制

1) α-生育

α-生育酚与氧化剂反应生成α-生育酚自由基(alpha-tocopheroxyl radical, Toc·),该自由基可再与氧化剂衍生的过氧自由基反应,以“自我牺牲”的方式有效保护脂蛋白免受氧化损伤,有助于防止动脉粥样硬化的进展。研究显示,当α-生育酚等抗氧化物存在时,LDL氧化效率很低,一旦抗氧化物被完全消耗,LDL氧化效率明显增加。然而,当α-生育酚在缺乏泛醇-10 (辅酶Q10的还原产物)和维生素C的环境中时,α-生育酚自由基可直接与脂质反应,造成脂质过氧化,对LDL产生促进氧化反应的作用[28]

2) 维生素C

维生素C是血浆中抗氧化防御的第一道防线,可被血浆中的氧化剂氧化,生成脱氢抗坏血酸(dehydroascorbate),在这个过程中维生素C释放两个氢原子(H+),与氧化剂衍生的过氧自由基反应以消耗自由基[30]。将维生素C添加到分离至体外的LDL溶液中,再暴露于氧化剂下,同样可观察到脂蛋白过氧化程度较对照组明显降低[31]

5.1.3. 维生素类抗氧化剂的在川崎病的应用

抗氧化维生素通过与自由基反应,减少氧化应激,保护血管内皮,可能有助于预防或减缓心血管疾病的发生、发展。

Philip等[32]将2~3月龄雄性仔猪分为盐水组(仅注射生理盐水)、试验组和对照组(注射马血清诱导出免疫复合物冠状血管炎),在试验组饲料中每天添加一次维生素A (50000IU)、维生素E (800IU)以及维生素C (1000 mg),维生素A持续4天,维生素E和C持续14天。结果显示试验组和对照组在输注马血清后均出现皮疹,但试验组出现的皮疹显著降低,盐水组未见皮疹。对照组显示出显著的冠状动脉扩张,而试验组或盐水组没有显著扩张。

有文献报道了一例维生素E和C治疗IVIG耐药患儿的病例[22],患者为一11月龄的男婴,使用了三个疗程的IVIG后(2 g/kg/天)仍有高热,在发热第23天时注射了第四和第五次IVIG,同时口服α-生育酚、维生素C,用药第二天患儿高热消退,发病6个月后完善血管造影显示右冠状动脉主干扩张恢复正常。但该患者发病时间长,不排除川崎病自然痊愈的可能性。有研究发现KD患者反应性充血引起的肱动脉直径的百分比变化较健康儿童降低,表明KD患者存在全身性内皮功能障碍,静脉输注维生素C (100 ml生理盐水中含3 g维生素C)后可以显著增加KD患者反应性充血引起的肱动脉直径变化百分比,是否接受IVIG治疗对该百分比没有影响[33]。Sabri等[34]给予16例川崎病患儿口服维生素C (250 mg/d)治疗1个月,试验前后采用血管多普勒超声测定颈动脉内膜中层厚度(intima-media thickness, IMT)和桡动脉血流介导的舒张功能(flow-mediated dilatation, FMD),结果显示治疗后患者IMT显著降低,FMD增加。

说明在川崎急性期,治疗剂量的维生素的使用可能有助于修复血管内皮功能,减轻冠状动脉病变的程度,但需要更多川崎病患者使用抗氧化维生素的治疗数据来验证。

5.2. 他汀类药物

5.2.1. 他汀类药物临床作用

他汀类药物是3-羟基-3-甲基戊二酰辅酶A (HMG-CoA)还原酶抑制剂,通过竞争抑制HMG-CoA还原酶,以降低胆固醇合成[35]。除了降低血脂,还有他汀类药物还有抗炎[36]、修复血管内皮[37]和抗血栓[38]的功能。

5.2.2. 他汀类药物的抗氧化作用机制

1) 类药物通过抑制NADPH氧化酶的异戊二烯化修饰(geranylgeranylation)来降低超氧阴离子产生

他汀类药物通过抑制HMG-CoA还原酶,减少胆固醇合成途径中的中间产物(它们是异戊二烯化修饰过程中所需的前体),从而抑制p21 Rac 2 (NADPH氧化酶的胞质组分)的异戊二烯化,使之不能锚定到细胞膜上,导致NADPH氧化酶无法正确组装和激活,最终减少超氧阴离子的产生。不同他汀类药物对超氧阴离子产生的抑制力不同,其中普伐他汀作用最弱,辛伐他汀作用最强[39]。Hoffman [40]等选取了18名患有高胆固醇血症的患者,随机分为三组,分别接受普伐他汀、考来烯胺或苯扎贝特治疗,测定治疗前后LDL过氧化相关产物含量、巨噬细胞对LDL的摄取、治疗后LDL体外氧化易感性等指标,发现降脂药物治疗后LDL过氧化产物的含量均降低、LDL的体外氧化易感性降低,但巨噬细胞摄取LDL没有影响。这表明,降脂药物在体内、体外均可降低脂蛋白过氧化。

