TyG指数、TG/HDL-C比值与缺血性脑卒中患者神经功能相关性的研究进展
Research Progress on the Correlation between TyG Index, TG/HDL-C Ratio and Neurological Function in Patients with Ischemic Stroke
DOI: 10.12677/acm.2024.1482349, PDF, HTML, XML,   
作者: 姜 珊, 袁 薇, 刁德敦, 吕雪雯:延安大学医学院,陕西 延安;王丙聚*:延安大学咸阳医院神经内科,陕西 延安;吴文宇:榆林市第一医院心血管内科,陕西 榆林
关键词: 脑卒中胰岛素抵抗空腹葡萄糖甘油三酯高密度脂蛋白胆固醇Stroke Insulin Resistance Fasting Plasma Glucose Triglyceride High Density Lipoprotein Cholesterol
摘要: 脑卒中是全球范围内死亡和残疾的主要原因之一,胰岛素抵抗参与脑卒中的多种病理机制,研究胰岛素替代指标与脑卒中的关系,对于早期识别高风险人群及疾病预后有重要的意义。本文系统地总结了TyG指数、TG/HDL-C比值与各个系统性疾病尤其是卒中的发生、发展及预后的关系研究,探讨二者对脑卒中患者发生早期神经功能恶化的预测价值,以便更好地指导卒中患者的预防。
Abstract: Stroke is one of the major causes of death and disability worldwide. Insulin resistance is involved in various pathologic mechanisms of stroke. Studying the relationship between insulin replacement indicators and stroke is of great significance for the early identification of high-risk groups and disease prognosis. This paper systematically summarized the studies on the relationship between TyG index, TG/HDL-C ratio and the occurrence, development and prognosis of various systemic diseases, especially stroke, and explored the predictive value of the two on the early neurological deterioration in stroke patients, so as to better guide the prevention of stroke patients.
文章引用:姜珊, 王丙聚, 袁薇, 刁德敦, 吕雪雯, 吴文宇. TyG指数、TG/HDL-C比值与缺血性脑卒中患者神经功能相关性的研究进展[J]. 临床医学进展, 2024, 14(8): 1268-1276. https://doi.org/10.12677/acm.2024.1482349

1. 引言

脑血管病是(cerebrovascular disease, CVD)由脑血管病变导致脑功能障碍的一类疾病的总称,是全球范围内死亡和残疾的主要原因之一[1]。脑卒中(cerebral stroke)作为脑血管疾病的主要临床类型,其中缺血性卒中(Ischemic stroke, IS)占所有卒中的85%,是病理性卒中里最常见的类型,其给全球卫生保健系统带来了严重的负担。因此,采取全面而规范的预防措施,特别是对于缺血性卒中,具有重要意义。许多研究表明,病理和行为条件与IS的发生有关[2]

胰岛素抵抗(insulin resistance, IR)是一种由受损组织对胰岛素刺激引起的代谢紊乱,主要表现为葡萄糖和血脂代谢功能障碍[3]。已有研究证实IR参与疾病的机制主要有:动脉粥样硬化、颈动脉斑块形成和破裂、颈动脉内膜中层增厚、高血脂、血糖异常、脑卒中和冠状动脉疾病[3]-[7]。综上,我们或许可以这样猜想,早期识别和控制IR可能有助于预防缺血性卒中。

到目前为止,有多种方法来评估IR,其中金标准是高胰岛素–正常血糖钳夹试验[8]。另一种方法是IR的稳态模型(HOMA-IR) [9]。但由于需要测量胰岛素,其应用也受到了很大的限制。因此,迫切需要更方便、实用、节约成本、提高效益的方法来研究以非胰岛素为基础的IR替代指标。目前应用于临床,方便获得的替代指标主要有:TyG指数、TG/HDL-C比值、TyG-BMI指数等。

2. TyG指数与TG/HDL-C比值

2.1. TyG指数

甘油三酯–葡萄糖(TyG)指数,是使用空腹血糖(FBG)和空腹甘油三酯(TG)浓度计算的数值,已被认为是IR的可靠和简单的替代生物标志物[10]。一项研究显示,通过葡萄糖钳夹试验,TyG指数和IR之间具有高度相关性[11] [12];另一项研究[12]显示,TyG指数对IR的诊断性能甚至高于HOMA-IR。TyG指数的计算公式为:ln [甘油三酯(mg/dL) × 葡萄糖(mg/dL)/2] [13]

2.2. TG/HDL-C比值

甘油三酯(TG)、胆固醇(Cho)和低密度脂蛋白(LDL-C)的高水平以及高密度脂蛋白胆固醇(HDL-C)的低水平均被认为是血脂异常。另一项指标——TG与HDL-C (TG/HDL-C)比值通过总结血清脂质水平,已被证实是胰岛素抵抗、心脏代谢风险、心血管疾病和慢性肾脏疾病发病率的有价值的预测因子[14]-[17]。TG/HDL-C比值可用TG (mg/dL) ÷ HDL-C (mg/dL)来计算。