2) 类药物提高内皮型一氧化氮合酶(eNOS)的表达

研究表明他汀类药物可以通过增加内皮型一氧化氮合酶(eNOS) mRNA 3'端聚腺苷酸化,进而提高mRNA稳定性,促进eNOS的表达[41]。eNOS mRNA的聚腺苷酸化增加与Rho介导的细胞骨架变化有关。Rho是一组小GTP酶的统称,Rho的活性与细胞骨架的状态密切相关。他汀类药物能够抑制 Rho蛋白的异戊二烯化修饰(geranylgeranylation)过程。当Rho信号被他汀类药物抑制时,会导致细胞骨架的变化,特别是肌动蛋白骨架的重组。同样地,使用细胞骨架破坏剂(cytochalasin D)处理后,eNOS mRNA的聚腺苷酸化增加。这表明细胞骨架的状态可能对eNOS mRNA的3'端聚腺苷酸化过程有直接影响。他汀类药物也对RNA聚合酶II活性进行调节来增加eNOS mRNA聚腺苷酸化。并且,他汀类药物还可通过磷脂酰肌醇3激酶(PI3K)/Akt/eNOS途径、阻断血管内皮中小窝蛋白-1 (caveolin-1)表达等途径来增加eNOS量[42]。在KD样血管炎小鼠模型中,他汀类药物可诱导eNOS表达,并促进血管内皮细胞功能恢复[43]

他汀类药物还可以增加血浆中抗氧化酶水平,如超氧化物歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶[44]

5.2.3. 他汀类药物在川崎病的临床应用

炎症细胞及促炎细胞因子的免疫活化、血管壁浸润,氧化应激的发生,共同导致了川崎病冠状动脉病变(coronary artery lesions, CAL) [45]。他汀类药物的抗炎、抗氧化、修复血管内皮的特性可能有助于阻止川崎病冠状动脉损伤的进展。许多小样本临床研究表明,他汀类药物治疗后KD患者冠状动脉炎症减少、内皮功能改善[46] [47]。目前他汀类药物在儿童中使用被证明是安全的且耐受性良好[48] [49]。为了进一步明确他汀类药物在KD患者中的疗效和影响,仍需开展大样本、长期追踪的研究。

5.3. 抗氧化靶向治疗

目前使用维生素类抗氧化剂治疗或预防人类心血管疾病的效果仍具有争议[50]。有学者认为抗氧化剂的使用是无效的,甚至有害的[51] [52]。目前研究新方向从补充维生素类抗氧化剂的简单方法,发展到控制活性氧产生的关键环节的方法,以及研究针对特定细胞或细胞器的抗氧化剂,为患者提供更精确的治疗,减少副作用。

线粒体是ROS的主要来源之一,产生的ROS即可作为氧化还原信号传导的关键成分,发挥的重要生理功能,过量ROS也可引起氧化应激,导致细胞损伤。不能有效地到达线粒体内可能是维生素类抗氧化剂临床试验效果不佳的原因之一[53]。因此,控制ROS生成的线粒体靶向药物不仅能从根源上减少氧化应激的发生,同时也不干扰细胞其他的代谢过程,具有有效性和安全性。

5.3.1. 与亲脂性阳离子结合的线粒体靶向抗氧化剂

线粒体内膜上有高达150~160 mV (内部为负)的膜电位,再加上30~60 mV (内部为负)的质膜电位,驱动了线粒体基质对阳离子的大量摄取。那么将小分子抗氧化药物与一个亲脂性阳离子相偶联,可以很容易地通过磷脂双分子层,最终积聚到线粒体基质中[54]。进入线粒体后,抗氧化药物可以在线粒体内发挥作用或者从线粒体扩散到细胞质中发挥作用。

这样设计的药物包括维生素E (MitoE2) [55],泛醌(MitoQ10) [56],过氧化物酶(MitoPeroxidase) [57]等等。上述研究表明,这些药物可以增加抗氧化成分在线粒体中的累积,并减少氧化应激对细胞的损伤。其中抗氧化效果最好的是MitoQ10,它由一个泛醌片段通过一个十碳烷基链与亲脂性阳离子连接而成[56],MitoQ10进入线粒体后先被氧化为泛醇形式,然后在呼吸链中被复合体II迅速还原,恢复其抗氧化特性,由于MitoQ10主要吸附在线粒体内膜上,其活性抗氧化成分(泛醇)能够深入线粒体内部,因此效果更佳。

有学者认为长期使用该类靶向药物可能会导致亲脂性阳离子在线粒体内持续积累,产生毒性,导致线粒体损伤,但研究证明这种情况基本不会发生[58]。亲脂性阳离子进入线粒体的过程是受限的,膜电位决定着线粒体内阳离子的相对浓度,随着给药结束后细胞外浓度降低,多余的亲脂性阳离子将逐渐从线粒体中移出。除非线粒体损伤严重,不能维持正常的膜电位,或是亲脂性阳离子在线粒体内被代谢为不能透过细胞器膜的物质时,积累产生毒性的情况才可能发生,但是几率很小。

动物实验证明口服MitoQ10可以减少小鼠氧化应激损伤,保护细胞,并且长期口服安全性良好,小鼠并没有出现免疫功能抑制或基因表达改变等活性氧生理功能降低的表现[59]。在一项研究MitoQ10是否能减轻帕金森病的进展的临床试验中,给新诊断的未经治疗的帕金森病患者服用两种不同剂量(40或80 mg)的MitoQ10或安慰剂,一年后的结果显示MitoQ10没有副作用,该药物安全性良好,但MitoQ10与安慰剂没有显著差异[60]。同样地,给慢性丙型肝炎病毒患者服用两种不同剂量的MitoQ10或安慰剂连续28天,结果显示MitoQ10可显著降低患者的血清ALT水平,提示MitoQ10可减轻HCV感染引起的肝损伤,且对疾病有效的浓度下没有产生毒副作用[61],该试验证明了线粒体靶向抗氧化剂有望治疗线粒体氧化损伤导致的疾病。

5.3.2. 与线粒体靶向肽结合的线粒体靶向抗氧化剂

线粒体靶向肽多是由几种疏水性/碱性氨基酸交替组成,带有3~5个正电荷,也具有亲脂性[62]。将抗氧化成分与靶向肽结合即可进入线粒体内发挥作用,例如将二甲基酪氨酸残基和靶向肽结合而成的Szeto-Schiller (SS)-31肽[63]。并且也可以将亲脂性阳离子与带有抗氧化成分的靶向肽结合,进一步增加进入线粒体的能力[62]

SS-31肽与心磷脂(线粒体内膜上的阴离子磷脂)的高亲和力是导致SS-31进入线粒体的主要原因之一,SS-31肽可以选择性地与线粒体内膜结合,定位在ROS产生的部位,而不进入线粒体基质[64] [65]。SS-31肽在动物实验中已被证明可以减轻氧化应激的发生,保护线粒体和细胞免受氧化损伤[63],并且安全性良好。

线粒体靶向肽的给药研究不如亲脂性阳离子的广泛,但靶向肽具有更大的优势,因为它可能输送更大极性或带负电荷的药物成分,这是单电荷的亲脂性阳离子无法做到的[66]。目前关于靶向肽的人体试验尚未开展,可能会在不久的将来进行。

5.3.3. 其他线粒体靶向抗氧化剂

除了以线粒体为靶点的亲脂性阳离子和多肽以外,还有其他的方法设计线粒体靶向抗氧化剂,关键是利用线粒体内膜中存在的许多特定运输机制。例如,将药物成分偶联到膜信号肽上进入线粒体内[67],这类设计可以用于运输因极性太大而无法偶联亲脂性阳离子或靶向肽的药物成分。

目前尚未发现将线粒体靶向抗氧化剂用于川崎病治疗的相关研究,但是在其他心血管疾病中该类药物表现出了有益的效果。使用MitoQ10和氯沙坦联合治疗易卒中自发性高血压大鼠,结果显示联合治疗组的血压、左心室重量以及心肌纤维化程度比单独MitoQ10或低剂量氯沙坦组显著改善,该研究发现MitoQ10以剂量依赖性方式显著抑制血管紧张素II介导的心肌肥厚[68]。在另一研究中,SS-31肽可以显著抑制ROS的产生,提高超氧化物歧化酶活性,降低促炎细胞因子,如IL-6和肿瘤坏死因子α,而且能剂量依赖性地抑制ox-LDL清道夫受体CD 36和LOX-1的表达,减少泡沫细胞形成和胆固醇积累,有望改善动脉粥样硬化的进展[69]。SS-31肽可以改善主动脉缩窄诱导充血性心力衰竭小鼠的心功能、减轻心脏纤维化[70]

线粒体靶向抗氧化剂可减轻氧化应激导致的炎症,改善血管内皮功能,减轻心脏重构,有望成为川崎病的新型治疗措施,值得开展进一步的研究。

5.4. 氢气

H2选择性地还原ROS中细胞毒性最强的羟基自由基、过氧亚硝酸自由基(ONOO-),从而避免细胞受到氧化应激损伤。同时氢分子可以调节促炎细胞因子和抗炎细胞因子的释放。使用卵清蛋白(OVA)诱导小鼠哮喘,吸入氢气后可以减轻小鼠气道高反应性以及过敏反应,降低IL-4和IgE水平,增加巨噬细胞吞噬能力,增加超氧化物歧化酶活性[71]

基于H2的抗氧化作用以及抗炎作用,H2治疗已经开展许多试验,如吸入氢气可减少缺血再灌注引起的急性氧化应激对大鼠脑组织、心肌细胞的损伤[72],以及改善新冠肺炎患者呼吸困难[73]。有研究表明,H2吸入可以逆转包括心脏结构重塑在内的组织损伤,并逐渐改善功能和预后[74]。故有学者提出使用氢气治疗KD的设想[18]