3. TyG指数、TG/HDL-C比值与各系统疾病的关系研究

3.1. 与心血管疾病的关系

IR已被认为是心血疾病(Cardiovascular disease, CVD)的重要危险因素,其被证实的机制有:通过促进动脉粥样硬化形成和临床相关的晚期斑块进展[3] [18]。目前研究表明,使用TyG指数、TyG-BMI指数以及TG/HDL-C比值作为胰岛素抵抗的替代标志物具有很强的适用性,并有大量证据表明其与CVD风险相关[19]。但关于TyG指数和TG/HDL-C比值与CVD风险相关性的研究目前较少。一项横断面研究显示,TyG指数与使用Fragrance风险评分评估的10年CVD风险之间存在正相关[1]。Hong等人[20]进行了一项回顾性队列研究,在平均随访8.2年期间的年龄 ≥ 40岁的韩国人群中,TyG指数是发生动脉粥样硬化CVD事件的独立预测因子。开滦队列中一项基于社区的前瞻性研究的数据表明,基线TyG指数最高四分位数的个体发生心肌梗死的风险是最低四分位数的2.08倍[21]。此外,另一项前瞻性研究对796名参与者进行了为期8年的随访,证实TG/HDL-C比值升高可预测CVD事件的发生风险。扩大样本量后证实,与之前的研究一致,较高的TyG指数和TG/HDL-C比值与英国生物库人群中总CVD和CHD的风险增加具有显著相关性[22]

同样,来自英国生物银行数据的分析表明,在调整了已确立的CVD风险因素后,IR的两个替代标志物(TyG指数和TG/HDL-C比值)的基线升高与CVD风险升高相关。另一方面,研究证实,2型糖尿病、高血压和血脂异常使个体易于加速动脉粥样硬化和CVD的进展,从而对TyG指数和TG/HDL-C比值与CVD的相关性起重要介导作用[23]

3.2. 与冠心病的发病和狭窄程度的关系

冠心病(Coronary heart disease, CHD)已成为威胁我国居民身体健康的主要疾病之一,其病理改变主要是因冠状动脉粥样硬化造成的心肌缺血缺氧及坏死[24] [25]。CHD诊断的金标准是冠脉造影术,可对冠脉狭窄程度和病变情况做出最客观的评价,但该方式需进行造影剂注射,且具有一定的创伤性,这在一定程度上限制了冠脉造影术的应用[26]。因此,探寻可用于评价CHD病情的生化标志物有着重要意义。目前,Gensini评分是根据冠脉造影结果进行量化狭窄程度的评分系统,其得分结果可直接反映冠脉狭窄程度(严重情况)。Luo [27]和Lee等[28]的研究结果提示:TyG指数与冠脉Gensini评分呈正相关。有针对于不同冠状动脉狭窄程度患者的TyG指数水平的研究表明,患者的冠状动脉狭窄程度从轻度到重度,其TyG指数的水平依次升高,提示TyG指数参与了冠心病的发生发展,并具有作为评估冠心病冠脉狭窄程度生化标志物的应用价值。Won KB等[29]认为在基线无严重冠脉钙化情况下,TyG指数是冠脉钙化进展的独立预测因子。以上研究均提示,TyG指数越高,冠状动脉狭窄程度越重。但关于其相关性的机制尚不明确,考虑可能与IR降低了血管平滑肌细胞的存活率,使粥样斑块中的纤维帽变薄,增加了坏死核心的面积有关;同时IR可招募炎症因子,扩大局部的炎症范围,加速坏死核的形成,加重管腔狭窄[30]

3.3. 与高血压的关系

高血压(Hypertension, HTN)是一种常见的疾病,主要特征是全身动脉血压升高,可伴有心脏、脑和肾脏的功能性或器质性损伤,是心血管疾病和全因死亡的重要危险因素[31]。因此,早期识别正常–高血压值的患者,并减少潜在的危险因素,对于降低HTN发生的风险是非常有必要的。

HTN的发病机制复杂,有研究表明约40%的HTN患者存在血脂和空腹血糖的异常[32] [33],这些糖脂代谢异常将进一步增加心血管疾病的风险。研究表明,IR可能通过介导低度全身性炎症而参与HTN的发病机制[3] [34] [35]。高胰岛素血症可导致肾小管钠重吸收增加、交感神经兴奋、心率加快、血管阻力增加、血脂异常和动脉粥样硬化狭窄,这又可增加细胞内钙离子浓度和对升高物质的敏感性,导致HTN的发展[35] [36]

目前关于IR与HTN的研究较多。有研究表明:与BMI和TyG指数单独相比,TyG-BMI指数对正常–高血压值和HTN的识别能力更强。一项前瞻性队列研究证明,TyG指数和TG/HDL-C比值可预测高血压人群中动脉硬化的风险及进展,其关系呈正相关[37]。在对8项观察性研究的荟萃分析中,Wang等人[38]证明,在一般成人人群中,较高的TyG指数与HTN的风险增加独立相关。