6. 展望

在川崎病的急性期、慢性期,均有ROS的产生,特别是急性期,ROS可能显著增强。在评估川崎病严重程度或治疗效果时,ROS水平可能是一个有用的指标。控制氧化应激可能会改善川崎病患儿的预后。在川崎病早期给予抗氧化剂干预,同时让患者定期检查,进行饮食和生活方式指导(避免高脂血症),可以减少患儿随着年龄的增长发生动脉粥样硬化的风险。未来的研究应更多地关注针对特定器官、组织和细胞类型的抗氧化剂,特别是针对线粒体的抗氧化剂。

NOTES

*通讯作者。

参考文献

[1] Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M. and Mazur, M. (2006) Free Radicals, Metals and Antioxidants in Oxidative Stress-Induced Cancer. Chemico-Biological Interactions, 160, 1-40.
https://doi.org/10.1016/j.cbi.2005.12.009
[2] Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T.D., Mazur, M. and Telser, J. (2007) Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. The International Journal of Biochemistry & Cell Biology, 39, 44-84.
https://doi.org/10.1016/j.biocel.2006.07.001
[3] Straface, E., Marchesi, A., Gambardella, L., Metere, A., Tarissi de Jacobis, I., Viora, M., et al. (2012) Does Oxidative Stress Play a Critical Role in Cardiovascular Complications of Kawasaki Disease? Antioxidants & Redox Signaling, 17, 1441-1446.
https://doi.org/10.1089/ars.2012.4660
[4] Yoshimura, K., Tatsumi, K., Iharada, A., Tsuji, S., Tateiwa, A., Teraguchi, M., et al. (2008) Increased Nitric Oxide Production by Neutrophils in Early Stage of Kawasaki Disease. European Journal of Pediatrics, 168, 1037-1041.
https://doi.org/10.1007/s00431-008-0872-1
[5] Cai, H. and Harrison, D.G. (2000) Endothelial Dysfunction in Cardiovascular Diseases: The Role of Oxidant Stress. Circulation Research, 87, 840-844.
https://doi.org/10.1161/01.res.87.10.840
[6] Rauf, A., Khalil, A.A., Awadallah, S., Khan, S.A., Abu‐Izneid, T., Kamran, M., et al. (2023) Reactive Oxygen Species in Biological Systems: Pathways, Associated Diseases, and Potential Inhibitors—A Review. Food Science & Nutrition, 12, 675-693.
https://doi.org/10.1002/fsn3.3784
[7] Cadenas, E. (1989) Biochemistry Of Oxygen Toxicity. Annual Review of Biochemistry, 58, 79-110.
https://doi.org/10.1146/annurev.bi.58.070189.000455
[8] Kukreja, R.C. and Hess, M.L. (1992) The Oxygen Free Radical System: From Equations through Membrane-Protein Interactions to Cardiovascular Injury and Protection. Cardiovascular Research, 26, 641-655.
https://doi.org/10.1093/cvr/26.7.641
[9] Halliwell, B. and Gutteridge, J.M.C. (2015). Free Radicals in Biology and Medicine. Oxford University Press.
https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
[10] Forrester, S.J., Kikuchi, D.S., Hernandes, M.S., Xu, Q. and Griendling, K.K. (2018) Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circulation Research, 122, 877-902.
https://doi.org/10.1161/circresaha.117.311401
[11] Tejero, J., Shiva, S. and Gladwin, M.T. (2019) Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiological Reviews, 99, 311-379.
https://doi.org/10.1152/physrev.00036.2017
[12] Förstermann, U., Closs, E.I., Pollock, J.S., Nakane, M., Schwarz, P., Gath, I., et al. (1994) Nitric Oxide Synthase Isozymes. Characterization, Purification, Molecular Cloning, and Functions. Hypertension, 23, 1121-1131.
https://doi.org/10.1161/01.hyp.23.6.1121
[13] Infante, T., Costa, D. and Napoli, C. (2021) Novel Insights Regarding Nitric Oxide and Cardiovascular Diseases. Angiology, 72, 411-425.
https://doi.org/10.1177/0003319720979243
[14] Pautz, A., Art, J., Hahn, S., Nowag, S., Voss, C. and Kleinert, H. (2010) Regulation of the Expression of Inducible Nitric Oxide Synthase. Nitric Oxide, 23, 75-93.
https://doi.org/10.1016/j.niox.2010.04.007
[15] Xia, Y. and Zweier, J.L. (1997) Superoxide and Peroxynitrite Generation from Inducible Nitric Oxide Synthase in Macrophages. Proceedings of the National Academy of Sciences of the United States of America, 94, 6954-6958.
https://doi.org/10.1073/pnas.94.13.6954
[16] Buttery, L.D., Springall, D.R., Chester, A.H., et al. (1996) Inducible Nitric Oxide Synthase Is Present within Human Atherosclerotic Lesions and Promotes the Formation and Activity of Peroxynitrite. Laboratory Investigation, 75, 77-85.
[17] Förstermann, U. and Münzel, T. (2006) Endothelial Nitric Oxide Synthase in Vascular Disease: From Marvel to Menace. Circulation, 113, 1708-1714.
https://doi.org/10.1161/circulationaha.105.602532
[18] Chen, K., Lin, W. and Kuo, H. (2021) Chemical and Biochemical Aspects of Molecular Hydrogen in Treating Kawasaki Disease and Covid-19. Chemical Research in Toxicology, 34, 952-958.
https://doi.org/10.1021/acs.chemrestox.0c00456
[19] Iizuka, T., Oishi, K., Sasaki, M., Hatanaka, Y., Minatogawa, Y., Uemura, S., et al. (1997) Nitric Oxide and Aneurysm Formation in Kawasaki Disease. Acta Paediatrica, 86, 470-473.
https://doi.org/10.1111/j.1651-2227.1997.tb08915.x
[20] Li, Q., Wang, Y., Chen, K., Zhou, Q., Wei, W., Wang, Y., et al. (2010) The Role of Oxidized Low-Density Lipoprotein in Breaking Peripheral Th17/Treg Balance in Patients with Acute Coronary Syndrome. Biochemical and Biophysical Research Communications, 394, 836-842.
https://doi.org/10.1016/j.bbrc.2010.03.090
[21] Yahata, T., Suzuki, C., Hamaoka, A., Fujii, M. and Hamaoka, K. (2011) Dynamics of Reactive Oxygen Metabolites and Biological Antioxidant Potential in the Acute Stage of Kawasaki Disease. Circulation Journal, 75, 2453-2459.
https://doi.org/10.1253/circj.cj-10-0605
[22] Shen, C.T. and Wang, N.K. (2001) Antioxidants May Mitigate the Deterioration of Coronary Arteritis in Patients with Kawasaki Disease Unresponsive to High-Dose Intravenous γ-Globulin. Pediatric Cardiology, 22, 419-422.
https://doi.org/10.1007/s002460010268
[23] 解玉. 川崎病冠状动脉病变与内皮功能障碍 [J]. 中国当代儿科杂志, 2003(2): 177-9+83.
[24] Steven, S., Frenis, K., Oelze, M., Kalinovic, S., Kuntic, M., Bayo Jimenez, M.T., et al. (2019) Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 7092151.
https://doi.org/10.1155/2019/7092151
[25] Takahashi, K., Oharaseki, T., Naoe, S., Wakayama, M. and Yokouchi, Y. (2005) Neutrophilic Involvement in the Damage to Coronary Arteries in Acute Stage of Kawasaki Disease. Pediatrics International, 47, 305-310.
https://doi.org/10.1111/j.1442-200x.2005.02049.x
[26] Seki, M. and Minami, T. (2022) Kawasaki Disease: Pathology, Risks, and Management. Vascular Health and Risk Management, 18, 407-416.
https://doi.org/10.2147/vhrm.s291762
[27] Iemura, M. (2000) Long Term Consequences of Regressed Coronary Aneurysms after Kawasaki Disease: Vascular Wall Morphology and Function. Heart, 83, 307-311.
https://doi.org/10.1136/heart.83.3.307
[28] Ingold, K.U., Bowry, V.W., Stocker, R. and Walling, C. (1993) Autoxidation of Lipids and Antioxidation by Alpha-Tocopherol and Ubiquinol in Homogeneous Solution and in Aqueous Dispersions of Lipids: Unrecognized Consequences of Lipid Particle Size as Exemplified by Oxidation of Human Low Density Lipoprotein. Proceedings of the National Academy of Sciences of the United States of America, 90, 45-49.
https://doi.org/10.1073/pnas.90.1.45
[29] Gęgotek, A. and Skrzydlewska, E. (2023) Ascorbic Acid as Antioxidant. Vitamins and Hormones, 121, 247-270.
https://doi.org/10.1016/bs.vh.2022.10.008
[30] Frei, B. (1994) Reactive Oxygen Species and Antioxidant Vitamins: Mechanisms of Action. The American Journal of Medicine, 97, S5-S13.
https://doi.org/10.1016/0002-9343(94)90292-5
[31] Retsky, K.L., Freeman, M.W. and Frei, B. (1993) Ascorbic Acid Oxidation Product(s) Protect Human Low Density Lipoprotein against Atherogenic Modification. Anti-Rather than Prooxidant Activity of Vitamin C in the Presence of Transition Metal Ions. Journal of Biological Chemistry, 268, 1304-1309.
https://doi.org/10.1016/s0021-9258(18)54075-8
[32] Philip, S., Lee, W., Cherian, K.M., Wu, M. and Lue, H. (2017) Role of Antioxidants in Horse Serum-Mediated Vasculitis in Swine: Potential Relevance to Early Treatment in Mitigation of Coronary Arteritis in Kawasaki Disease. Pediatrics & Neonatology, 58, 328-337.
https://doi.org/10.1016/j.pedneo.2016.07.007