3.4. 与颈脑动脉粥样硬化的关系

目前对于颈脑动脉粥样硬化的检查主要依据颈动脉超声评估颈总动脉内膜中层厚度(cIMT),cIMT是检测动脉粥样硬化早期体征的无创、准确的方法,且适用范围广,可反映动脉粥样硬化现象的多样生物学特征[39]

据报道IR与慢性炎症相关,其可由各种促炎细胞因子和氧化应激生物标志物诱导。其次,TyG指数也被认为是全身性炎症的合适且可靠的标志物[40] [41] [42],Alizargar等[43]研究发现,较高的TyG指数与较高的粥样硬化率有关。此外,血浆的高TG水平被认为会促进内皮功能障碍、动脉炎症和斑块破裂[44],而升高的FPG水平可诱导氧化应激,改变蛋白激酶信号传导,并触发某些miRNA和表观遗传修饰[45],这些被认为是动脉粥样硬化过程中的另一种可能的发病机制。

另外,有横断面研究显示,在调整混杂因素后,TyG指数与颅内和颅外动脉粥样硬化之间存在显著相关性。一些文献表明IR可通过影响动脉扩张而导致颅内动脉粥样硬化[46] [47]。孔村镇研究[48]证明IR与无症状颅内动脉狭窄有关。同样,AsIA队列研究[49]表明IR及相关代谢异常是颅内动脉粥样硬化疾病发展的重要机制。综上,提示TyG指数可能是临床上鉴别高危动脉粥样硬化患者的一个更合适的指标。

3.5. 与2型糖尿病的关系

胰岛素靶向组织对胰岛素作用的不敏感状态称为胰岛素抵抗(Insulin Resistance, IR),在这种情况下,为了维持葡萄糖稳态,胰腺细胞通过增加胰岛素分泌来代偿性改善胰岛素不敏感,从而导致慢性高胰岛素血症。

IR是T2DM的核心病理生理机制,有研究表明,脂质过多是IR和T2DM的主要原因之一[50];同时,Unger等[51]人提出脂毒性这一定义,指非脂肪组织如肝脏、肌肉和心脏等细胞内的脂质异位沉积,肥胖动物脂肪细胞对胰岛素的抗脂作用产生原发性抵抗,导致高脂血症,进而导致肌肉胰岛素抵抗和胰岛素高分泌,最终导致细胞对葡萄糖的反应受损。且IR在T2DM诊断前就已经存在,因此早期识别IR可能有助于干预糖尿病的发生。

墨西哥一项纳入200余名5~9岁肥胖和非肥胖儿童的前瞻性研究,结果指出TyG、TG/HDL-C是IR的良好预测指标,其中TyG评估准确度更高,ROC曲线下面积为0.802,最佳阈值为8.5 [52]

3.6. 与非酒精性肝病的关系

非酒精性脂肪性肝病(nonalcoholic fatty liver disease, NAFLD)是全球最常见的慢性肝病之一,其机制与IR以及遗传易感性密切相关,主要病理特征是肝细胞的脂肪变性和脂质过量蓄积[53] [54]

在IR状态下,外周脂肪细胞对胰岛素的反应受损,致使体内的游离脂肪酸水平升高,当过量的游离脂肪酸超出肝脏的清除能力后,即导致肝细胞内脂质沉积[55]。由此可见,IR通过一系列的糖、脂代谢紊乱在NAFLD的发生与发展中扮演了重要的作用,而肝细胞过量脂肪贮积又可加重IR,二者互为因果,形成恶性循环,不停的推动NAFLD疾病的发生发展。由于TyG指数的两个构成要素分别是糖代谢和脂质代谢过程的重要组分,使得TyG指数与NAFLD的发生密切相关,它不仅是NAFLD的危险因素,更是预测NAFLD的一个可靠指标。而TyG指数和TyG-BMI具有廉价、简便等特点,在早期识别NAFLD方面具有良好的应用价值,对今后NAFLD的早期发现和管理具有一定的意义。有研究表明,TyG指数和TyG-BMI均为NAFLD发生发展的危险因素,且与TyG指数相比,TyG-BMI对NAFLD诊断价值更高[56]

3.7. 与左室重构的关系

左室重构(Left ventricle Remodel, LVR)是指急性心肌梗塞后整个左心室形态和大小的改变,新近的概念还包括心肌细胞形态与结构甚至间质结构的改变。心肌梗塞后,部分心肌缺血坏死,失去收缩功能,左心室壁收缩运动不协调,致左心室内血液不能有效地排空,残留血液增多,心室内压力负荷加重,室壁在收缩与舒张期所受到的应力增加,引起整个左心室(包括梗塞区和非梗塞区)扩张和心室结构形态变化,包括早期的梗塞区伸展和晚期的整体心室扩张。有研究表明,TyG指数、TG/HDL-C与T2DM患者左室重构密切相关,对左室重构有一定预测价值[57]