[33] Deng, Y., Xiang, H., Chang, Q. and Li, C. (2002) Evaluation by High-Resolution Ultrasonography of Endothelial Function in Brachial Artery after Kawasaki Disease and the Effects of Intravenous Administration of Vitamin C. Circulation Journal, 66, 908-912.
https://doi.org/10.1253/circj.66.908
[34] Sabri, M.R., Tavana, E.N., Ahmadi, A., et al. (2015) Does Vitamin C Improve Endothelial Function in Patients with Kawa-Saki Disease? Journal of Research in Medical Sciences, 20, 32-36.
[35] Bilheimer, D.W., Grundy, S.M., Brown, M.S. and Goldstein, J.L. (1983) Mevinolin and Colestipol Stimulate Receptor-Mediated Clearance of Low Density Lipoprotein from Plasma in Familial Hypercholesterolemia Heterozygotes. Proceedings of the National Academy of Sciences of the United States of America, 80, 4124-4128.
https://doi.org/10.1073/pnas.80.13.4124
[36] Lv, S., Liu, Y., Zou, Z., et al. (2015) The Impact of Statins Therapy on Disease Activity and Inflammatory Factor in Patients with Rheumatoid Arthritis: A Meta-Analysis. Clinical and Experimental Rheumatology, 33, 69-76.
[37] Inanc, M.T., Kalay, N., Heyit, T., Ozdogru, I., Kaya, M.G., Dogan, A., et al. (2010) Effects of Atorvastatin and Lisinopril on Endothelial Dysfunction in Patients with Behçet’s Disease. Echocardiography, 27, 997-1003.
https://doi.org/10.1111/j.1540-8175.2010.01180.x
[38] Ray, J.G., Mamdani, M., Tsuyuki, R.T., Anderson, D.R., Yeo, E.L. and Laupacis, A. (2001) Use of Statins and the Subsequent Development of Deep Vein Thrombosis. Archives of Internal Medicine, 161, 1405-1410.
https://doi.org/10.1001/archinte.161.11.1405
[39] Delbosc, S., Morena, M., Djouad, F., Ledoucen, C., Descomps, B. and Cristol, J. (2002) Statins, 3-Hydroxy-3-Methylglutaryl Coenzyme a Reductase Inhibitors, Are Able to Reduce Superoxide Anion Production by NADPH Oxidase in Thp-1-Derived Monocytes. Journal of Cardiovascular Pharmacology, 40, 611-617.
https://doi.org/10.1097/00005344-200210000-00015
[40] Hoffman, R., Brook, G.J. and Aviram, M. (1992) Hypolipidemic Drugs Reduce Lipoprotein Susceptibility to Undergo Lipid Peroxidation: In Vitro and Ex Vivo Studies. Atherosclerosis, 93, 105-113.
https://doi.org/10.1016/0021-9150(92)90204-t
[41] Kosmidou, I., Moore, J.P., Weber, M. and Searles, C.D. (2007) Statin Treatment and 3’ Polyadenylation of eNOS mRNA. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 2642-2649.
https://doi.org/10.1161/atvbaha.107.154492
[42] Balakumar, P., Kathuria, S., Taneja, G., Kalra, S. and Mahadevan, N. (2012) Is Targeting eNOS a Key Mechanistic Insight of Cardiovascular Defensive Potentials of Statins? Journal of Molecular and Cellular Cardiology, 52, 83-92.
https://doi.org/10.1016/j.yjmcc.2011.09.014
[43] Motoji, Y., Fukazawa, R., Matsui, R., Abe, Y., Uehara, I., Watanabe, M., et al. (2022) Statins Show Anti-Atherosclerotic Effects by Improving Endothelial Cell Function in a Kawasaki Disease-Like Vasculitis Mouse Model. International Journal of Molecular Sciences, 23, Article 16108.
https://doi.org/10.3390/ijms232416108
[44] Lim, S. and Barter, P. (2014) Antioxidant Effects of Statins in the Management of Cardiometabolic Disorders. Journal of Atherosclerosis and Thrombosis, 21, 997-1010.
https://doi.org/10.5551/jat.24398
[45] Franco, A., Shimizu, C., Tremoulet, A.H. and Burns, J.C. (2010) Memory T-Cells and Characterization of Peripheral T-Cell Clones in Acute Kawasaki Disease. Autoimmunity, 43, 317-324.
https://doi.org/10.3109/08916930903405891
[46] Duan, C., Du, Z., Wang, Y. and Jia, L. (2014) Effect of Pravastatin on Endothelial Dysfunction in Children with Medium to Giant Coronary Aneurysms Due to Kawasaki Disease. World Journal of Pediatrics, 10, 232-237.
https://doi.org/10.1007/s12519-014-0498-5
[47] Hamaoka, A., Hamaoka, K., Yahata, T., Fujii, M., Ozawa, S., Toiyama, K., et al. (2010) Effects of HMG-CoA Reductase Inhibitors on Continuous Post-Inflammatory Vascular Remodeling Late after Kawasaki Disease. Journal of Cardiology, 56, 245-253.
https://doi.org/10.1016/j.jjcc.2010.06.006
[48] Canas, J.A., Ross, J.L., Taboada, M.V., Sikes, K.M., Damaso, L.C., Hossain, J., et al. (2014) A Randomized, Double Blind, Placebo-Controlled Pilot Trial of the Safety and Efficacy of Atorvastatin in Children with Elevated Low-Density Lipoprotein Cholesterol (LDL-C) and Type 1 Diabetes. Pediatric Diabetes, 16, 79-89.
https://doi.org/10.1111/pedi.12245
[49] Tremoulet, A.H., Jain, S., Jone, P., Best, B.M., Duxbury, E.H., Franco, A., et al. (2019) Phase I/IIa Trial of Atorvastatin in Patients with Acute Kawasaki Disease with Coronary Artery Aneurysm. The Journal of Pediatrics, 215, 107-117.E12.
https://doi.org/10.1016/j.jpeds.2019.07.064
[50] Simsek, B., Selte, A., Egeli, B.H. and Çakatay, U. (2021) Effects of Vitamin Supplements on Clinical Cardiovascular Outcomes: Time to Move On!—A Comprehensive Review. Clinical Nutrition ESPEN, 42, 1-14.
https://doi.org/10.1016/j.clnesp.2021.02.014
[51] Gutteridge, J.M.C. and Halliwell, B. (2010) Antioxidants: Molecules, Medicines, and Myths. Biochemical and Biophysical Research Communications, 393, 561-564.
https://doi.org/10.1016/j.bbrc.2010.02.071
[52] Vivekananthan, D.P., Penn, M.S., Sapp, S.K., Hsu, A. and Topol, E.J. (2003) Use of Antioxidant Vitamins for the Prevention of Cardiovascular Disease: Meta-Analysis of Randomised Trials. The Lancet, 361, 2017-2023.
https://doi.org/10.1016/s0140-6736(03)13637-9
[53] Cochemé, H.M. and Murphy, M.P. (2010) Can Antioxidants Be Effective Therapeutics? Current Opinion in Investigational Drugs, 11, 426-431.
[54] Ross, M.F., Kelso, G.F., Blaikie, F.H., James, A.M., Cochemé, H.M., Filipovska, A., et al. (2005) Lipophilic Triphenylphosphonium Cations as Tools in Mitochondrial Bioenergetics and Free Radical Biology. Biochemistry (Moscow), 70, 222-230.
https://doi.org/10.1007/s10541-005-0104-5
[55] Smith, R.A.J., Porteous, C.M., Coulter, C.V. and Murphy, M.P. (1999) Selective Targeting of an Antioxidant to Mitochondria. European Journal of Biochemistry, 263, 709-716.
https://doi.org/10.1046/j.1432-1327.1999.00543.x
[56] Kelso, G.F., Porteous, C.M., Coulter, C.V., Hughes, G., Porteous, W.K., Ledgerwood, E.C., et al. (2001) Selective Targeting of a Redox-Active Ubiquinone to Mitochondria within Cells: Antioxidant and Antiapoptotic Properties. Journal of Biological Chemistry, 276, 4588-4596.
https://doi.org/10.1074/jbc.m009093200
[57] Filipovska, A., Kelso, G.F., Brown, S.E., Beer, S.M., Smith, R.A.J. and Murphy, M.P. (2005) Synthesis and Characterization of a Triphenylphosphonium-Conjugated Peroxidase Mimetic. Insights into the Interaction of Ebselen with Mitochondria. Journal of Biological Chemistry, 280, 24113-24126.
https://doi.org/10.1074/jbc.m501148200
[58] Smith, R.A.J., Hartley, R.C. and Murphy, M.P. (2011) Mitochondria-Targeted Small Molecule Therapeutics and Probes. Antioxidants & Redox Signaling, 15, 3021-3038.
https://doi.org/10.1089/ars.2011.3969
[59] Rodriguez-Cuenca, S., Cochemé, H.M., Logan, A., Abakumova, I., Prime, T.A., Rose, C., et al. (2010) Consequences of Long-Term Oral Administration of the Mitochondria-Targeted Antioxidant MitoQ to Wild-Type Mice. Free Radical Biology and Medicine, 48, 161-172.
https://doi.org/10.1016/j.freeradbiomed.2009.10.039
[60] Snow, B.J., Rolfe, F.L., Lockhart, M.M., Frampton, C.M., O’Sullivan, J.D., Fung, V., et al. (2010) A Double‐blind, Placebo‐controlled Study to Assess the Mitochondria‐Targeted Antioxidant MitoQ as a Disease‐Modifying Therapy in Parkinson’s Disease. Movement Disorders, 25, 1670-1674.
https://doi.org/10.1002/mds.23148
[61] Gane, E.J., Weilert, F., Orr, D.W., Keogh, G.F., Gibson, M., Lockhart, M.M., et al. (2010) The Mitochondria-Targeted Anti-Oxidant Mitoquinone Decreases Liver Damage in a Phase II Study of Hepatitis C Patients. Liver International, 30, 1019-1026.