3.8. 与高尿酸血症的关系

高尿酸血症(hyperuricemia, HUA)是一种人体嘌呤代谢紊乱引起的代谢异常综合征。尿酸是体内嘌呤代谢的最终产物,主要通过肾脏及肠道随大小便排出体外。当尿酸排泄障碍或尿酸生成过多时,就会导致尿酸蓄积在体内,进而形成HUA。有研究证实:TyG指数、TG/HDL-C是T2DM合并HUA的独立危险因素,两者对HUA有一定预测价值,其中ROC曲线显示,TG/HDL-C曲线下面积为0.651 (95%CI:0.604~0.697),TyG指数曲线下面积0.617 (95%CI:0.570~0.665);TG/HDL-C、TyG指数、血尿酸与糖尿病并发症密切相关,临床应严密关注[58]

4. TyG指数、TG/HDL-C比值与脑卒中的研究

4.1. TyG指数对脑卒中发病的预测

卒中(stroke)是一种急性脑血管疾病,可导致患者肢体瘫痪、言语障碍、吞咽困难、认知障碍、精神抑郁等症状,具有高发病率、高复发率、高致残率和高死亡率的特点。因此,卒中的早期预防和治疗极为重要。开滦队列的9年前瞻性研究指出:高累积TyG指数与缺血性卒中的高风险相关,意味着监测和维持适当的TyG指数可能有助于预防缺血性卒中[59]

4.2. TyG指数对于脑卒中复发、预后、临床结局的预测

TyG指数不仅可以预测卒中的发生,关于其临床结局也有多项研究。Yimo Zhou等认为:代表IR的TyG指数与IS患者卒中复发、全因死亡率和神经功能恶化风险增加相关[60]。Weimin Cai等认为:TyG指数与IS危重患者的医院和ICU全因死亡显著相关[61]。Emma M. S. Toh等认为:TyG指数与接受tPA治疗的AIS患者的临床结局较差显著相关[62]

4.3. TyG指数及TG/HDL-C比值对脑卒中早期神经功能恶化的研究

早期神经功能恶化(early neurological deterioration, END)是约8.1%~28.1% IS患者的常见并发症,会使患者病情恶化,延长住院时间,并给社会和家庭带来巨大负担。END定义为患者在入院后7 d内出现神经功能缺损症状的加重,NIHSS评分增加 ≥ 2分或意识水平单项评分、肌力单项评分增加 ≥ 1分,或出现新的神经损伤表现。王梦等人的研究结果证明:TyG指数升高是急性IS患者发生END的危险因素之一,对急性IS患者END的发生具有一定预测作用[63]。但目前关于卒中患者END的研究相对较少,尤其是IR的另一预测指标——TG/HDL-C,这一方面有待增加样本量、多中心进一步研究。

5. 总结与展望

脑卒中是威胁人类健康和生命的一大疾病,对人类的日常生活有着重大的影响,给国家和社会带来了巨大的经济负担。IR通过多种生理病理机制参与了各种疾病的发生发展过程。TyG指数及TG/HDL-C指数作为IR的替代指标,有着便捷、实用、经济、高效益的特点,通过研究其与脑卒中的发生、发展、预后的关系,我们能够对卒中有着更进一步的认识,这或许将从根源上减少疾病的发生,对整个人类社会有着重大的意义。未来的研究需着重于脑卒中不同临床分型的早期神经功能恶化与IR替代指标之间的关系,以便于更好的指导疾病的一级、二级预防工作。

NOTES

*通讯作者。

参考文献

[1] Guo, W., Zhu, W., Wu, J., Li, X., Lu, J., Qin, P., et al. (2021) Triglyceride Glucose Index Is Associated with Arterial Stiffness and 10-Year Cardiovascular Disease Risk in a Chinese Population. Frontiers in Cardiovascular Medicine, 8, Article 585776.
https://doi.org/10.3389/fcvm.2021.585776
[2] Barthels, D. and Das, H. (2020) Current Advances in Ischemic Stroke Research and Therapies. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1866, Article 165260.
https://doi.org/10.1016/j.bbadis.2018.09.012
[3] Ormazabal, V., Nair, S., Elfeky, O., Aguayo, C., Salomon, C. and Zuñiga, F.A. (2018) Association between Insulin Resistance and the Development of Cardiovascular Disease. Cardiovascular Diabetology, 17, Article No. 122.
https://doi.org/10.1186/s12933-018-0762-4
[4] Bressler, P., Bailey, S.R., Matsuda, M. and DeFronzo, R.A. (1996) Insulin Resistance and Coronary Artery Disease. Diabetologia, 39, 1345-1350.
https://doi.org/10.1007/s001250050581
[5] Di Pino, A. and DeFronzo, R.A. (2019) Insulin Resistance and Atherosclerosis: Implications for Insulin-Sensitizing Agents. Endocrine Reviews, 40, 1447-1467.
https://doi.org/10.1210/er.2018-00141
[6] Kraemer, F.B. and Ginsberg, H.N. (2014) Gerald M. Reaven, MD: Demonstration of the Central Role of Insulin Resistance in Type 2 Diabetes and Cardiovascular Disease. Diabetes Care, 37, 1178-1181.
https://doi.org/10.2337/dc13-2668
[7] Wang, A., Wang, G., Liu, Q., Zuo, Y., Chen, S., Tao, B., et al. (2021) Triglyceride-Glucose Index and the Risk of Stroke and Its Subtypes in the General Population: An 11-Year Follow-Up. Cardiovascular Diabetology, 20, Article No. 46.
https://doi.org/10.1186/s12933-021-01238-1
[8] Heise, T., Zijlstra, E., Nosek, L., Heckermann, S., Plum-Mörschel, L. and Forst, T. (2016) Euglycaemic Glucose Clamp: What It Can and Cannot Do, and How to Do It. Diabetes, Obesity and Metabolism, 18, 962-972.
https://doi.org/10.1111/dom.12703
[9] Wallace, T.M., Levy, J.C. and Matthews, D.R. (2004) Use and Abuse of HOMA Modeling. Diabetes Care, 27, 1487-1495.
https://doi.org/10.2337/diacare.27.6.1487
[10] Lim, J., Kim, J., Koo, S.H. and Kwon, G.C. (2019) Comparison of Triglyceride Glucose Index, and Related Parameters to Predict Insulin Resistance in Korean Adults: An Analysis of the 2007-2010 Korean National Health and Nutrition Examination Survey. PLOS ONE, 14, e0212963.
https://doi.org/10.1371/journal.pone.0212963
[11] Mohd Nor, N.S., Lee, S., Bacha, F., Tfayli, H. and Arslanian, S. (2015) Triglyceride Glucose Index as a Surrogate Measure of Insulin Sensitivity in Obese Adolescents with Normoglycemia, Prediabetes, and Type 2 Diabetes Mellitus: Comparison with the Hyperinsulinemic-Euglycemic Clamp. Pediatric Diabetes, 17, 458-465.
https://doi.org/10.1111/pedi.12303
[12] Vasques, A.C.J., Novaes, F.S., de Oliveira, M.d.S., Matos Souza, J.R., Yamanaka, A., Pareja, J.C., et al. (2011) Tyg Index Performs Better than HOMA in a Brazilian Population: A Hyperglycemic Clamp Validated Study. Diabetes Research and Clinical Practice, 93, e98-e100.
https://doi.org/10.1016/j.diabres.2011.05.030
[13] Fritz, J., Bjørge, T., Nagel, G., Manjer, J., Engeland, A., Häggström, C., et al. (2019) The Triglyceride-Glucose Index as a Measure of Insulin Resistance and Risk of Obesity-Related Cancers. International Journal of Epidemiology, 49, 193-204.
https://doi.org/10.1093/ije/dyz053
[14] Borrayo, G. (2018) Tg/Hdl-C Ratio as Cardio-Metabolic Biomarker Even in Normal Weight Women. Acta Endocrinologica (Bucharest), 14, 261-267.
https://doi.org/10.4183/aeb.2018.261
[15] McLaughlin, T., Reaven, G., Abbasi, F., Lamendola, C., Saad, M., Waters, D., et al. (2005) Is There a Simple Way to Identify Insulin-Resistant Individuals at Increased Risk of Cardiovascular Disease? The American Journal of Cardiology, 96, 399-404.
https://doi.org/10.1016/j.amjcard.2005.03.085
[16] Nur Zati Iwani, A.K., Jalaludin, M.Y., Wan Mohd Zin, R.M., Fuziah, M.Z., Hong, J.Y.H., Abqariyah, Y., et al. (2019) TG: HDL-C Ratio Is a Good Marker to Identify Children Affected by Obesity with Increased Cardiometabolic Risk and Insulin Resistance. International Journal of Endocrinology, 2019, 1-9.