https://doi.org/10.1111/j.1478-3231.2010.02250.x
[62] Horton, K.L., Stewart, K.M., Fonseca, S.B., Guo, Q. and Kelley, S.O. (2008) Mitochondria-Penetrating Peptides. Chemistry & Biology, 15, 375-382.
https://doi.org/10.1016/j.chembiol.2008.03.015
[63] Zhao, K., Zhao, G., Wu, D., Soong, Y., Birk, A.V., Schiller, P.W., et al. (2004) Cell-Permeable Peptide Antioxidants Targeted to Inner Mitochondrial Membrane Inhibit Mitochondrial Swelling, Oxidative Cell Death, and Reperfusion Injury. Journal of Biological Chemistry, 279, 34682-34690.
https://doi.org/10.1074/jbc.m402999200
[64] Ren, M., Phoon, C.K.L. and Schlame, M. (2014) Metabolism and Function of Mitochondrial Cardiolipin. Progress in Lipid Research, 55, 1-16.
https://doi.org/10.1016/j.plipres.2014.04.001
[65] Liu, S., Soong, Y., Seshan, S.V. and Szeto, H.H. (2014) Novel Cardiolipin Therapeutic Protects Endothelial Mitochondria during Renal Ischemia and Mitigates Microvascular Rarefaction, Inflammation, and Fibrosis. American Journal of Physiology-Renal Physiology, 306, F970-F980.
https://doi.org/10.1152/ajprenal.00697.2013
[66] Yousif, L.F., Stewart, K.M., Horton, K.L. and Kelley, S.O. (2009) Mitochondria‐penetrating Peptides: Sequence Effects and Model Cargo Transport. ChemBioChem, 10, 2081-2088.
https://doi.org/10.1002/cbic.200900017
[67] Vestweber, D. and Schatz, G. (1988) Mitochondria Can Import Artificial Precursor Proteins Containing a Branched Polypeptide Chain or a Carboxy-Terminal Stilbene Disulfonate. The Journal of cell biology, 107, 2045-2049.
https://doi.org/10.1083/jcb.107.6.2045
[68] McLachlan, J., Beattie, E., Murphy, M.P., Koh-Tan, C.H.H., Olson, E., Beattie, W., et al. (2014) Combined Therapeutic Benefit of Mitochondria-Targeted Antioxidant, Mitoq10, and Angiotensin Receptor Blocker, Losartan, on Cardiovascular Function. Journal of Hypertension, 32, 555-564.
https://doi.org/10.1097/hjh.0000000000000054
[69] Hao, S., Ji, J., Zhao, H., Shang, L., Wu, J., Li, H., et al. (2015) Mitochondrion-Targeted Peptide SS-31 Inhibited Oxidized Low-Density Lipoproteins-Induced Foam Cell Formation through Both ROS Scavenging and Inhibition of Cholesterol Influx in RAW264.7 Cells. Molecules, 20, 21287-21297.
https://doi.org/10.3390/molecules201219764
[70] Dai, D., Hsieh, E.J., Chen, T., Menendez, L.G., Basisty, N.B., Tsai, L., et al. (2013) Global Proteomics and Pathway Analysis of Pressure-Overload-Induced Heart Failure and Its Attenuation by Mitochondrial-Targeted Peptides. Circulation: Heart Failure, 6, 1067-1076.
https://doi.org/10.1161/circheartfailure.113.000406
[71] Huang, P., Wei, S., Huang, W., Wu, P., Chen, S., Tao, A., et al. (2022) Corrigendum to “Hydrogen Gas Inhalation Enhances Alveolar Macrophage Phagocytosis in an Ovalbumin-Induced Asthma Model” [int. Immunopharmacol. 74 (2019) 105646]. International Immunopharmacology, 112, Article ID: 109124.
https://doi.org/10.1016/j.intimp.2022.109124
[72] Hayashida, K., Sano, M., Ohsawa, I., Shinmura, K., Tamaki, K., Kimura, K., et al. (2008) Inhalation of Hydrogen Gas Reduces Infarct Size in the Rat Model of Myocardial Ischemia-Reperfusion Injury. Biochemical and Biophysical Research Communications, 373, 30-35.
https://doi.org/10.1016/j.bbrc.2008.05.165
[73] Zeng, Y., Guan, W., Wang, K., Jie, Z., Zou, X., Tan, X., et al. (2023) Effect of Hydrogen/oxygen Therapy for Ordinary COVID-19 Patients: A Propensity-Score Matched Case-Control Study. BMC Infectious Diseases, 23, Article No. 440.
https://doi.org/10.1186/s12879-023-08424-4
[74] Katsumata, Y., Sano, F., Abe, T., Tamura, T., Fujisawa, T., Shiraishi, Y., et al. (2017) The Effects of Hydrogen Gas Inhalation on Adverse Left Ventricular Remodeling after Percutaneous Coronary Intervention for St-Elevated Myocardial Infarction—First Pilot Study in Humans. Circulation Journal, 81, 940-947.
https://doi.org/10.1253/circj.cj-17-0105