https://doi.org/10.1155/2019/8586167
[17] Xia, W., Yao, X., Chen, Y., Lin, J., Vielhauer, V. and Hu, H. (2020) Elevated TG/HDL-C and Non-Hdl-C/hdl-C Ratios Predict Mortality in Peritoneal Dialysis Patients. BMC Nephrology, 21, Article No. 324.
https://doi.org/10.1186/s12882-020-01993-5
[18] Bornfeldt, K.E. and Tabas, I. (2011) Insulin Resistance, Hyperglycemia, and Atherosclerosis. Cell Metabolism, 14, 575-585.
https://doi.org/10.1016/j.cmet.2011.07.015
[19] Eeg-Olofsson, K., Gudbjörnsdottir, S., Eliasson, B., Zethelius, B. and Cederholm, J. (2014) The Triglycerides-to-Hdl-Cholesterol Ratio and Cardiovascular Disease Risk in Obese Patients with Type 2 Diabetes: An Observational Study from the Swedish National Diabetes Register (NDR). Diabetes Research and Clinical Practice, 106, 136-144.
https://doi.org/10.1016/j.diabres.2014.07.010
[20] Hong, S., Han, K. and Park, C. (2020) The Triglyceride Glucose Index Is a Simple and Low-Cost Marker Associated with Atherosclerotic Cardiovascular Disease: A Population-Based Study. BMC Medicine, 18, Article No. 361.
https://doi.org/10.1186/s12916-020-01824-2
[21] Tian, X., Zuo, Y., Chen, S., Liu, Q., Tao, B., Wu, S., et al. (2021) Triglyceride-Glucose Index Is Associated with the Risk of Myocardial Infarction: An 11-Year Prospective Study in the Kailuan Cohort. Cardiovascular Diabetology, 20, Article No. 19.
https://doi.org/10.1186/s12933-020-01210-5
[22] Salazar, M.R., Carbajal, H.A., Espeche, W.G., Aizpurúa, M., Leiva Sisnieguez, C.E., March, C.E., et al. (2013) Identifying Cardiovascular Disease Risk and Outcome: Use of the Plasma Triglyceride/High-Density Lipoprotein Cholesterol Concentration Ratio versus Metabolic Syndrome Criteria. Journal of Internal Medicine, 273, 595-601.
https://doi.org/10.1111/joim.12036
[23] Rader, D.J. (2007) Effect of Insulin Resistance, Dyslipidemia, and Intra-Abdominal Adiposity on the Development of Cardiovascular Disease and Diabetes Mellitus. The American Journal of Medicine, 120, S12-S18.
https://doi.org/10.1016/j.amjmed.2007.01.003
[24] 徐晨婕, 侯亚冰, 曹新西, 等. 冠心病及脑卒中的发病率和死亡率与互联网搜索引擎数据的关联分析[J]. 中国慢性病预防与控制, 2020, 28(4): 270-273+279+322.
[25] 于晓燕, 汤婷, 赵佳文, 等. 个体化康复运动训练合八段锦运动对冠心病PCI术后患者心功能、生活质量和心境状态的影响[J]. 现代生物医学进展, 2022, 22(2): 294-298.
[26] Niknam Sarabi, H., Farsi, Z., Butler, S. and Pishgooie, A.H. (2021) Comparison of the Effectiveness of Position Change for Patients with Pain and Vascular Complications after Transfemoral Coronary Angiography: A Randomized Clinical Trial. BMC Cardiovascular Disorders, 21, Article No. 114.
https://doi.org/10.1186/s12872-021-01922-w
[27] Luo, E., Wang, D., Yan, G., Qiao, Y., Liu, B., Hou, J., et al. (2019) High Triglyceride-Glucose Index Is Associated with Poor Prognosis in Patients with Acute St-Elevation Myocardial Infarction After Percutaneous Coronary Intervention. Cardiovascular Diabetology, 18, Article No. 150.
https://doi.org/10.1186/s12933-019-0957-3
[28] Lee, E.Y., Yang, H.K., Lee, J., Kang, B., Yang, Y., Lee, S., et al. (2016) Triglyceride Glucose Index, a Marker of Insulin Resistance, Is Associated with Coronary Artery Stenosis in Asymptomatic Subjects with Type 2 Diabetes. Lipids in Health and Disease, 15, Article No. 155.
https://doi.org/10.1186/s12944-016-0324-2
[29] Won, K., Park, E.J., Han, D., Lee, J.H., Choi, S., Chun, E.J., et al. (2020) Triglyceride Glucose Index Is an Independent Predictor for the Progression of Coronary Artery Calcification in the Absence of Heavy Coronary Artery Calcification at Baseline. Cardiovascular Diabetology, 19, Article No. 34.
https://doi.org/10.1186/s12933-020-01008-5
[30] Reardon, C.A., Lingaraju, A., Schoenfelt, K.Q., Zhou, G., Cui, C., Jacobs-El, H., et al. (2018) Obesity and Insulin Resistance Promote Atherosclerosis through an IFNγ-Regulated Macrophage Protein Network. Cell Reports, 23, 3021-3030.
https://doi.org/10.1016/j.celrep.2018.05.010
[31] Roth, G.A., Abate, D., Abate, K.H., Abay, S.M., Abbafati, C., Abbasi, N., et al. (2018) Global, Regional, and National Age-Sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 392, 1736-1788.
https://doi.org/10.1016/s0140-6736(18)32203-7
[32] Huang, Y., Gao, L., Xie, X. and Tan, S.C. (2014) Epidemiology of Dyslipidemia in Chinese Adults: Meta-Analysis of Prevalence, Awareness, Treatment, and Control. Population Health Metrics, 12, Article No. 28.
https://doi.org/10.1186/s12963-014-0028-7
[33] Yu, S., Sun, Z., Zheng, L., Guo, X., Yang, H. and Sun, Y. (2015) Prevalence of Diabetes and Impaired Fasting Glucose in Hypertensive Adults in Rural China: Far from Leveling-Off. International Journal of Environmental Research and Public Health, 12, 14764-14779.
https://doi.org/10.3390/ijerph121114764
[34] da Silva, A.A., do Carmo, J.M., Li, X., Wang, Z., Mouton, A.J. and Hall, J.E. (2020) Role of Hyperinsulinemia and Insulin Resistance in Hypertension: Metabolic Syndrome Revisited. Canadian Journal of Cardiology, 36, 671-682.
https://doi.org/10.1016/j.cjca.2020.02.066
[35] Mancusi, C., Izzo, R., di Gioia, G., Losi, M.A., Barbato, E. and Morisco, C. (2020) Insulin Resistance the Hinge between Hypertension and Type 2 Diabetes. High Blood Pressure & Cardiovascular Prevention, 27, 515-526.
https://doi.org/10.1007/s40292-020-00408-8
[36] Rossier, B.C., Bochud, M. and Devuyst, O. (2017) The Hypertension Pandemic: An Evolutionary Perspective. Physiology, 32, 112-125.
https://doi.org/10.1152/physiol.00026.2016
[37] Wu, Z., Zhou, D., Liu, Y., Li, Z., Wang, J., Han, Z., et al. (2021) Association of Tyg Index and TG/HDL-C Ratio with Arterial Stiffness Progression in a Non-Normotensive Population. Cardiovascular Diabetology, 20, Article No. 134.
https://doi.org/10.1186/s12933-021-01330-6
[38] Wang, Y., Yang, W. and Jiang, X. (2021) Association between Triglyceride-Glucose Index and Hypertension: A Meta-analysis. Frontiers in Cardiovascular Medicine, 8, Article 644035.
https://doi.org/10.3389/fcvm.2021.644035
[39] Grobbee, D.E. and Bots, M.L. (1994) Carotid Artery Intima-Media Thickness as an Indicator of Generalized Atherosclerosis. Journal of Internal Medicine, 236, 567-573.
https://doi.org/10.1111/j.1365-2796.1994.tb00847.x
[40] Ahn, S., Lee, J. and Lee, J. (2020) Inverse Association between Triglyceride Glucose Index and Muscle Mass in Korean Adults: 2008–2011 Knhanes. Lipids in Health and Disease, 19, Article No. 243.
https://doi.org/10.1186/s12944-020-01414-4
[41] Bullón-Vela, V., Abete, I., Tur, J.A., Konieczna, J., Romaguera, D., Pintó, X., et al. (2020) Relationship of Visceral Adipose Tissue with Surrogate Insulin Resistance and Liver Markers in Individuals with Metabolic Syndrome Chronic Complications. Therapeutic Advances in Endocrinology and Metabolism, 11, Article 204201882095829.
https://doi.org/10.1177/2042018820958298
[42] Jeong, S. and Lee, J.H. (2021) The Verification of the Reliability of a Triglyceride-Glucose Index and Its Availability as an Advanced Tool. Metabolomics, 17, Article No. 97.
https://doi.org/10.1007/s11306-021-01837-9
[43] Alizargar, J. and Bai, C. (2018) Comparison of Carotid Ultrasound Indices and the Triglyceride Glucose Index in Hypertensive and Normotensive Community-Dwelling Individuals: A Case Control Study for Evaluating Atherosclerosis. Medicina, 54, Article 71.
https://doi.org/10.3390/medicina54050071
[44] Peng, J., Luo, F., Ruan, G., Peng, R. and Li, X. (2017) Hypertriglyceridemia and Atherosclerosis. Lipids in Health and Disease, 16, Article No. 233.
https://doi.org/10.1186/s12944-017-0625-0
[45] Poznyak, A., Grechko, A.V., Poggio, P., Myasoedova, V.A., Alfieri, V. and Orekhov, A.N. (2020) The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. International Journal of Molecular Sciences, 21, Article 1835.
https://doi.org/10.3390/ijms21051835
[46] Bang, O.Y. (2006) Intracranial Atherosclerotic Stroke: Specific Focus on the Metabolic Syndrome and Inflammation. Current Atherosclerosis Reports, 8, 330-336.
https://doi.org/10.1007/s11883-006-0012-1
[47] Salomaa, V., Riley, W., Kark, J.D., Nardo, C. and Folsom, A.R. (1995) Non-Insulin-Dependent Diabetes Mellitus and Fasting Glucose and Insulin Concentrations Are Associated with Arterial Stiffness Indexes. Circulation, 91, 1432-1443.
https://doi.org/10.1161/01.cir.91.5.1432
[48] Wang, Q., Zhao, Y., Wang, X., Ji, X., Sang, S., Shao, S., et al. (2020) Association between Asymptomatic Intracranial Arterial Stenosis and Insulin Resistance or Diabetes Mellitus: A Cross-Sectional Study in Rural Shandong, China. BMJ Open Diabetes Research & Care, 8, e001788.
https://doi.org/10.1136/bmjdrc-2020-001788
[49] López-Cancio, E., Galán, A., Dorado, L., Jiménez, M., Hernández, M., Millán, M., et al. (2012) Biological Signatures of Asymptomatic Extra-and Intracranial Atherosclerosis. Stroke, 43, 2712-2719.
https://doi.org/10.1161/strokeaha.112.661702
[50] Perseghin, G., Ghosh, S., Gerow, K. and Shulman, G.I. (1997) Metabolic Defects in Lean Nondiabetic Offspring of NIDDM Parents: A Cross-Sectional Study. Diabetes, 46, 1001-1009.
https://doi.org/10.2337/diab.46.6.1001
[51] Lee, Y., Hirose, H., Ohneda, M., Johnson, J.H., McGarry, J.D. and Unger, R.H. (1994) Beta-Cell Lipotoxicity in the Pathogenesis of Non-Insulin-Dependent Diabetes Mellitus of Obese Rats: Impairment in Adipocyte-Beta-Cell Relationships. Proceedings of the National Academy of Sciences, 91, 10878-10882.
https://doi.org/10.1073/pnas.91.23.10878
[52] García, A.G., Urbina Treviño, M.V., Villalpando Sánchez, D.C. and Aguilar, C.A. (2019) Diagnostic Accuracy of Triglyceride/glucose and Triglyceride/HDL Index as Predictors for Insulin Resistance in Children with and without Obesity. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13, 2329-2334.
https://doi.org/10.1016/j.dsx.2019.05.020
[53] Mózes, F.E., Lee, J.A., Vali, Y., Alzoubi, O., Staufer, K., Trauner, M., et al. (2023) Performance of Non-Invasive Tests and Histology for the Prediction of Clinical Outcomes in Patients with Non-Alcoholic Fatty Liver Disease: An Individual Participant Data Meta-Analysis. The Lancet Gastroenterology & Hepatology, 8, 704-713.
https://doi.org/10.1016/s2468-1253(23)00141-3
[54] Yu, Y., Cai, J., She, Z. and Li, H. (2018) Insights into the Epidemiology, Pathogenesis, and Therapeutics of Nonalcoholic Fatty Liver Diseases. Advanced Science, 6, Article 1808525.
https://doi.org/10.1002/advs.201801585
[55] Gaggini, M., Morelli, M., Buzzigoli, E., DeFronzo, R., Bugianesi, E. and Gastaldelli, A. (2013) Non-Alcoholic Fatty Liver Disease (NAFLD) and Its Connection with Insulin Resistance, Dyslipidemia, Atherosclerosis and Coronary Heart Disease. Nutrients, 5, 1544-1560.
https://doi.org/10.3390/nu5051544
[56] 林雄峰. TyG指数及TyG-BMI与非酒精性脂肪性肝病的相关性研究[D]: [硕士学位论文]. 福州: 福建医科大学, 2021.
[57] Che, B., Zhong, C.K., Zhang, R.J., et al. (2023) Triglyceride-Glucose Index and Triglyceride to High-Density Lipoprotein Cholesterol Ratio as Potential Cardiovascular Disease Risk Factors: An Analysis of UK Biobank Data. Cardiovascular Diabetology, 22, Article No. 34.
https://doi.org/10.1186/s12933-023-01762-2
[58] 杨曦, 柳怡莹, 万沁. TG/HDL-C、TyG指数对T2DM患者高尿酸血症的预测价值[J]. 天津医药, 2021, 49(6): 603-608.
[59] Wang, X., Feng, B.Y., Huang, Z.G., et al. (2022) Relationship of Cumulative Exposure to the Triglyceride-Glucose Index with Ischemic Stroke: A 9-Year Prospective Study in the Kailuan Cohort. Cardiovascular Diabetology, 21, Article No. 66.
https://doi.org/10.1186/s12933-022-01510-y
[60] Zhou, Y., Pan, Y.S., Yan, H.Y., et al. (2020) Triglyceride Glucose Index and Prognosis of Patients with Ischemic Stroke. Frontiers in Neurology, 11, Article 456.
https://doi.org/10.3389/fneur.2020.00456
[61] Cai, W., Xu, J., Wu, X., et al. (2023) Association between Triglyceride-Glucose Index and All-Cause Mortality in Critically Ill Patients with Ischemic Stroke: Analysis of the MIMIC-IV Database. Cardiovascular Diabetology, 22, Article No. 138.
[62] Toh, E.M.S., Amanda, Y.L., Lim, C.M., et al. (2022) Association of Triglyceride-Glucose Index with Clinical Outcomes in Patients with Acute Ischemic Stroke Receiving Intravenous Thrombolysis. Scientific Reports, 12, Article No. 1596.
https://doi.org/10.1038/s41598-022-05467-6
[63] 王梦, 卢丹丹, 祖赛, 等. TyG指数与轻型缺血性卒中患者早期神经功能恶化的相关性分析[J]. 中风与神经疾病杂志, 2022, 39(9): 808-812.